
Findings of the Association for Computational Linguistics: EACL 2023, pages 1595–1607
May 2-6, 2023 ©2023 Association for Computational Linguistics

SMATCH++: Standardized and Extended Evaluation of Semantic Graphs

Juri Opitz
Heidelberg University

opitz.sci@gmail.com

Abstract

The SMATCH metric is a popular method for
evaluating graph distances, as is necessary, for
instance, to assess the performance of seman-
tic graph parsing systems. However, we ob-
serve some issues in the metric that jeopar-
dize meaningful evaluation. E.g., opaque pre-
processing choices can affect results, and cur-
rent graph-alignment solvers do not provide
us with upper-bounds. Without upper-bounds,
however, fair evaluation is not guaranteed. Fur-
thermore, adaptions of SMATCH for extended
tasks (e.g., fine-grained semantic similarity) are
spread out, and lack a unifying framework.

For better inspection, we divide the metric into
three modules: pre-processing, alignment, and
scoring. Examining each module, we spec-
ify its goals and diagnose potential issues, for
which we discuss and test mitigation strate-
gies. For pre-processing, we show how to
fully conform to annotation guidelines that
allow structurally deviating but valid graphs.
For safer and enhanced alignment, we show
the feasibility of optimal alignment in a stan-
dard evaluation setup, and develop a lossless
graph compression method that shrinks the
search space and significantly increases effi-
ciency. For improved scoring, we propose
standardized and extended metric calculation
of fine-grained sub-graph meaning aspects.
Our code is available at https://github.
com/flipz357/smatchpp

1 Introduction

Semantic graphs such as meaning representations
(MRs) aim at capturing the meaning of a text. Typ-
ically, these graphs are rooted, directed, acyclic,
and labeled. Vertices denote semantic entities, and
edges represent semantic relations (e.g., instrument,
cause, etc.). A prominent MR framework is Ab-
stract Meaning Representation (AMR), proposed by
Banarescu et al. (2013), which anchors in a propo-
sitional knowledge base (Palmer et al., 2005).

Using a metric such as SMATCH (Cai and Knight,
2013), we can measure a distance (or similarity)
between graphs, by aligning nodes, and counting
matching graph triples. In fact, SMATCH measure-
ment has various applications. It is used for select-
ing parsing systems that project AMR structures
(Flanigan et al., 2014; May and Priyadarshi, 2017;
Xu et al., 2020; Hoang et al., 2021a; Bevilacqua
et al., 2021) and various other semantic graphs (van
Noord et al., 2018; Zhang et al., 2018; Oepen et al.,
2020; Stengel-Eskin et al., 2020; Martínez Lorenzo
et al., 2022; Lin et al., 2022), for MR-based eval-
uation and diagnostics of text generation systems
(Opitz and Frank, 2021; Manning and Schneider,
2021; Ribeiro et al., 2021; Hoyle et al., 2021), as
backbone in an ensemble parsing algorithm (Hoang
et al., 2021b), and for studying cross-lingual phe-
nomena (Uhrig et al., 2021; Wein et al., 2022).
Through SMATCH measured on sub-graphs, we can
assess similarity of linguistic phenomena such as
semantic roles, negation, or coreference (Damonte
et al., 2017), a property that can be leveraged in
neural text embeddings (Opitz and Frank, 2022b).

However, SMATCH measurement is non-trivial
and lacks specification. For instance, SMATCH

involves an NP-hard optimization problem of struc-
tural graph alignment, which distinguishes it from
most metrics used in other evaluation tasks. In
practice, a solution of this problem is found by
employing a hill-climber. However, a hill-climber
terminates at local optima, and it cannot inform us
about a score upper-bound. In the end, this means
that we lack information about the quality of the
returned solution, potentially lowering our trust
in the final evaluation. To mitigate this issue, we
would like to study the possibility of optimal solu-
tion, or solution with a tight upper-bound. There
are also other issues, on which we lack understand-
ing. E.g., we do not know to what extent different
pre-processing choices may affect the evaluation
results, and we miss specification of SMATCH’s

1595

https://github.com/flipz357/smatchpp
https://github.com/flipz357/smatchpp

popular fine grained sub-graph metrics (Damonte
et al., 2017), where it is unclear how sub-graphs
should be best extracted and compared.

Paper structure and contributions First, we de-
scribe and generalize the SMATCH metric (§3), and
summarize recent SMATCH variants in one frame-
work. Then we break the metric down into three
modules (§4), which ĺets us better distribute our at-
tention over its key components. For each module,
we discuss specification of goals and mitigation of
issues. In the pre-processing module (§5), we moti-
vate graph standardization to allow safer matching
of equivalent MR graphs with different structural
choices. In the optimization module (§6), we test
strategies for solving the alignment problem with
optimality guarantees. In the scoring module (§7),
we discuss standardized and extended scoring of
fine-grained semantic aspects, such as causality,
tense, and location.

