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Abstract

Sequence-to-sequence (seq2seq) models based
on the Transformer architecture have become a
ubiquitous tool applicable not only to classical
text generation tasks such as machine transla-
tion and summarization but also to any other
task where an answer can be represented in a
form of a finite text fragment (e.g., question
answering). However, when deploying a model
in practice, we need not only high performance
but also an ability to determine cases where the
model is not applicable. Uncertainty estimation
(UE) techniques provide a tool for identifying
out-of-domain (OOD) input where the model is
susceptible to errors. State-of-the-art UE meth-
ods for seq2seq models rely on computationally
heavyweight and impractical deep ensembles.
In this work, we perform an empirical investi-
gation of various novel UE methods for large
pre-trained seq2seq models T5 and BART on
three tasks: machine translation, text summa-
rization, and question answering. We apply
computationally lightweight density-based UE
methods to seq2seq models and show that they
often outperform heavyweight deep ensembles
on the task of OOD detection1.

1 Introduction

Sequence-to-sequence (seq2seq) models achieve
state-of-the-art performance in various NLP tasks,
such as neural machine translation (NMT; Vaswani
et al. (2017); Song et al. (2019); Zhu et al. (2020);
Liu et al. (2020)), abstractive text summarization
(ATS; Zhang et al. (2020); Lewis et al. (2020)),
question answering (QA; Raffel et al. (2020)), and
others. Such models may encounter various user
inputs when exposed to the general public. In many
cases, it is preferable to detect and handle in a spe-
cial way what is known as out-of-domain (OOD)
inputs. OOD instances are significantly different

1The code for reproducing experiments is available
online at https://github.com/stat-ml/seq2seq_ood_
detection

♢ Equal contribution

from the data used during training, and as a re-
sult, model predictions on such inputs might be
unreliable. OOD can be performed in supervised
and unsupervised ways. In a supervised approach,
one trains a discriminator between in-domain (ID)
and OOD instances on a labeled dataset of such in-
stances, which is manually annotated (Hendrycks
et al., 2019) or synthetically generated (Liang et al.,
2018). The drawback of such an approach is that
the discriminator is also limited in what instances it
can correctly process. Therefore, in many practical
cases, it might be better to use an unsupervised
approach, where OOD instances are detected using
uncertainty estimation (UE) methods.

Related work. UE for text generation models
is still an area of ongoing research with only a lim-
ited number of works. Malinin and Gales (2020)
propose various ensemble-based UE methods for
seq2seq models and evaluate them on two tasks:
NMT and automatic speech recognition. Ensemble-
based methods in conjunction with Monte Carlo
(MC) dropout (Gal and Ghahramani, 2016) are also
investigated in (Lukovnikov et al., 2021). The au-
thors find that the ensemble-based UE methods
lead to the best results for OOD detection in the
neural semantic parsing task. Xiao et al. (2020)
introduce a novel UE method BLEUVar, which is
also based on MC dropout. The uncertainty score
is calculated as a sum of the squared complements
of BLEU scores for all pairs of generated texts ob-
tained with different dropout masks. The method
shows improvements over the baselines in NMT.
Lyu et al. (2020) further explore this method for
OOD detection in question answering. Gidiotis and
Tsoumakas (2022) show that BLEUVar can also be
applied for UE in summarization. The aforemen-
tioned methods entail performing multiple model
inferences for each individual input, resulting in
high computational overhead. Recently, Kuhn et al.
(2022) propose a method that does not leverage MC
dropout, but samples multiple predictions without
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additional inferences. It is called semantic entropy
and is based on the idea that different samples can
have the same meaning. It calculates the entropy
of the probability distribution over meanings in-
stead of their surface realizations. Semantic en-
tropy outperforms the standard predictive entropy-
based methods proposed in (Malinin and Gales,
2020) on the free-form question answering task.

Contributions. In this work, we show that there
is significant room for improvement for existing
OOD detection methods in seq2seq tasks. We find
out that in some configurations, they even work
worse than the random choice. Moreover, most of
them are computationally intensive, which hinders
their successful application in real-world settings.

To address these issues, we adopt methods based
on fitting the probability density of latent instance
representations obtained from a trained neural net-
work (Lee et al., 2018; Yoo et al., 2022). While
these methods are shown to be effective for text
classification tasks, their application in text gener-
ation tasks has received limited research attention.
We fill this gap by conducting an empirical inves-
tigation of these methods for OOD detection in
NMT, ATS, and QA tasks and show their superi-
ority over the baselines from previous work. The
main contributions of our paper are as follows.

• We perform a large-scale empirical study of
UE methods on three different sequence gener-
ation tasks: NMT, ATS, and QA, with various
types of out-of-domain inputs: permutations
of tokens from original input, texts from a new
domain, and texts from another language.

• We show that the density-based approaches
are both more effective and computationally
efficient than previously explored state-of-
the-art ensemble-based or MC dropout-based
methods. The improvement is consistently
observed in all considered tasks.

2 Out-of-domain Detection Methods

OOD detection using uncertainty estimation is a bi-
nary classification task, where an uncertainty score
U(x) of a given input x is a predictor of x coming
from an unknown domain. In practice, a threshold
δ is specified so that all x : U(x) > δ are consid-
ered to be OOD.

The task of text generation involves complex au-
toregressive probabilistic models and usually re-
quires making not one but multiple predictions
(one per output token). These two factors make

UE of predictions in text generation tasks much
more complicated than in standard text classifica-
tion tasks. Below, we provide a short overview
of the approaches for uncertainty estimation of au-
toregressive model predictions investigated in our
work. More comprehensive details can be found
in Appendix A. All methods described below can
be applied to the majority of modern Transformer-
based pre-trained seq2seq models.

2.1 Information-based Uncertainty
Estimation

Usually, seq2seq models for each input x can gen-
erate multiple candidate sequences y via beam-
search, where the resulting set of sequences
B(x) = {y(b)}Bb=1 is called a “beam”. To get the
uncertainty score associated with a prediction on
x, we can aggregate individual uncertainties for
input-output pairs (x,y(b)) of the whole beam.

The simplest aggregation method is to take the
probability of a sequence y∗ that has the maxi-
mum confidence and is usually selected as a final
model output. We refer to this method as Max-
imum Sequence Probability (MSP). The alterna-
tive approach is to consider the hypotheses in the
beam y(b) as samples from a distribution of possi-
ble sequences. In this case, we can compute the
expected probabilities over the beam, yielding a
method called Normalized Sequence Probability
(NSP). Another option is to compute the average
entropy of the predictive token distributions over
the beam.

2.2 Ensembling
One can train several models for a single task and
benefit from their variability to estimate the un-
certainty. In this section, we mostly follow Ma-
linin and Gales (2020) who give a comprehensive
overview of the information-based UE techniques
for ensembles and Bayesian methods in general.

First of all, note that hypotheses sequences that
form the beam B(x) = {y(b)}Bb=1 for the case of
ensembling can be generated naturally by gener-
ating tokens sequentially according to the average
of the probabilities of ensemble members. Such
an ensembling approach is usually referred to as
Product of Expectations (PE) ensemble. We con-
sider two types of ensemble-based UE methods:
sequence-level and token-level.

Sequence-level methods obtain uncertainty
scores for the whole sequence at once. Total Uncer-
tainty (TU) is measured via entropy and Reverse
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Figure 1: Average ROC curves in various configurations on the NMT task for the selected UE methods. The first
dataset in the title represents the ID dataset, the second is the OOD dataset.

Mutual Information (RMI). We refer to these scores
as PE-S-TU and PE-S-RMI in our experiments.
One can also consider an alternative way of ensem-
bling models that is usually called the Expectation
of Products (EP) ensemble. It averages the proba-
bilities of whole sequences computed by different
models. This approach gives us two more variants
of TU and RMI: EP-S-TU and EP-S-RMI.

In token-level UE methods, we compute some
uncertainty measure for each token first and then
average these scores over all tokens in a sequence.
We consider Total Uncertainty measured via en-
tropy, Mutual Information (MI), Expected Pairwise
KL Divergence (EPKL) and Reverse Mutual Infor-
mation (RMI). The resulting token-level uncertain-
ties can be averaged via the PE approach leading to
PE-T-TU, PE-T-MI, PE-T-EPKL, and PE-T-RMI
methods. The alternative is to use EP averaging
that gives us another four metrics to consider: EP-
T-TU, EP-T-MI, EP-T-EPKL and EP-T-RMI.

