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Abstract

In this paper we investigate monotonicity rea-
soning in Dutch, through a novel Natural Lan-
guage Inference dataset. Monotonicity rea-
soning shows to be highly challenging for
Transformer-based language models in English
and here, we corroborate those findings using a
parallel Dutch dataset, obtained by translating
the Monotonicity Entailment Dataset of Yanaka
et al. (2019). After fine-tuning two Dutch lan-
guage models BERTje and RobBERT on the
Dutch NLI dataset SICK-NL, we find that per-
formance severely drops on the monotonicity
reasoning dataset, indicating poor generaliza-
tion capacity of the models. We provide a de-
tailed analysis of the test results by means of
the linguistic annotations in the dataset. We
find that models struggle with downward en-
tailing contexts, and argue that this is due to a
poor understanding of negation. Additionally,
we find that the choice of monotonicity context
affects model performance on conjunction and
disjunction. We hope that this new resource
paves the way for further research in general-
ization of neural reasoning models in Dutch,
and contributes to the development of better
language technology for Natural Language In-
ference, specifically for Dutch.

1 Introduction

Natural Language Inference (NLI) is one of the
standard benchmark tasks for current-day NLP ar-
chitectures. In this task a model takes two sen-
tences as input, and has to classify the relationship
between the former (premise) sentence and the lat-
ter (hypothesis) sentence, typically between Entail-
ment, Contradiction, and Neutral. NLI makes for
a interesting task as drawing the correct inference
may require subtle aspects of syntax, lexical se-
mantics, and even pragmatics. While many NLI
datasets exist like SICK (Marelli et al., 2014), SNLI
(Bowman et al., 2015) and its extensions (MNLI
Williams et al. (2018), XNLI Conneau et al. (2018),

e-SNLI Camburu et al. (2018)), much is still un-
known about how and why neural language models
(LMs) like BERT (Devlin et al., 2019) perform on
the task. Evidence shows that fine-tuned LMs don’t
generalize well across NLI benchmarks (Talman
and Chatzikyriakidis, 2019), and other investiga-
tion shows that LMs may be exploiting dataset
heuristics to solve the task (Naik et al., 2018; Mc-
Coy et al., 2019). More generally, LMs do seem
to encode a certain amount of syntactic structure
(Rogers et al., 2020), but the relation to NLI re-
mains unclear.

In order to shed light on the performance of large-
scale LMs, specific datasets have been developed
to understand what models do and don’t under-
stand. Specifically in the context of NLI, Yanaka
et al. (2019) introduce the Monotonicity Entailment
Dataset (MED), which targets models’ capacity for
understanding monotonicity reasoning (Icard III
and Moss, 2014). Monotonicity reasoning is a sta-
ple test of human reasoning which requires lexical
knowledge, as well as syntactic knowledge, making
it suitable for an NLI benchmark.

In cases of monotonicity reasoning, a particular
lexical item in the sentence licenses inferences by
means of substituting specific syntactic constituents
by either more general (upward context) or more
specific (downward context).

(a) Every [man ↓] [sung and danced ↑].
(b) Every bald man sung and danced. ✓

(c) Every man danced. ✓

(d) Every human sung and danced. ✗

Figure 1: Example cases of monotonicity reasoning as
natural language inference.

In Figure 1, the quantifier Every is downward
entailing in its first argument, and upward entailing
in its second arguments, meaning that either man
may be replaced by a more specific instance to ob-
tain an inference pair – as in 1(b) – while sung and
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danced ought to be substituted for a more general
constituent to preserve inference, as in 1(c). Violat-
ing the entailment context leads to a hypothesis for
which there is no entailment (but not necessarily a
contradiction), as in 1(d).

While the field of research into NLI is lively, it is
largely focused on English. In this article, we work
with Dutch, a language that has a relatively high
digital prevalence, while at the same time being
underrepresented in terms of typical sentence-level
NLP benchmarks.