2 Related work

Metric standardization An inspiration for us is
the work of Post (2018), who propose the popular
SACREBLEU framework for fairer comparison of
machine translation systems with a standardized
BLEU metric (Papineni et al., 2002). Specifically,
SACREBLEU ships BLEU together with a specified
tokenizer – prior to this, BLEU differences between
systems could depend on different tokenization pro-
tocols. Facing the challenging problem of graph
evaluation, a main contribution of our work is that
we i) analyze weak spots in the current evaluation
setup and ii) discuss ways of mitigating these is-
sues, aiming at best evaluation practices.

MR metrics Cai and Lam (2019) introduce a
variant of SMATCH (Cai and Knight, 2013) that
penalizes dissimilar structures if they are situated
in proximity of the graph root, motivated by their
assumption that ‘core-semantics’ are located near
the root of MR graphs. Furthermore, Opitz et al.
(2020) introduce a SMATCH variant that performs
a graded match of semantic concepts (e.g., cat vs.
kitten), aiming at extended use-cases beyond pars-
ing evaluation, where MRs of different sentences
need to be compared. Similarly, Wein and Schnei-
der (2022) adapt an embedding-based variant of
SMATCH for cross-lingual MR comparison. We
show that the different SMATCH adaptions can be
viewed through the same lens with a generalized
notion of triple match. Furthermore, Damonte et al.

(2017) propose fine-grained SMATCH that measure
MR agreement in different aspects, such as seman-
tic roles, coreference or polarity. We diagnose and
mitigate issues in the aspectual assessment, and
show how to extend the measured aspects.

Conceptually different MR metrics have been
proposed by Anchiêta et al. (2019) and Song and
Gildea (2019) who aim at increased efficiency us-
ing structure extraction via breadth-first traversals,
or Opitz et al. (2021) who compare MRs of differ-
ent sentences with Wasserstein Weisfeiler-Leman
kernels (Weisfeiler and Leman, 1968; Togninalli
et al., 2019). Since significant parts of this paper
are independent from SMATCH-specific scoring1,
other MR metrics can profit from our work.

3 SMATCH: Overview and generalization

We introduce SMATCH and define a general-
ized SMATCH, so that we can summarize recent
SMATCH variants in one framework.

Preliminary I: MR graph If not mentioned oth-
erwise, we view an MR graph a as a set of triples,
where a triple has one of two types. Unary triples
have the structure <x, :rel, c>, where the
source x is a variable and the target c is a descrip-
tive label that shows the type or an attribute of x,
depending on the edge label :rel.2 Using vari-
ables such as x we can (co-)refer to different events
and entities and capture complex events. Binary
triples have the structure <x, :rel, y>, where
both the source x and the target y are variables.3

Preliminary II: SMATCH The idea of SMATCH

is to measure structural similarity of graphs via
the amount of triples that are shared by a and b.
To obtain a meaningful score, we must know an
alignment map: vars(a) ↔ vars(b) that tells us
how to map a variable in the first MR to a variable
in the second MR. In this alignment, every vari-
able from a can have at maximum one partner in
b (and vice versa). Let an application of a map to
a graph a be denoted as amap := {tmap ; t ∈ a},
where tmap of a triple t = <x, :rel, y> is set
to tmap = <map(x), :rel, map(y)> for bi-
nary triples, and tmap = <map(x), :rel, c>

1E.g., input standardization (§5) and sub-graph extraction
for fine-grained aspectual matching (§7.3).

2E.g., <x, :instance, cat> would indicate that ‘x
is a cat’, while <y, :polarity, -> means y is negated.

3E.g., <x, :location, y>, which means that x is
located at y, or <x, :arg0, y> which usually indicates
that y participates as the agent in the event referred to by x.

1596

for unary triples.
Under any alignment map, we can calculate an

overlap score f . In original SMATCH, f is the size
of the triple overlap of a and b:

f(a, b,map) = |amap ∩ b|. (1)

,
Ultimately we are interested in

F = max
map

f(a, b,map), (2)

Finding a maximizer map⋆ lies at the heart of
SMATCH, and we will dedicate ourselves to it later
in §6. For now, we assume that we have map⋆ at
our disposal. Therefore, we can calculate precision
(P) and recall (R):

P = |a|−1F, R = |b|−1F, (3)

to obtain a final F1 evaluation score: 2PR/(P +
R). With such a score, we can assess the similarity
of MRs, and compare and select parsing systems.