2.3 Density-based Methods

Recently, density-based methods exhibited out-
standing performance in UE of deep neural network
predictions (Lee et al., 2018; van Amersfoort et al.,
2020; Kotelevskii et al., 2022; Yoo et al., 2022).
Yet, none of them has been applied to seq2seq mod-
els.

The basic idea behind density-based UE meth-
ods is to leverage the latent space of the model
and fit the probability density of the training in-
put representations within it. The lower value of
the density is then considered as an indicator of a
higher uncertainty due to the scarce training data
used to make the prediction.

We adopt two state-of-the-art methods of this
type for seq2seq models: Mahalanobis Distance
(MD; Lee et al. (2018)) and Robust Density Esti-
mation (RDE; Yoo et al. (2022)). Let h(x) be a
hidden representation of an instance x. The MD

method fits a Gaussian centered at the training data
centroid µ with an empirical covariance matrix Σ.
The uncertainty score is the Mahalanobis distance
between h(x) and µ:

UMD(x) = (h(x)− µ)TΣ−1(h(x)− µ).

We suggest using the last hidden state of the en-
coder averaged over non-padding tokens or the last
hidden state of the decoder averaged over all gener-
ated tokens as h(x). An ablation study of various
embeddings extraction and reduction methods is
provided in Appendix D.

The RDE method improves over MD by reduc-
ing the dimensionality of h(x) via PCA decom-
position. It also computes the covariance matrix
in a robust way using the Minimum Covariance
Determinant estimate (Rousseeuw, 1984). The un-
certainty score URDE(x) is also the Mahalanobis
distance but in the space of reduced dimensionality.

3 Experiments

Following (Malinin and Gales, 2020), we use two
approaches to generating OOD data for a given
“in-domain” (ID) dataset. In the first approach, we
simply take texts from another dataset, which is
distinct from the training set of the model in terms
of domain and/or structure. In the second approach,
we corrupt the dataset by randomly permuting the
source tokens (PRM). The details of OOD data
creation are provided in Appendix B.

Following the previous works on OOD detec-
tion (Hendrycks and Gimpel, 2017; Malinin and
Gales, 2020), we report the AU-ROC scores of de-
tecting OOD instances mixed into the test set. To
ensure stability, we run each experiment with 5
different random seeds and report the standard de-
viation. For brevity, in the main part, we report the
results of only the two best-performing methods
from each method group. Hardware configuration
for experiments is provided in Appendix B.
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Figure 2: Average ROC curves on the ATS task for the selected UE methods when XSum is the OOD dataset. The
first dataset in the title represents the ID dataset.
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Figure 3: Average ROC curves for QA task on datasets with links to Wikidata KG. The first dataset in the title is
the ID dataset, the second represents the OOD dataset. Also, the language is English except for the case with “ru”,
which identifies the Russian language.

3.1 Performance on ID vs OOD
First and foremost, we must ensure that the task
of identifying OOD examples is indeed crucial in
text generation tasks. To do so, we compare the
model’s performance on ID and OOD data. Ta-
bles 3, 6, 8 in Appendix C depict a comparison
of the model performance on ID and OOD obser-
vations in various ID-OOD settings for the NMT,
ATS, and QA tasks. We can see that the model’s
quality is significantly worse on OOD data in all
possible settings. This underlines the necessity of
identifying OOD examples in real-world applica-
tions since the model is incapable of generating
adequate predictions for such observations.

3.2 Machine Translation
Experimental setup. We conduct experiments
on two ID datasets: WMT’17 English-to-German
(En-De; Bojar et al. (2017)) and WMT’20 English-
to-Russian (En-Ru; Barrault et al. (2020)). The
OOD datasets were selected according to the bench-
mark of Malinin and Gales (2020). Since in real-
life settings, OOD data come from various sources,
we want to cover as many domains of data as possi-
ble with these datasets. For OOD data generation,
we use texts from WMT’14 (Bojar et al., 2014) in
French, the LibriSpeech test-clean (LTC) reference
texts (Panayotov et al., 2015), and English com-
ments from Reddit from the Shifts dataset (Malinin
et al., 2022). The predictions are made by the mul-
tilingual mBART model (Liu et al., 2020). The
details of the datasets and the model are provided

in Appendix B.

Results. The performance of the selected meth-
ods is presented in Figure 1 and Figure 4 in Ap-
pendix H. For both ID datasets with LTC and PRM
being OOD datasets, MD separates ID and OOD in-
stances very clearly. It achieves an AU-ROC score
very close to the optimal one, outperforming all the
ensemble-based methods.

When WMT’14 is used as OOD, for the model
trained on the WMT’17, most of the ensemble-
based methods notably fall behind even the ran-
dom choice, which means that the model is over-
confident in OOD instances. In contrast, MD and
RDE yield adequate results. MD based on encoder-
derived embeddings shows the best quality in this
setting. In the hardest setting, where Reddit is used
as an OOD dataset, MSP and ensembles poorly de-
tect OOD instances, while the density-based meth-
ods outperform all other techniques by a large mar-
gin. The only case where density-based methods
show slightly lower performance is when WMT’14
and Reddit are considered OOD for the model
trained on WMT’20.

Overall, we can see that in most of the consid-
ered settings, MD substantially outperforms all
other methods, and it is steadily better than the
random choice baseline, while other methods are
sometimes worse than the random choice. The
compute time of the selected methods is presented
in Table 13 in Appendix E. We see that the efficient
density-based methods introduce only a small com-
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putational overhead compared to ensemble-based
approaches. The complete results of all the con-
sidered methods are presented in Table 15 in Ap-
pendix H.

Finally, the qualitative analysis of model perfor-
mance and examples of ID/OOD predictions are
presented in Tables 4,5 in Appendix C.

3.3 Abstractive Text Summarization

Experimental setup. We experiment with four
widely used datasets for ATS with each being
ID and OOD: XSum (Narayan et al., 2018),
AESLC (Zhang and Tetreault, 2019), Movie Re-
views (MR; Wang and Ling (2016)), and De-
bate (Wang and Ling, 2016). Predictions are made
by the standard BART model (Lewis et al., 2020).
The details on the datasets and the model are pro-
vided in Appendix B.

Results. For brevity, in the main part of the paper,
we only keep the results with XSum being an OOD
dataset. The results for other settings are presented
in Appendix G. Figure 2 and Figure 5, Tables 16
and 17 in Appendix G illustrate the results of OOD
detection in different corruption scenarios.

First, we can clearly see that the density-based
methods relying on both encoder and decoder
features provide a large improvement over both
information-based and ensemble-based methods.
In each corruption scenario, at least one of the MD
versions yields the highest AU-ROC scores.

Second, we can observe that some OOD config-
urations where density-based methods achieve the
optimal quality (e.g. MR-XSum, MR-Debate) turn
out to be challenging for both information-based
and ensemble-based methods. These methods per-
form worse than the random choice baseline.

Third, when XSum is the ID dataset, RDE based
on encoder features fails to perform well. MD,
however, achieves the best results in these cases.

Finally, the ensemble-based methods struggle
to work stable across different settings. We can
see that both PE-S-TU and PE-T-MI are even in-
ferior to information-based methods in some ID-
OOD dataset configurations (e.g. AESLC-XSum,
Debate-XSum). MD, on the contrary, shows robust
results without performance gaps.

3.4 Question Answering

Experimental setup. For the QA task, we se-
lect several widely-used KGQA datasets: Simple
Questions (Bordes et al., 2015), Mintaka (Sen et al.,

2022), and RuBQ 2.0 (Rybin et al., 2021). For pre-
dictions, we use the T5 model pre-trained for the
QA task (Roberts et al., 2020). The details on the
datasets and the model are given in Appendix B.
The T5 model is used in zero-shot and if no sam-
pling technique is undertaken, there will be no di-
versity for single model-based and density-based
methods. Thus, we apply the bootstrap technique
to estimate the confidence of the results obtained by
calculating the standard deviation from the mean
results.

Results. Experiments on the QA task demon-
strate similar behavior of UE methods. From Fig-
ure 3 and Table 18 in Appendix H, we can see that
the density-based estimates obtained from encoder-
derived embeddings outperform all the other uncer-
tainty methods by a large margin.