For Dutch there is the Lassy corpus, which con-
tains a smaller gold standard, and a larger silver
standard syntactically annotated corpus of written
(van Noord et al., 2013), and the SONAR corpus
of written Dutch (Oostdijk et al., 2013). Given the
availability of these corpora combined with a rich
Wikipedia dump, two transformer-based language
models have been developed for Dutch, based on
the BERT architecture (BERTje, de Vries et al.
(2019)) and the RoBERTa architecture (RobBERT,
Delobelle et al. (2020)), both available through
HuggingFace’s transformers library.1 In terms of
investigations into these Dutch language models,
de Vries et al. (2020) argues that BERTje encodes
a typical ‘NLP pipeline’, which had been argued
for BERT before (Tenney et al., 2019), whereas
Kogkalidis and Wijnholds (2022) show through
probing that long-distance dependencies are hard
to recognize for both Dutch language models.

In order to extend the research done on NLI and
on Dutch NLP, we add a benchmark for mono-
tonicity reasoning in Dutch by translating the MED
dataset of Yanaka et al. (2019). We perform an eval-
uation of large-scale language models for Dutch on
this novel benchmark, that we dub MED-NL. We
corroborate the findings of Yanaka et al. (2019), ob-
serving that the Dutch LMs similarly have difficulty
with inferences coming from downward entailing
contexts. Further inspection suggests that the main
problem comes from inference pairs containing
negation. In what follows, we first detail the cre-
ation of the dataset and the experimental setup for
the evaluation, after which we report results and
inspect the model predictions.

2 Dataset Creation & Evaluation

The dataset is obtained by translation from the En-
glish MED dataset of (Yanaka et al., 2019). First,

1There is also a distilled version of RobBERT (Delobelle
et al., 2021) which we did not include in our experiments.

all 5241 unique sentences are collected and lexi-
cographically sorted to ensure consistency among
sentence translations. These sentences are given to
a native Dutch speaker for translation who could
ensure quality and naturality of the translated ex-
amples. Using the translated sentences, we popu-
late the original dataset with its Dutch incarnation.
Since the original Entailment/Neutral labels derive
from monotonicity properties, the entailment labels
are preserved in Dutch. It is important to note that
the labelling is binary, since MED only considers
entailment and non-entailment (or neutral).

MED MED-NL

No. of tokens 81209 83809
No. of unique tokens 3614 3883
Avg. sentence length 7.54 7.79
Avg. word overlap 74.60% 73.25%

Table 1: Basic statistics of MED vs MED-NL.

Table 1 shows that in the translation, there is a
3% blowup in the number of words used in Dutch,
with the corresponding increase in average sen-
tence length. However, the number of unique to-
kens in the Dutch dataset increased, owing to a
plurality of interpretation of English source words
that may get disambiguated in the translation pro-
cess.

To evaluate, we then performed a standard lan-
guage model fine-tuning routine. We use two state
of the art Dutch neural language models; BERTje
(de Vries et al., 2019), a BERT-based model pre-
trained for Dutch, and RobBERT (Delobelle et al.,
2020), a RoBERTa-based model for Dutch. For
multilingual comparison, we furthermore train mul-
tilingual BERT (Devlin et al., 2019). Each model
was trained on the SICK-NL dataset (Wijnholds
and Moortgat, 2021), which is the only existing
NLI benchmark for Dutch. We binarize the labels
in SICK-NL by conflating all Neutral and Con-
tradiction labels into one class, as to make the
training data compatible with the binary format
of MED-NL. Training proceeds for 20 epochs, and
the model is saved for the epoch for which highest
development accuracy is obtained.2 We test on the
SICK-NL for validation purposes, after which test-
ing is performed on MED-NL. To reduce any po-
tential influences of performance perturbation due

2For BERTje, highest development accuracy was achieved
at epochs 3, 5, and 5, whereas RobBERT achieve peak devel-
opment set performance at epochs 5, 11, and 13.
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to model seed initialization, we train each model
thrice and report seed-averaged accuracy.