They achieve high-quality results even in cases
when the ensemble-based methods completely miss
the target (e.g. RuBQ2-RuBQ2ru). This confusion
can be explained by the fact that in the case when
the model receives input data that is significantly
different from what it was trained on, for example,
the pre-training was mostly in English, and the
question in Russian, the network is forced into
default mode distribution based on the frequency
of tokens. Example of such generation mode is
illustrated in Table 7 in Appendix H.

For experiments in settings RuBQ2-Mintaka and
RuBQ2-PRM, we do not observe such a signifi-
cant outlier as in the previous example. MD is the
obvious leader, followed by RDE with a signifi-
cant gap. Additional qualitative analysis in Table 7
in Appendix H shows that for a particular OOD
example, often the uncertainty metric based on a
single model and MC ensemble is not so different
from the ID counterpart which explains their poor
performance.

4 Conclusion

We adopted the density-based UE methods for
seq2seq models and demonstrated that they pro-
vide the best results in OOD detection across three
sequence generation tasks: NMT, ATS, and QA.
They appear to be superior to the ensemble-based
methods in terms of both performance and com-
pute time, which makes them a good choice for
applying in practice.

In future work, we are going to extend the appli-
cation of density-based methods to seq2seq models
in other UE tasks such as selective classification.
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A Methods

A.1 Base Probabilistic Uncertainty Measures

The task of sequence generation involves relatively complex autoregressive probabilistic models and there
exist several variants of defining uncertainties for them. Let us consider the input sequence x and the
output sequence y ∈ Y of the length L, where Y is a set of all possible output sequences. Then the
standard autoregressive model parametrized by θ is given by:

P (y | x,θ) =
L∏

l=1

P (yl | y<l,x,θ), (1)

where the distribution of each yl is conditioned on all the previous tokens in a sequence y<l =
{y1, . . . , yl−1}.

The probability P (y | x,θ) immediately gives a so-called Unnormalized Sequence Probability
(USP) uncertainty metric: USP(y | x,θ) = 1 − P (y | x,θ). However, this metric tends to increase
with the increase of the sequence length L which is usually undesirable in practice. That is why some
alternatives are proposed.

Normalized Sequence Probability (NSP; Ueffing and Ney (2007)) metric directly deals with the
variable length via the appropriate normalization that corresponds to average token log-probability
P̄ (y | x,θ) = exp

{
1
L logP (y | x,θ)

}
:

NSP(y,x;θ) = 1− P̄ (y | x,θ). (2)

Average token-wise entropy (Malinin and Gales, 2020) allows to generalize the notion of standard
entropy-based uncertainty metrics for the case of autoregressive models:

H(y,x;θ) =
1

L

L∑

l=1

H(yl | y<l,x,θ), (3)

where H(yl | y<l,x,θ) is an entropy of the token distribution P (yl | y<l,x,θ).

A.2 Aggregation of Uncertainties over Beam

In practice, seq2seq models for each input x usually generate several candidate sequences via beam-search
procedure. The resulting set B(x) = {y(b)}Bb=1 is usually called beam. Thus, for the solution of OOD
detection problems, one needs to aggregate uncertainties of particular pairs (x,y(b)) into one uncertainty
measure associated with an input x.

The simplest method to measure the uncertainty for a beam of sequences is to take the sequence having
maximum confidence as exactly this sequence is usually selected as a resulting output of the model. In
this work, we consider the particular instantiation of this approach based on NSP measure (2) that we call
Maximum Sequence Probability (MSP):

MSP(x;θ) = 1− max
b∈1,B

P̄ (y(b) | x,θ). (4)

The alternative approach is to consider the hypotheses sequences y(b) as samples from a distribution
of sequences P̄ (y | x,θ). Each sequence is seen only once and to correctly compute the expectation of
some uncertainty measure U(y,x;θ) over this distribution one needs to perform some corrections. The
natural choice is importance weighting that leads to the following uncertainty estimate:

U(x;θ) =
B∑

b=1

U(y(b),x;θ)
P̄ (y(b) | x,θ)

∑B
j=1 P̄ (y(j) | x,θ)

.
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Thus, we got an averaged versions of NSP (2):

NSP(x;θ) = 1−
B∑

b=1

P̄ (y(b) | x,θ)2
∑B

j=1 P̄ (y(j) | x,θ)

and entropy (3):

H(x;θ) =
B∑

b=1

H(y,x;θ)
P̄ (y(b) | x,θ)

∑B
j=1 P̄ (y(j) | x,θ)

.

A.3 Ensembling
The uncertainty metrics in previous sections are applicable to a single model, while in many applications
one can train several models for a single task and benefit from their variability. We assume that an
ensemble of M models has been trained with resulting parameters θi, i = 1, . . . ,M . In what follows, we
discuss the variety of uncertainty measures that can be computed based on the ensemble of models.

A.3.1 Beam Generation
First of all, we need to discuss how to generate hypotheses sequences for the case of ensembling. We
follow the most natural way by generating tokens sequentially according to the average of the probabilities
of ensemble members:

yl ∼ P (yl | y<l,x), (5)

where for l = 1, . . . , L we defined

P (yl | y<l,x) =
1

M

M∑

i=1

P (yl | y<l,x;θi). (6)

Such an ensembling approach is usually referred as Product of Expectations (PE) ensemble.
In what follows, we assume that the beam B(x) = {y(b)}Bb=1 is generated via PE ensemble. The

corresponding importance weights are given by

π(b) =
P̄ (y(b) | x)

∑B
j=1 P̄ (y(j) | x)

,

where P̄ (y(b) | x) = exp
{

1
L(b) logP (y(b) | x)

}
with L being the length of the sequence y(b) and

P (y(b) | x) = ∏L(b)

l=1 P (y
(b)
l | y(b)

<l ,x).

A.3.2 Sequence Level Ensembling
For the ensembling on a sequence level, we consider two uncertainty measures: total uncertainty (TU)
measured via entropy

HS(x) =
B∑

b=1

π(b) log P̄ (y(b) | x) (7)

and

MS(x) =
1

M

M∑

i=1

B∑

b=1

π(b)

L(b)
log

P (y(b) | x)
P (y(b) | x,θi)

, (8)

which is known as reverse mutual information (RMI). We refer to these measures as PE-S-TU and
PE-S-RMI in our experiments. We note that one can also consider an alternative way of ensembling
models that is usually called Expectation of Products (EP) ensemble:

P̆ (y | x) = exp
{ 1

L
log

1

M

∑M

i=1
P (y | x,θi)

}
,

and compute TU and RMI by substituting P̄ (y | x) with P̆ (y | x) in equations (7) and (8) respectively.
We refer to these methods as EP-S-TU and EP-S-RMI in our experiments.
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A.3.3 Token Level Ensembling
In the previous section, all the computation of uncertainties was performed on the level of the full
sequences. However, multiple opportunities exist to perform it on the level of individual tokens and then
aggregate the resulting token uncertainties over the whole sequence. Below we discuss this in detail.

We start from a total uncertainty estimate via entropy:

HT (x) =

B∑

b=1

π(b)

L(b)

L(b)∑

l=1

H(yl | y(b)
<l ,x), (9)

where H(yl | y<l,x) is an entropy of the token distribution P (yl | y<l,x) given in (6).
Additionally, for the ensemble one can compute the variety of other token level uncertainty measures

including Mutual Information (MI):

M(yl | y<l,x) = H(yl | y(b)
<l ,x)−

1

M

M∑

i=1

H(yl | y<l,x,θi) (10)

and Expected Pairwise KL Divergence (EPKL):

K(yl | y<l,x) =

(
M

2

)−1∑

i ̸=j

KL
(
P (yl | y<l,x,θi) ∥ P (yl | y<l,x,θj)

)
,

where KL(P ∥ Q) refers to a KL-divergence between distributions P and Q.
Finally, Reverse Mutual Information (RMI) also can be computed on the token level via a simple

equation
M(yl | y<l,x) = K(yl | y<l,x)− I(yl | y<l,x). (11)

The resulting token-level uncertainties computed via MI (10), EPKL (11) and RMI (11) can be plugged-
in in equation (9) on the place of entropy leading to corresponding sequence level uncertainty estimates.
We refer to the resulting methods as PE-T-TU, PE-T-MI, PE-T-EPKL and PE-T-RMI.