3 Results & Analysis

Table 2 displays the average development and test
accuracy on SICK-NL, and test performance on
MED-NL.

SICK-NLd SICK-NLt MED-NL

BERTje 86.89 87.40 47.56
RobBERT 86.43 85.79 46.07
mBERT 71.20 71.38 49.74

Table 2: Seed-averaged (over 3 runs) accuracy results
for two Dutch BERT models and multilingual BERT,
trained on SICK-NL, evaluated on both SICK-NL and
the new MED-NL dataset.

Performance on the development and test set
of SICK-NL are slightly higher than reported in
related work (Wijnholds and Moortgat, 2021; Delo-
belle et al., 2021), which may be due to the fact that
the classification labels have been binarized. The
high drop in accuracy on MED-NL is however on
par with reported results on its English counterpart
(Yanaka et al., 2019), despite the models and train-
ing dataset being different. In terms of difference
between the models, overall accuracy barely dis-
tinguishes BERTje and RobBERT in terms of pure
performance. Interestingly, multilingual BERT has
a performance decline of ca 15% compared to Rob-
BERT, yet reached highest performance on MED-
NL. The multilingual model has more trouble with
the Dutch training data, although all three runs
reached peak validation accuracy after one epoch
of training.

Monotonicity Contexts A breakdown of accu-
racy results by the type of monotonicity context
is given in Table 3, which shows that non-upward
entailing contexts typically represent a challenge
to the language models’ predictions.

Total Up Down Non
(Support) (5382) (1818) (3272) (292)

BERTje 47.56 64.76 38.72 39.50
RobBERT 46.07 61.13 39.22 28.30
mBERT 49.74 65.57 36.67 97.60

Table 3: Seed-averaged (over 3 runs) accuracy results
on the MED-NL dataset, by monotonicity category.

Specifically, these results contrast the perfor-
mance of the monolingual Dutch LMs with multi-
lingual BERT, the latter doing the worst on down-
ward entailing contexts while trumping the former
models on non-monotone contexts.

Linguistic Features In order to delve deeper in
the results, we make use of the annotations in the
dataset that indicate specific linguistic features for
premise/hypothesis pairs. Table 4 displays detailed
scores for linguistic features that have a significant
overall occurrence in the MED-NL dataset, where
we display the number of occurrences next to the
name of the feature.

Phenomenon BERTje RobBERT mBERT

↑

Lexical 743 62.72 58.73 77.39
Conjunction 177 65.16 61.77 58.76
Disjunction 96 24.31 29.86 53.12
Conditionals 24 48.61 44.44 70.83
NPI 64 33.33 36.98 64.06
Reverse 235 52.91 51.63 50.21
Other 698 74.79 69.91 58.74

↓

Lexical 477 33.47 34.45 29.98
Conjunction 106 34.91 32.08 23.58
Disjunction 138 49.76 49.52 40.58
Conditionals 125 45.60 43.47 18.40
NPI 266 36.59 39.10 32.71
Reverse 9 29.63 33.33 33.33
Other 2249 39.6 40.15 39.88

=

Lexical 182 37.73 31.32 98.35
Disjunction 20 56.67 31.67 100.0
NPI 8 66.67 37.50 100.0
Other 90 39.26 23.70 95.56

Table 4: Seed-averaged (over 3 runs) accuracy results
on the MED-NL dataset, by monotonicity category and
phenomenon.

These results start to highlight an interesting pat-
tern: with an overall performance on upward entail-
ing contexts of 64.76 (BERTje), we see that cases
of disjunction, conditionals, negative polarity items
and reverse (e.g. double negation) are most chal-
lenging in this context. The surprising result here is
that such cases are much more on par with the rest
in a downward entailing context. Most strikingly,
cases of disjunction become easier to deal with
than conjunction in a downward entailing context,
even though the situation was converse in the case
of upward entailing contexts.
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Model Comparison Although the results in Ta-
ble 4 give some insight into the difference be-
tween models – e.g. RobBERT appears to per-
form higher at cases with negative polarity items,
whereas BERTje performs better at cases of con-
junction –, the models seem to be relatively equal
in their overall accuracy. To better distinguish the
models we analyse the overlap between model pre-
dictions.