Additionally, instead of considering the distribution P (yl | y<l,x,θi) one might consider the expecta-
tion of products averaging leading to the distribution:

P̆ (yl | y<l,x) =

∑M
i=1 P (yl,y<l,x,θi)∑M
j=1 P (y<l,x,θi)

. (12)

This gives us another four metrics to consider: EP-T-TU, EP-T-MI, EP-T-EPKL and EP-T-RMI.
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B Experimental Details

B.1 OOD Dataset Creation
In both corruption scenarios, we use test samples of the ID and OOD datasets. From the ID dataset, all the
observations are used. If the number of texts in the test sample of the OOD dataset is less than that of the
ID dataset, we add observations from the training and validation sets until the number of OOD instances
equals the number of ID ones. Note that we do not clip the ID dataset if the OOD dataset still contains
fewer observations.

B.2 Datasets Description
B.2.1 Machine Translation
We select the WMT’14 dataset (Bojar et al., 2014), LTC (Panayotov et al., 2015), and Comments from
Reddit (Malinin et al., 2022) for the following reasons. WMT’14 is different from the source datasets
(WMT’17 En-De and WMT’20 En-Ru) in terms of the source language. The scenario when OOD data
comes from different languages can be practical because one usually does not control the input data given
by users, while the model output given the input in a different language might be unpredictable and cause
reputational risks. In the next two settings, OOD texts only differ from ID in their formality level. Thus,
LTC represents a new domain for the model with a completely different structure of texts as a spoken
language. Comments from Reddit also refer to spoken language, embodying a structural shift in the data.

B.2.2 Abstractive Summarization
We select the following datasets since they all represent different domains. XSum (Narayan et al., 2018)
consists of BBC news with their one-sentence introductory sentences as summaries. AESLC (Zhang and
Tetreault, 2019) contains emails with their headlines as summaries. Movie Reviews dataset (Wang and
Ling, 2016) (MR) is a collection of critics’ opinions on the movie and their consensus. Finally, the Debate
dataset (Wang and Ling, 2016) contains arguments and the debate topic pairs, with the former standing
for documents and the latter embodying summaries.

B.2.3 Question Answering
Mintaka (Sen et al., 2022), as stated in the original article, is a complex, natural, and multilingual dataset
designed for experimenting with end-to-end question-answering models. The advantage of this dataset
is that it is large enough and has a decent quality of data at the same time. The trade-off between size
and quality is the problem of such datasets as mentioned in (Sen et al., 2022). Besides, it provides
professional translation of the questions in 8 languages and Wikidata knowledge graph IDs to cope with
disambiguation.

The second dataset that we use is RuBQ 2.0 (Rybin et al., 2021). It contains Russian questions, coupled
with English machine translations, SPARQL queries and answers with Russian labels, and a subset of
Wikidata knowledge graph identifiers. Different complexity of questions allows us to work with data that
does not have a shift towards simple or complex questions.

We also conduct experiments on the most popular and oldest Simple Questions (Bordes et al., 2015)
dataset for KGQA that contains various questions. We select only the answerable ones.

Thus, we work on the task of answering questions over datasets with links to the Wikidata Knowledge
Graph.

B.2.4 Dataset Statistics
We give the summary statistics about the considered datasets in Table 1.

B.3 Models
B.3.1 Machine Translation
We use the “large-CC25” version of mBART. We train an ensemble of 5 models with different ran-
dom seeds for En-De and En-Ru tasks. As for the training settings, we follow the original setup and

https://huggingface.co/facebook/mbart-large-cc25
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hyperparameters from (Liu et al., 2020) and train models with 100K update steps.

B.3.2 Abstractive Summarization
In this experiment, we use the “bart-base” version of BART. For each dataset, we construct 5 ensembles
each consisting of 5, with a total of 25 trained models. We leverage the hyperparameters and training
setup proposed in the original paper (Lewis et al., 2020).

B.3.3 Question Answering
We use the checkpoint “t5-small-ssm-nq” of the T5 model (Raffel et al., 2020) . It is considered to be a
state-of-the-art model for the QA task even in closed book setting.

Table 1: Dataset statistics. We provide a number of instances for the training / validation / test sets, average lengths
of texts and targets (answers / translations / summaries) in terms of tokens, and source / target languages.

Dataset Num. instances Av. document len. Av. target len. Language
NMT

WMT’20 62M / 1997 / 3000 23.9 / 25.1 20.9 / 24.1 English-to-Russian
WMT’17 5.9M / 3000 / 3003 26.2 / 27.0 24.8 / 28.2 English-to-German
WMT’14 40.8M / 3000 / 3003 29.2 / 27.0 33.5 / 32.1 English-to-French

Shifts Reddit - / 1362 / 3063 - / 16.1 - / 16.4 English
LibriSpeech 28539 / 2703 / 2620 - 33.4 / 20.1 English

ATS
XSum 204045 / 11332 / 11334 454.6 26.1 English

Movie Reviews 2685 / 299 / 747 972.9 28.5 English
AESLC 14436 / 1960 / 1906 165.5 6.7 English
Debate 1626 / 181 / 452 216.7 13.0 English

KGQA
RuBQ 2.0 - / 580 / 2330 36.46 / 13.85 12.66 / 3.07 Russian / English
Mintaka 14000 / 2000 / 4000 14.36 3.97 English

Simple Questions 19481 / 2821 / 5622 12.56 4.01 English

B.4 Hardware & Resources
NMT and KGQA experiments were performed using the following hardware: Intel(R) Xeon(R) Gold
6140 CPU @ 2.30GHz, 36 cores CPU, NVIDIA Tesla v100 GPU, 16 Gb of VRAM.

ATS experiments were performed using the following hardware: 2 Intel Xeon Platinum 8168, 2.7 GHz,
24 cores CPU; NVIDIA Tesla v100 GPU, 32 Gb of VRAM.

We provide the information about the resources employed for each experiment in Table 2.

https://huggingface.co/facebook/bart-base
https://huggingface.co/google/t5-small-ssm-nq
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Table 2: Models used for experiments with their parameter counts and approximate GPU hours used for inference
and training

ID Dataset / Experiment Model Num. Params Avg. GPU hours
NMT

WMT’20 mBART-large 611M 1592
WMT’17 1392

ATS
AESLC

BART-base 139M

30
Debate 15

MR 30
XSum 150

KGQA
Simple Questions PRM

T5-small 77M

80
RuBQ2.0 PRM 40

RuBQ2.0 En vs Ru 40
RuBQ2.0 vs Mintaka 60
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C Qualitative Analysis

C.1 Machine Translation
Table 3 presents the BLEU score for the NMT task on ID and OOD datasets. We can see a significant
decrease in model performance on the OOD dataset. These results demonstrate the necessity of the
detection of OOD instances for maintaining the high quality of the model performance.

Dataset WMT20 En-Ru WMT17 En-De
PRM Reddit PRM Reddit

ID 30.98±0.06 30.85±0.06
OOD 6.85±0.15 24.44±0.20 8.63±0.06 11.04±0.02

Table 3: Model performance for various ID/OOD settings on the NMT task. The first row demonstrates the BLEU↑
score on the ID test dataset for the considered models. The second row demonstrates the BLEU↑ score on the OOD
test dataset, presented in the header of the table.

Tables 4 and 5 present the textual examples for the models trained on the WMT17 En-De and the
WMT20 En-Ru task for ID and OOD datasets. We can see, that for the PRM and WMT14 Fr as OOD, a
model trained on the WMT17 En-De performs copying of the input to the output with a high probability.
Therefore, the MSP uncertainty is quite low for these examples. However, MD-Encoder is able to correctly
spot these instances with high uncertainty.

We can see, that for instances from the LTC dataset, both models produce poor translations, and
MD-Encoder precisely detects these instances with high uncertainty. The Reddit dataset consists of
challenging texts, and a model trained on the WMT20 En-Ru generates translation with a low BLEU
score. However, MD-Encoder produces higher uncertainty than MSP for these examples, and we are able
to correctly detect these erroneous instances.