Phenomenon ∩ Shared BERTje RobBERT

∀

Lexical 75% 47.61 55.26 44.74
Disjunction 81% 38.58 48.98 51.02
Conjunction 82% 52.74 59.16 40.84
Conditionals 81% 43.69 57.73 42.27
NPI 85% 35.49 43.04 56.96
Reverse 94% 51.6 57.21 42.79
Other 86% 46.63 54.34 45.66

↑

Lexical 71% 65.05 57.47 42.53
Disjunction 79% 20.74 39.35 60.65
Conjunction 77% 67.56 57.69 42.31
Conditionals 77% 45.39 63.99 36.01
NPI 79% 31.05 39.98 60.02
Reverse 95% 52.4 59.05 40.95
Other 76% 79.4 60.33 39.67

↓

Lexical 87% 31.56 46.37 53.63
Disjunction 86% 49.51 51.75 48.25
Conjunction 91% 31.75 62.55 37.45
Conditionals 82% 43.37 57.56 42.44
NPI 87% 35.98 41.14 58.86
Reverse 89% 27.78 33.33 66.67
Other 90% 38.76 47.62 52.38

=

Lexical 58% 23.71 56.09 43.91
Disjunction 61% 41.55 75.14 24.86
NPI 71% 61.38 100.0 0.0
Other 76% 26.56 75.98 24.02

Table 5: Seed-averaged overlap accuracy results on the
MED-NL dataset, between BERTje and RobBERT, by
monotonicity category and phenomenon.

Table 5 displays the average overlap between
the two monolingual models by feature, together
with their shared and individual accuracy, to shed
light on where the models differ, color-coded for
clarification purposes.

We first observe that the overlap between model
predictions overall (the ∀ rows) is relatively high
with a minimum of 75% and a maximum of 94%.
Generally speaking, given that the overlap be-
tween model predictions is high, the shared ac-

curacy shows whether models make the same cor-
rect/incorrect decisions. This is particularly pro-
nounced in the low accuracy on disjunctions in
upward entailing contexts, where models make a
lot of shared mistakes, but in their diverging deci-
sions RobBERT has a significantly higher accuracy.
The converse is true for conjunction in a down-
ward entailing context where BERT is individually
stronger than RobBERT. For the sake of complete-
ness, in Tables 8 and 9 we report overlap results
between the Dutch models and multilingual BERT.

The Role of Negation One explanation for the
fact that the models perform significantly worse
on downward entailing contexts may be that such
cases are often constructed through the use of nega-
tion words. Table 6 displays the percentages of sen-
tence pairs containing at least one negation word,
with specification for conjunction and disjunction.

Total Up Down Non
(5382) (1818) (3272) (292)

% Negation 58.86 22.5 84.2 1.37

↑ Conj. ↑ Disj. ↓ Conj. ↓ Disj.
(177) (96) (106) (138)

% Negation 22.60 18.75 92.45 73.19

Table 6: Percentage of premise/hypothesis pairs in
MED-NL containing negation words (geen, niet, zonder,
nooit, niemand).

Indeed, negation is highly represented in down-
ward monotone contexts, indicating that part of the
reason why the models perform so poorly in such
context is that they are not sensitive (enough) to
negation. Inspection of the distribution of negation
in SICK-NL (train set) and MED-NL, displayed
in Table 7, shows that models may have learnt to
incorrectly classify cases involving negation.

% Negation SICK-NL MED-NL

Entailment 1.26 69.80
Non-entailment 31.94 47.81

Table 7: Distribution of negation in cases of entailment
and non-entailment in SICK-NL and MED-NL.