Dataset Input Output MSP MD-Enc. BLEU

WMT17 So what? Was also? 0.99 0.39 37.99
WMT17 Well-known platforms include Twitch and YouTube Gaming. Zu den bekannten Plattformen gehören Twitch und YouTube Gaming. 0.03 0.47 47.11

WMT14 Fr "Son côté humain est ressorti", raconte-t-il. "Son côté humain est ressorti", raconte-t-il. 0.05 0.97 13.84
WMT14 Fr Du chant classique pour adolescents Klassisches Gesang für Jugendliche 0.35 0.99 0.0
PRM Young The planning " musical association and Theatreima project"N a now. ares’ Jung Die Planung "musikalische Vereinigung und Theatreima Projekt"N a jetzt. 0.4 0.68 9.97
PRM just timees did in Hind They so as.d emerge just timees did in Hind They so as.d emerge 0.17 0.94 0.0
LTC AT ANOTHER TIME HARALD ASKED ZUR ANDEREN ZEIT HARALD 0.18 0.99 -
LTC NO ITS NOT TOO SOON NOCH NICHT VORher 0.27 0.99 -
LTC YOU DON’T SEEM TO REALIZE THE POSITION DIE POSITION IST NICHT ERWEITERT 0.45 0.98 -

Table 4: Textual examples with the input and output of the model trained on the WMT17 En-De task. We
demonstrate uncertainty estimates from MSP and MD-Encoder and BLEU scores for the NMT task. For LTC, we
do not show the BLEU score since ground-truth translation is not presented in the dataset. Uncertainty for each
method is presented in the range [0-1]. The less saturated color indicates lower uncertainty.

Dataset Input Output MSP MD-Enc. BLEU

WMT20 All the species of Taxus are known to produce Taxol Известно, что все виды Taxus производят Taxol 0.92 0.8 39.76
WMT20 The Abe government’s school closure plan was immediately criticized. План правительства Абэ о закрытии школы был подвергнут резкой критике. 0.71 0.55 24.7

Reddit "r slur" Lmfaooo imagine being that soft Лмфаooo представить, чтобы быть мягким 0.64 0.89 5.43
Reddit These guys are so tough they can be considered as a boss fight Эти ребята настолько жесткие, что их можно считать боссом боя 0.05 0.69 18.58
PRM two These days next gain are will. the we over skills the два В эти дни следующий выигрыш есть воля. 0.22 0.92 9.79
PRM all? at, accurate not worst And at все на, точно не худшее И на 0.37 0.97 0.0
LTC HE HAD BROKEN INTO HER COURTYARD Он перебрался в ее тюрьму 0.28 0.84 -
LTC HOW KIND MAN IS AFTER ALL ЧТО ТАКОЕ ЧЕЛОВЕКА НА ВОЗМОЖНЫХ 0.2 0.98 -
LTC YOU DON’T SEEM TO REALIZE THE POSITION НЕ ПОНИМАЮТ, ЧТО ВЫ ОСУЩЕСТВЛЯете ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ВОЗМОЖНОСТИ 0.21 0.9 -

Table 5: Textual examples with the input and output of the model trained on the WMT20 En-Ru task. We
demonstrate uncertainty estimates from MSP and MD-Encoder and BLEU scores for the NMT task. For LTC, we
do not show the BLEU score, since ground-truth translation is not presented in the dataset. Uncertainty for each
method is presented in the range [0-1]. The less saturated color indicates lower uncertainty.

C.2 Abstractive Summarization
Table 6 illustrates the ROUGE-2 score for the ATS task on ID and OOD datasets. Similar to NMT, the
model performs much very poorly on OOD data. Therefore, detection of OOD instances is crucial for

1444



maintaining the high quality of the model performance.

ID Dataset AESLC Debate M.R. XSum
OOD Dataset PRM Deb. M.R. XSum AESLC PRM M.R. XSum AESLC Deb. PRM XSum AESLC Deb. M.R. PRM

ID ROUGE-2 0.220 0.184 0.113 0.197
OOD Rouge-2 0.015 0.047 0.068 0.029 0.067 0.038 0.07 0.034 0.07 0.058 0.025 0.043 0.020 0.042 0.061 0.052

Table 6: Model performance for various ID/OOD settings on the ATS task. The first row demonstrates the
ROUGE-2↑ score on the ID test dataset for the considered models. The second row demonstrates the ROUGE-2↑
score on the OOD test dataset, presented in the header of the table.

C.3 Question Answering
For the KGQA task, we also analyze the behaviour of the uncertainty metrics to further illustrate the
effectiveness of density based approaches on particular examples. Table 7 depicts this analysis. It is
evident that values of MD-Encoder estimates show clear difference between ID and OOD inputs. We
can also clearly see that for most of the OOD inputs considered, output of the model is either factually
incorrect or simply incomprehensible.

We also report model quality on the ID/OOD datasets, further justifying this choice of datasets. Results
are present in Table 8. For this analysis we have chosen a larger versions of the same model – t5-large-
ssm-nq. It’s clear that the model performs significantly better on both ID datasets, which motivates the
need to detect OOD inputs with lower expected quality of the output.

ID/OOD Question (Input) Answer (Output) MD-Enc. RDE-Enc. NSP Entropy PE-S-TU PE-T-MI

ID What is the name of the capital of Romania? Bucharest 0.02 0.36 0.1 0.77 0.67 0.24
ID What country owns the island of Tahiti? France 0.05 0.22 0.13 0.81 0.78 0.3

OOD (different language) Как называется столица Румынии? естар умни 0.94 0.75 0.03 0.89 0.2 0.09
OOD (different language) Какой стране принадлежит остров Таити? лександр едеране 0.82 0.54 0.03 0.91 0.18 0.14
OOD (permutation) of name of capital the the? is Romania Chis, inău 0.62 0.33 0.06 0.74 0.7 0.24
OOD (permutation) thehit island? owni Tas country of Lausanne, New Hampshire 0.51 0.33 0.04 0.8 0.74 0.26
OOD (different domain) How many children did Donald Trump have? 132,656 0.62 0.33 0.06 0.74 0.7 0.24
OOD (different domain) Who performed at the Super Bowl XXIII halftime show? Whoopi Goldberg 0.51 0.33 0.04 0.8 0.74 0.26

Table 7: Textual examples with the input and output of the model T5 (t5-small-ssm-nq) used in zero shot.
We demonstrate uncertainty estimates for several illustrative examples for MD and RDE calculated on encoder
embeddings, NSP, Entropy, PE-S-TU and PE-T-MI. The results presented in the table are standardised to the interval
from 0 to 1 for the analysis of comparative values. The less saturated color indicates lower uncertainty.

ID Dataset RuBQ En WDSQ En
OOD Dataset PRM Ru Mintaka PRM Ru Mintaka

ID Top-1 Acc 0.170 0.159

OOD Top-1 Acc 0.053 0.0 0.116 0.070 0.011 0.107

Table 8: Model performance for various ID/OOD settings on the KGQA task. The first row demonstrates the Top-1
Accuracy on the ID test dataset for the considered models. The second row demonstrates the Top-1 Accuracy on
OOD dataset, presented in the header of the table.
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D Ablation Study of Various Embeddings Extraction and Reduction Methods

Tables 9 and 10 show ROC-AUC for MD-Encoder and MD-Decoder correspondingly with various
embedding reduction methods for OOD detection for selected settings for the NMT task. The function in
the reduction method column means a method for aggregation embeddings for tokens in sequence vector
representation. The embedding layers column means a layer from which we extract embeddings. For
embeddings from all layers, we first average them across all layers and then apply the reduction method.

The results show that the base method (mean+last layer) is the most stable embedding reduction method
for OOD detection. For WMT20 as ID and Reddit as OOD, embeddings from the encoder from all layers
are slightly better than from the last. However, in a setting with LTC as OOD, embeddings from the
encoder from all layers significantly deteriorate OOD detection performance. For WMT17 as ID and LTC
as OOD, embeddings from the decoder with maximum as the reduction method are slightly better than
the mean embeddings. On the other hand, in a setting with Reddit as OOD and WMT17 or WMT20 as ID,
embeddings from the decoder aggregated with maximum function significantly worsen OOD detection
performance.

UE Method Reduction Method Embedding Layers WMT20 En-Ru WMT17 En-De
LTC Reddit LTC Reddit

MD-Enc. Mean Last 0.86±0.01 0.72±0.0 1.0±0.0 0.75±0.0
MD-Enc. Max Last 0.63±0.03 0.56±0.01 1.0±0.0 0.67±0.0
MD-Enc. Mean All 0.78±0.01 0.75±0.0 1.0±0.0 0.73±0.0
MD-Enc. Max All 0.13±0.02 0.4±0.0 0.98±0.0 0.54±0.0

Table 9: ROC-AUC↑ for the various settings for MT task for MD-Encoder method with various reduction methods.
The first row indicates for the standard embeddings extraction and reduction methods, which is used in all other
tables and figures.

UE Method Reduction Method Embedding Layers WMT20 En-Ru WMT17 En-De
LTC Reddit LTC Reddit

MD-Dec. Mean Last 0.77±0.01 0.6±0.01 0.94±0.0 0.65±0.00
MD-Dec. Max Last 0.83±0.01 0.38±0.01 0.99±0.0 0.57±0.0
MD-Dec. Mean All 0.65±0.04 0.57±0.03 0.88±0.01 0.58±0.01
MD-Dec. Max All 0.45±0.04 0.37±0.03 0.97±0.0 0.59±0.01

Table 10: ROC-AUC↑ for the various settings for MT task for MD-Decoder method with various reduction methods.
The first row indicates for the standard embeddings extraction and reduction methods, which is used in all other
tables and figures.

We additionally carried out an analysis for the KBQA task and the results are shown in the following
Tables 11 and 12. WE can see that it is the averaging over last encoder hidden state gives the best results.
We have compared such approaches as averaging over all latent states as well as taking the maximum
from all hidden states as well as from the last one.

Moreover, we compute it both for encoder and decoder part and show that it is reasonably to focus
specifically on the encoder’s hidden states. Also, the calculation of the standard deviation of the estimate
from the average ROC AOC allows us to trust the results, as there is no overlap between different standard
deviations.
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UE Method Reduction Method Embedding Layers RuBQ 2.0 En
RuBQ 2.0 PRM RuBQ 2.0 Ru Mintaka

MD-Enc. Mean Last 0.95±0.00 1.00±0.00 0.87±0.01
MD-Enc. Max Last 0.89±0.00 1.00±0.00 0.81±0.01
MD-Enc. Mean All 0.86±0.01 1.00±0.00 0.80 ±0.01
MD-Enc. Max All 0.87±0.01 0.97±0.00 0.76±0.01

Table 11: ROC-AUC↑ for the various settings for KBQA task for MD-Encoder method with various reduction
methods. The first row indicates for the standard embeddings extraction and reduction methods, which is used in all
other tables and figures.

UE Method Reduction Method Embedding Layers RuBQ 2.0 En
RuBQ 2.0 PRM RuBQ 2.0 Ru Mintaka

MD-Dec. Mean Last 0.65±0.01 0.85±0.01 0.74±0.01
MD-Dec. Max Last 0.62±0.01 0.62±0.01 0.69±0.01
MD-Dec. Mean All 0.62±0.01 0.82±0.01 0.73±0.01
MD-Dec. Max All 0.55±0.01 0.18±0.01 0.66±0.01

Table 12: ROC-AUC↑ for the various settings for KBQA task for MD-Decoder method with various reduction
methods. The first row indicates for the standard embeddings extraction and reduction methods, which is used in all
other tables and figures.
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E Comparison of Computational Time of UE Methods

Table 13 presents the computational time for all considered methods for the NMT task with WMT17 as the
ID dataset and PRM as the OOD dataset. These results demonstrate 1100% of the computational overhead
time for the ensemble-based methods in comparison with the inference of a single model. Moreover,
density-based methods show their computational efficiency and superior other methods by ROC-AUC
with 18-20% additional overhead in comparison with the inference of a single model and only 1.5% in
comparison with the ensemble-based methods.

UE Method Inference Time, sec UE Time, sec Total, sec

NSP
834.1±23.6 0.0±0.0 834.1±23.6

MSP

BLEUVAR 4053.0±67.9 57.1±0.6 4110.1±68.5

MD-ENCODER

150.3±1.8

2.0±2.9 152.3±4.7
MD-DECODER 0.5±0.2 150.8±2.0
RDE-ENCODER 14.6±1.5 164.9±3.3
RDE-DECODER 20.1±1.7 170.4±3.5

EP-SEQ

9532.9±0.0 0.0±0.0 9532.9±0.0
EP-TOK
PE-TOK
PE-SEQ

Table 13: The computational time for the NMT task with WMT17 as the ID dataset and PRM as the OOD dataset.
Inference time corresponds to the time needed for model generation for each UE method. UE time corresponds to
the time needed for computing uncertainty estimates after the inference stage.

We also present a Table 14 with the time cost results for the KBQA task. The presented table displays
the mean values and their corresponding standard deviations for the evaluated uncertainty methods in
a specific experiment. The dataset used in this experiment is RUBQ 2.0 English questions, and the
out-of-domain (OOD) questions are questions with permuted tokens from the same dataset. Despite the
high variability observed in this problem, as indicated by the large standard deviations, we can assert with
confidence that the density-based methods exhibit significantly faster performance compared to both the
ensemble-based and single model-based methods.

UE Method Inference Time, sec UE Time, sec Total, sec

NSP
2087.2±571.2 0.0±0.0 2087.2±571.2

MSP

BLEUVAR 7875.0±3544.7 12.8±0.4 7887.8±3545.1

MD-ENCODER

729.8±246.1

0.7±0.4 730.5±246.5
MD-DECODER 0.7±0.4 730.5±246.5
RDE-ENCODER 0.5±0.0 730.3±246.1
RDE-DECODER 0.5±0.0 730.3±246.1

EP-SEQ

7925.4±287.3 0.0±0.0 7925.4±287.3
EP-TOK
PE-TOK
PE-SEQ

Table 14: The computational time for the KBQA task with RuBQ 2.0 questions in english as the ID dataset and
RuBQ 2.0 permuted questions in english as the OOD dataset. Inference time corresponds to the time needed for
model generation for each UE method. UE time corresponds to the time needed for computing uncertainty estimates
after the inference stage.
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F Overall Comparison of OOD Detection Methods on the Machine Translation Task

Figure 4 presents the mean ROC curves over 5 seeds for the models trained on the WMT’20 En-Ru for
the selected methods. The second dataset in the title of the figure represents OOD.
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Figure 4: Average ROC curves in various configurations on the NMT task for the selected UE methods. The first
dataset in the title represent the ID dataset, the second is the OOD dataset.

Table 15 presents the full results with all the considered methods. This table shows that density-based
methods for most of the considered configurations outperform the best ensemble method by a large
margin.

UE Method WMT20 En-Ru WMT17 En-De
PRM WMT14 Fr LTC Reddit PRM WMT14 Fr LTC Reddit

NSP 0.88 ± 0.02 0.87 ± 0.0 0.97 ± 0.0 0.79 ± 0.01 0.58 ± 0.02 0.37 ± 0.02 0.8 ± 0.01 0.67 ± 0.0
MSP 0.88 ± 0.01 0.88 ± 0.0 0.98 ± 0.0 0.74 ± 0.0 0.55 ± 0.02 0.33 ± 0.02 0.78 ± 0.01 0.58 ± 0.0
Entropy 0.84 ± 0.01 0.83 ± 0.01 0.91 ± 0.01 0.74 ± 0.01 0.5 ± 0.02 0.28 ± 0.02 0.72 ± 0.01 0.55 ± 0.01

BLEUVar 0.78 ± 0.01 0.76 ± 0.01 0.97 ± 0.0 0.55 ± 0.0 0.54 ± 0.01 0.49 ± 0.02 0.85 ± 0.01 0.56 ± 0.0

MD-Enc. 0.95 ± 0.0 0.74 ± 0.01 0.86 ± 0.01 0.72 ± 0.0 1.0 ± 0.0 0.92 ± 0.01 1.0 ± 0.0 0.75 ± 0.0
MD-Dec. 0.77 ± 0.01 0.47 ± 0.03 0.75 ± 0.04 0.6 ± 0.01 0.86 ± 0.01 0.67 ± 0.01 0.94 ± 0.0 0.65 ± 0.0
RDE-Enc. 0.97 ± 0.0 0.63 ± 0.03 1.0 ± 0.0 0.73 ± 0.01 0.83 ± 0.01 0.61 ± 0.02 0.83 ± 0.02 0.7 ± 0.01
RDE-Dec. 0.38 ± 0.01 0.5 ± 0.02 0.67 ± 0.05 0.43 ± 0.01 0.53 ± 0.04 0.51 ± 0.03 0.6 ± 0.08 0.5 ± 0.09

EP-S-TU 0.49 0.57 0.76 0.46 0.54 0.4 0.75 0.55
EP-S-RMI 0.64 0.49 0.42 0.63 0.67 0.5 0.54 0.56
EP-T-TU 0.66 0.65 0.86 0.58 0.24 0.17 0.7 0.51
EP-T-MI 0.35 0.45 0.43 0.37 0.65 0.61 0.58 0.43
EP-T-DU 0.72 0.67 0.9 0.65 0.22 0.17 0.64 0.54
EP-T-EPKL 0.36 0.45 0.4 0.43 0.69 0.7 0.63 0.45
EP-T-RMI 0.41 0.45 0.39 0.5 0.75 0.86 0.78 0.56