However, this explanation can’t be replicated in
the case of conjunction and disjunction, leaving a
further inspection into these cases to future work.
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Phenomenon ∩ Shared BERTje mBERT

∀

Lexical 67% 60.08 28.12 71.88
Disjunction 66% 43.03 35.47 64.53
Conjunction 57% 49.44 59.7 40.3
Conditionals 53% 24.23 70.3 29.7
NPI 79% 35.37 40.16 59.84
Reverse 91% 50.91 63.7 36.3
Other 76% 45.67 54.2 45.8

↑

Lexical 60% 83.4 31.99 68.01
Disjunction 42% 24.97 23.32 76.68
Conjunction 41% 78.91 55.6 44.4
Conditionals 67% 64.57 16.19 83.81
NPI 51% 47.87 18.07 81.93
Reverse 91% 51.72 64.94 35.06
Other 44% 88.28 64.48 35.52

↓

Lexical 90% 29.57 69.73 30.27
Disjunction 85% 44.52 78.21 21.79
Conjunction 83% 24.94 85.0 15.0
Conditionals 50% 13.9 77.12 22.88
NPI 87% 32.24 66.81 33.19
Reverse 89% 27.78 33.33 66.67
Other 87% 38.14 50.03 49.97

=

Lexical 36% 100.0 2.69 97.31
Disjunction 57% 100.0 0.0 100.0
NPI 67% 100.0 0.0 100.0
Other 37% 96.53 5.63 94.37

Table 8: Seed-averaged overlap accuracy results on the
MED-NL dataset, between BERTje and multilingual
BERT, by monotonicity category and phenomenon.

4 Conclusion

In this paper we provided MED-NL, a novel NLI
dataset for Dutch, which specifically targets mono-
tonicity reasoning. The evaluation of two Dutch
language models on this test set shows that the mod-
els specifically struggle with cases in downward
entailing contexts, which had earlier been estab-
lished for English as well (Yanaka et al., 2019).
However, we indicate specifically that the role of
negation words may play a large role in the poor
model performance on such cases, giving way for
future research into language models and negation.

On the other hand, the evaluation also shows
that disjunction is much easier to handle by the
models than conjunction, for which no explanation
was found. In future investigations, we hope to
provide more analysis of these language models,
specifically regarding negation.

Phenomenon ∩ Shared RobBERT mBERT

∀

Lexical 63% 58.58 27.24 72.76
Disjunction 62% 42.34 37.75 62.25
Conjunction 60% 46.73 56.58 43.42
Conditionals 55% 23.38 68.16 31.84
NPI 74% 35.7 46.86 53.14
Reverse 90% 50.29 57.88 42.12
Other 72% 44.75 51.0 49.0

↑

Lexical 59% 80.78 27.73 72.27
Disjunction 46% 31.68 27.8 72.2
Conjunction 44% 73.34 53.04 46.96
Conditionals 62% 62.47 13.33 86.67
NPI 55% 50.49 19.74 80.26
Reverse 90% 51.01 57.88 42.12
Other 42% 84.93 59.71 40.29

↓

Lexical 82% 28.22 62.06 37.94
Disjunction 77% 43.46 70.11 29.89
Conjunction 85% 24.01 78.27 21.73
Conditionals 54% 14.57 76.64 23.36
NPI 80% 32.28 65.59 34.41
Reverse 100% 33.33 n/a n/a
Other 84% 38.1 50.48 49.52

=

Lexical 30% 100.0 2.37 97.63
Disjunction 32% 100.0 0.0 100.0
NPI 38% 100.0 0.0 100.0
Other 21% 94.71 4.25 95.75

Table 9: Seed-averaged overlap accuracy results on the
MED-NL dataset, between RobBERT and multilingual
BERT, by monotonicity category and phenomenon.

5 Limitations

This study was performed with monolingual Dutch
models and with multilingual BERT, yet compari-
son with multilingual BERT on the original MED
dataset could be insightful. Given that the distri-
bution of cases of negation is skewed between the
dataset used for training and the introduced evalua-
tion dataset, another experiment could have been
included in which models are trained to deal with
cases of negation in a uniformly distributed way.
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