PE-S-TU 0.88 0.88 0.97 0.78 0.58 0.36 0.8 0.65
PE-S-RMI 0.45 0.49 0.6 0.48 0.53 0.42 0.67 0.55
PE-T-TU 0.88 0.83 0.89 0.81 0.58 0.3 0.73 0.64
PE-T-MI 0.82 0.65 0.95 0.7 0.77 0.58 0.97 0.66
PE-T-DU 0.88 0.83 0.89 0.81 0.58 0.3 0.73 0.64
PE-T-EPKL 0.82 0.65 0.95 0.7 0.77 0.58 0.97 0.66
PE-T-RMI 0.82 0.65 0.95 0.7 0.77 0.58 0.97 0.66

Table 15: AU-ROC↑ for all the considered methods in NMT. The dataset in the first line in the header represent the
ID dataset, in the second line is the OOD dataset. We select with bold the best results w.r.t. standard deviation.
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G Overall Comparison of OOD Detection Methods on the Abstractive Text
Summarization Task
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Figure 5: Average ROC curves in various configurations on the ATS task for the selected UE methods. The first
dataset in the title represents the ID dataset, the second stands for the OOD dataset.
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UE Method XSum M.R.
AESLC Debate M.R. PRM AESLC Debate XSum PRM

NSP 0.94 ± 0.0 0.83 ± 0.05 0.76 ± 0.01 0.97 ± 0.0 0.22 ± 0.07 0.34 ± 0.06 0.23 ± 0.04 0.99 ± 0.0
MSP 0.93 ± 0.0 0.82 ± 0.05 0.74 ± 0.01 0.96 ± 0.01 0.2 ± 0.06 0.34 ± 0.06 0.23 ± 0.04 0.99 ± 0.0
Entropy 0.94 ± 0.0 0.84 ± 0.05 0.79 ± 0.01 0.98 ± 0.0 0.23 ± 0.07 0.34 ± 0.06 0.17 ± 0.03 1.0 ± 0.0

BLEUVar 0.92 ± 0.01 0.83 ± 0.02 0.71 ± 0.04 0.9 ± 0.01 0.64 ± 0.05 0.78 ± 0.03 0.75 ± 0.03 0.85 ± 0.02

MD-Enc. 0.99 ± 0.0 0.98 ± 0.0 0.87 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
MD-Dec. 0.98 ± 0.0 0.95 ± 0.0 0.95 ± 0.01 0.97 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
RDE-Enc. 0.8 ± 0.0 0.66 ± 0.0 0.58 ± 0.01 0.83 ± 0.01 1.0 ± 0.0 1.0 ± 0.0 0.98 ± 0.0 0.99 ± 0.0
RDE-Dec. 0.88 ± 0.01 0.85 ± 0.01 0.95 ± 0.01 0.9 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.86 ± 0.03

EP-S-TU 0.95 ± 0.0 0.82 ± 0.01 0.81 ± 0.0 0.97 ± 0.0 0.23 ± 0.06 0.29 ± 0.05 0.19 ± 0.03 0.99 ± 0.0
EP-S-RMI 0.85 ± 0.05 0.74 ± 0.01 0.81 ± 0.03 0.89 ± 0.02 0.43 ± 0.02 0.45 ± 0.1 0.32 ± 0.08 0.97 ± 0.03
EP-T-TU 0.94 ± 0.0 0.82 ± 0.01 0.79 ± 0.01 0.97 ± 0.0 0.23 ± 0.07 0.28 ± 0.06 0.14 ± 0.02 0.99 ± 0.0
EP-T-MI 0.84 ± 0.02 0.75 ± 0.01 0.83 ± 0.01 0.85 ± 0.01 0.26 ± 0.05 0.49 ± 0.14 0.44 ± 0.12 0.92 ± 0.04
EP-T-RMI 0.95 ± 0.01 0.84 ± 0.0 0.91 ± 0.01 0.94 ± 0.0 0.41 ± 0.03 0.3 ± 0.12 0.21 ± 0.1 0.98 ± 0.01
EP-T-DU 0.85 ± 0.03 0.75 ± 0.02 0.62 ± 0.04 0.94 ± 0.03 0.23 ± 0.07 0.29 ± 0.07 0.16 ± 0.03 0.99 ± 0.01
EP-T-EPKL 0.86 ± 0.02 0.76 ± 0.01 0.84 ± 0.01 0.87 ± 0.01 0.25 ± 0.04 0.48 ± 0.14 0.41 ± 0.12 0.93 ± 0.03

PE-S-TU 0.94 ± 0.01 0.81 ± 0.01 0.76 ± 0.02 0.96 ± 0.01 0.22 ± 0.07 0.28 ± 0.06 0.19 ± 0.04 0.99 ± 0.0
PE-S-RMI 0.8 ± 0.08 0.69 ± 0.03 0.77 ± 0.04 0.81 ± 0.0 0.56 ± 0.12 0.56 ± 0.13 0.64 ± 0.12 0.58 ± 0.45
PE-T-TU 0.94 ± 0.01 0.82 ± 0.01 0.79 ± 0.02 0.97 ± 0.0 0.23 ± 0.07 0.29 ± 0.07 0.15 ± 0.03 0.99 ± 0.0
PE-T-MI 0.97 ± 0.0 0.89 ± 0.01 0.88 ± 0.01 0.91 ± 0.02 0.68 ± 0.05 0.3 ± 0.05 0.1 ± 0.03 0.79 ± 0.05
PE-T-RMI 0.96 ± 0.0 0.89 ± 0.01 0.88 ± 0.01 0.91 ± 0.02 0.29 ± 0.03 0.3 ± 0.05 0.1 ± 0.03 0.76 ± 0.05
PE-T-DU 0.94 ± 0.01 0.82 ± 0.01 0.79 ± 0.02 0.97 ± 0.0 0.23 ± 0.07 0.29 ± 0.07 0.15 ± 0.03 0.99 ± 0.0
PE-T-EPKL 0.96 ± 0.0 0.89 ± 0.01 0.88 ± 0.01 0.91 ± 0.02 0.33 ± 0.02 0.3 ± 0.05 0.1 ± 0.03 0.78 ± 0.05

Table 16: Full results (AU-ROC↑) of OOD detection in ATS when XSum / Movie Reviews stand for the ID dataset.
The dataset in the second line in the header represent the OOD dataset. We select with bold the best results w.r.t.
standard deviation.

UE Method AESLC Debate
Debate M.R. XSum PRM AESLC M.R. XSum PRM

NSP 0.73 ± 0.02 0.68 ± 0.05 0.72 ± 0.03 0.93 ± 0.01 0.73 ± 0.02 0.69 ± 0.04 0.67 ± 0.02 0.98 ± 0.0
MSP 0.72 ± 0.02 0.63 ± 0.04 0.72 ± 0.02 0.9 ± 0.01 0.69 ± 0.02 0.66 ± 0.05 0.67 ± 0.02 0.97 ± 0.01
Entropy 0.77 ± 0.02 0.67 ± 0.06 0.73 ± 0.04 0.94 ± 0.01 0.71 ± 0.02 0.69 ± 0.05 0.58 ± 0.01 0.98 ± 0.0

BLEUVar 0.67 ± 0.01 0.5 ± 0.01 0.66 ± 0.01 0.83 ± 0.01 0.68 ± 0.02 0.59 ± 0.04 0.69 ± 0.02 0.74 ± 0.02

MD-Enc. 0.95 ± 0.0 0.99 ± 0.0 0.96 ± 0.01 1.0 ± 0.0 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 1.0 ± 0.0
MD-Dec. 0.88 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.79 ± 0.02 0.97 ± 0.01 1.0 ± 0.0 0.97 ± 0.0 0.96 ± 0.01
RDE-Enc. 0.81 ± 0.01 0.98 ± 0.0 0.87 ± 0.01 0.96 ± 0.0 0.94 ± 0.0 0.97 ± 0.0 0.86 ± 0.01 0.99 ± 0.0
RDE-Dec. 0.58 ± 0.02 0.71 ± 0.04 0.72 ± 0.04 0.54 ± 0.01 0.64 ± 0.07 0.86 ± 0.04 0.77 ± 0.04 0.68 ± 0.06

EP-S-TU 0.73 ± 0.01 0.66 ± 0.02 0.72 ± 0.01 0.93 ± 0.0 0.74 ± 0.01 0.7 ± 0.05 0.65 ± 0.02 0.98 ± 0.0
EP-S-RMI 0.55 ± 0.03 0.55 ± 0.05 0.55 ± 0.02 0.82 ± 0.02 0.56 ± 0.01 0.6 ± 0.07 0.45 ± 0.03 0.89 ± 0.05
EP-T-TU 0.76 ± 0.02 0.66 ± 0.02 0.72 ± 0.01 0.95 ± 0.01 0.7 ± 0.02 0.67 ± 0.06 0.57 ± 0.02 0.98 ± 0.0
EP-T-MI 0.61 ± 0.02 0.54 ± 0.04 0.65 ± 0.02 0.72 ± 0.03 0.65 ± 0.02 0.67 ± 0.04 0.48 ± 0.04 0.74 ± 0.04
EP-T-RMI 0.61 ± 0.02 0.51 ± 0.02 0.66 ± 0.02 0.85 ± 0.01 0.44 ± 0.04 0.58 ± 0.11 0.38 ± 0.06 0.91 ± 0.02
EP-T-DU 0.76 ± 0.02 0.67 ± 0.03 0.71 ± 0.02 0.94 ± 0.01 0.7 ± 0.02 0.64 ± 0.07 0.58 ± 0.02 0.97 ± 0.01
EP-T-EPKL 0.61 ± 0.02 0.53 ± 0.04 0.66 ± 0.02 0.77 ± 0.02 0.63 ± 0.02 0.66 ± 0.05 0.46 ± 0.05 0.78 ± 0.04

PE-S-TU 0.72 ± 0.01 0.66 ± 0.04 0.7 ± 0.02 0.92 ± 0.0 0.73 ± 0.02 0.67 ± 0.07 0.67 ± 0.02 0.98 ± 0.01
PE-S-RMI 0.57 ± 0.03 0.53 ± 0.07 0.62 ± 0.01 0.7 ± 0.05 0.6 ± 0.03 0.64 ± 0.11 0.47 ± 0.03 0.7 ± 0.24
PE-T-TU 0.75 ± 0.01 0.65 ± 0.05 0.7 ± 0.02 0.94 ± 0.01 0.7 ± 0.02 0.67 ± 0.07 0.57 ± 0.03 0.98 ± 0.01
PE-T-MI 0.64 ± 0.02 0.46 ± 0.04 0.68 ± 0.02 0.79 ± 0.03 0.45 ± 0.02 0.35 ± 0.03 0.42 ± 0.05 0.9 ± 0.02
PE-T-RMI 0.64 ± 0.02 0.45 ± 0.04 0.68 ± 0.02 0.78 ± 0.03 0.55 ± 0.03 0.34 ± 0.03 0.41 ± 0.07 0.89 ± 0.03
PE-T-DU 0.75 ± 0.01 0.65 ± 0.05 0.7 ± 0.02 0.95 ± 0.01 0.7 ± 0.02 0.67 ± 0.07 0.58 ± 0.03 0.98 ± 0.01
PE-T-EPKL 0.64 ± 0.02 0.45 ± 0.04 0.68 ± 0.02 0.79 ± 0.03 0.53 ± 0.03 0.35 ± 0.03 0.41 ± 0.06 0.89 ± 0.03

Table 17: Full results (AU-ROC↑) of OOD detection in ATS when AESLC / Debate stand for the ID dataset.
The dataset in the second line in the header represent the OOD dataset. We select with bold the best results w.r.t.
standard deviation.
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H Overall Comparison of OOD Detection Methods on the Question Answering Task

Figure 6 presents the mean ROC curves over 5 seeds for the T5 (t5-small-ssm-nq) model. The second
dataset in the title of the figure represents OOD.
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Figure 6: Average ROC curves in various configurations on the KBQA task for the selected UE methods. The first
dataset in the title represent the ID dataset, the second is the OOD dataset.

UE Method Simple Questions RuBQ 2.0 En
Simple Questions Ru Mintaka PRM RuBQ 2.0 Ru Mintaka PRM

MSP 0.48 ± 0.01 0.48 ± 0.01 0.51 ± 0.01 0.54 ± 0.01 0.53 ± 0.01 0.54 ± 0.01
NSP 0.53 ± 0.01 0.53 ± 0.01 0.33 ± 0.01 0.41 ± 0.01 0.62 ± 0.01 0.41 ± 0.01
Entropy 0.49 ± 0.00 0.49 ± 0.00 0.66 ± 0.01 0.64 ± 0.01 0.45 ± 0.01 0.64 ± 0.01

BLEUVAR 0.69 ± 0.00 0.50 ± 0.01 0.63 ± 0.00 0.68 ± 0.01 0.49 ± 0.00 0.59 ± 0.01

MD-Enc. 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.87 ± 0.01 0.95 ± 0.00
MD-Dec. 0.86 ± 0.00 0.71 ± 0.00 0.66 ± 0.00 0.85 ± 0.01 0.74 ± 0.01 0.65 ± 0.01
RDE-Enc. 0.90 ± 0.00 0.90 ± 0.00 0.77 ± 0.00 0.88 ± 0.00 0.75 ± 0.00 0.74 ± 0.01
RDE-Dec. 0.76 ± 0.01 0.44 ± 0.00 0.49 ± 0.00 0.97 ± 0.01 0.53 ± 0.01 0.60 ± 0.01

EP-S-TU 0.42 ± 0.00 0.47 ± 0.00 0.71 ± 0.01 0.41 ± 0.01 0.50 ± 0.01 0.66 ± 0.01
EP-S-RMI 0.03 ± 0.00 0.50 ± 0.00 0.57 ± 0.01 0.03 ± 0.00 0.54 ± 0.01 0.58 ± 0.01
EP-T-TU 0.70 ± 0.00 0.48 ± 0.01 0.67 ± 0.01 0.70 ± 0.01 0.47 ± 0.01 0.65 ± 0.01
EP-T-MI 0.27 ± 0.00 0.48 ± 0.01 0.69 ± 0.01 0.22 ± 0.00 0.47 ± 0.01 0.64 ± 0.01
EP-T-RMI 0.30 ± 0.00 0.46 ± 0.00 0.72 ± 0.01 0.24 ± 0.00 0.46 ± 0.01 0.67 ± 0.01
EP-T-DU 0.80 ± 0.00 0.48 ± 0.01 0.57 ± 0.01 0.82 ± 0.01 0.50 ± 0.01 0.59 ± 0.01
EP-T-EPKL 0.29 ± 0.00 0.46 ± 0.00 0.73 ± 0.01 0.23 ± 0.00 0.46 ± 0.01 0.67 ± 0.01

PE-S-TU 0.02 ± 0.00 0.48 ± 0.01 0.58 ± 0.01 0.02 ± 0.00 0.55 ± 0.01 0.57 ± 0.01
PE-S-RMI 0.32 ± 0.00 0.47 ± 0.00 0.71 ± 0.00 0.31 ± 0.01 0.49 ± 0.01 0.68 ± 0.01
PE-T-TU 0.15 ± 0.00 0.46 ± 0.00 0.64 ± 0.01 0.15 ± 0.01 0.51 ± 0.01 0.63 ± 0.01
PE-T-MI 0.07 ± 0.00 0.47 ± 0.00 0.62 ± 0.00 0.07 ± 0.00 0.52 ± 0.01 0.61 ± 0.01
PE-T-RMI 0.02 ± 0.00 0.48 ± 0.00 0.64 ± 0.00 0.02 ± 0.00 0.52 ± 0.01 0.59 ± 0.01
PE-T-DU 0.29 ± 0.00 0.46 ± 0.00 0.64 ± 0.01 0.30 ± 0.01 0.51 ± 0.01 0.63 ± 0.01
PE-T-EPKL 0.03 ± 0.00 0.48 ± 0.00 0.64 ± 0.00 0.02 ± 0.00 0.52 ± 0.01 0.59 ± 0.01

Table 18: Full results (AU-ROC↑) of OOD detection in QA obtained using t5-small-ssm-nq when SimpleQuestions
/ RuBQ2.0 En stand for the ID dataset. The dataset in the second line in the header represent the OOD dataset.
Results are obtained by applying a bootstrap technique and averaging over 5 subsamples.
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