Generalizing SMATCH In SMATCH, two triples
are said to match if they are identical under a map-
ping. I.e., we match with match(t, t′) := I[t = t′]
that returns 1 if two triples t and t′ are the same,
and zero else (we omit the map for simplicity).
Recently, SMATCH has been adapted and tailored
to different use-cases. E.g., SMATCH has been
extended to incorporate word embeddings (Opitz
et al., 2020; Wein and Schneider, 2022) to match
<x, :instance, c> triples for studying cross-
lingual MRs or MRs of different sentences.4 On
the other hand, Cai and Lam (2019) propose a root-
distance bias, based on the assumption that ‘core-
semantics’ lie in the proximity of an MR’s root.

We find that we can summarize such variants in
one framework. We achieve this by introducing a
scaled triple matching function:

match(t, t′) = wt′
t ·
{
I[t = t′], if t2, t′2 ̸= :inst.
I[t1 = t′1] · sim(t3, t

′
3) else

For matching concepts with embeddings, we
can use an embedding similarity on the descriptive
concept labels with sim(c, c′) and the importance

4Consider <x, :instance, cat> extracted from
one sentence vs. <y, :instance, kitten> extracted
from another sentence. A graded match is required to properly
assess the similarity of the concepts.

“(d / dog :location (h / house))”

house

doglocation dog
{<root, :root, d>,
<d, :location, h>,
<d, :instance dog>,
<h, :instance, house>}

Figure 1: A serialized MR string is read into a graph.

weight wt′
t = 1 ∀t, t′.5 For Root-distance biased

SMATCH as proposed by Cai and Lam (2019) we
set wt′

t such that we discount triple matches that
are distant to the root.6

Our generalization does not change or constrain
the original SMATCH. Instead, our goal was to de-
fine a more general framework of SMATCH-type
metrics that unifies recently proposed SMATCH

variants and show possibilities for further exten-
sion. For the following studies, we set SMATCH++
to basic SMATCH, which is recovered by setting
∀t, t′ : wt′

t = 1 and sim(c, c′) := I[c = c′].

4 A modular view on SMATCH

To set the stage for inspection, we break SMATCH

down into three modules. i) Preprocessing, ii)
Alignment, and iii) Scoring. In particular, i) Prepro-
cessing discusses any graph reading and processing
in advance of the alignment. ii) Alignment revolves
around the search mechanism used for finding an
optimal mapping map⋆. iii) Scoring involves calcu-
lating final scores and statistics that are returned to
a user. For each module, we will specify its goals,
assess potential weak spots and discuss mitigation.

5 Module I: Pre-processing

5.1 Module goal and current implementation

MRs are typically stored and distributed in a ‘Pen-
man’ string format, which can serialize any rooted
and directed graph into a string. The goal of this
module is to project two serialized textual MRs
onto two sets of triples, as outlined in Figure 1.

The target domain of this projection should
be a standardized MR graph space, where for-
mat divergences that do not impact graph seman-

5That is, if the triples are not instance triples, we check
whether the triples are equivalent (as in standard SMATCH),
but if both triples are instance relation triples and the variables
t1, t

′
1 are set to equal each other, we calculate the similarity

between their descriptive concept labels.
6For a properly normalized final score if ∃ (t, t′), wt

t ̸= 1,
we may have to change denominators in Eq. 3

1597

house

doglocation

housedog

beLocatedAtreifydereify arg1 arg2

Figure 2: Outline of location-reification.

tics are eliminated. Original SMATCH performs
pre-processing as follows: i) lower-case strings,
ii) de-invert edges (e.g., <x, :relation-of,
y>→ <y, :relation, x>). However, while
these steps seem sensible, more steps can be under-
taken to enhance evaluation.

5.2 Two structures, one meaning: reification

Some MR guidelines, including the AMR guide-
line, allow meaning-preserving structural graph
translations (Banarescu et al., 2019; Goodman,
2019) with so called reifications (or de-reification
as an inverse mechansim). A subset of relations is
selected to constitute a semantic relation core set
(e.g., :arg0, :arg1, ..., :op1, :op2,...) and for
all other remaining relations (e.g., :location,
:time), we use rules to map the relation to a sub-
graph, where the rule-triggering relation label is
projected onto a node, and the former source and
target of the relation are attached with outgoing
core relations. E.g., consider Figure 2, where a
reification is applied to a <x, :location, y>
relation. In this case, the rule is:

• location (de)reififcation:
<x, :location, y>
⇐⇒
<z, :instance, beLocatedAt>
∧ <z, :arg1, x>
∧ <z, :arg2, y>,

where :arg1 indicates the thing that is found
at a location :arg2.

The question whether an annotator should use
either means of representation, is answered in the
guidelines as follows: whenever they feel like it
(Banarescu et al., 2019). Therefore, a parser should
not be penalized or rewarded for projecting reified
(or non-reified) structures.

Empirical assessment of effect To understand
the effect that reification can have on the final
SMATCH score, it is interesting to study an edge-
case: evaluating graphs that are fully reified against
graphs that are fully de-reified. As a data set we
take LDC2017T10, a standard AMR benchmark.

Data setup SMATCH

X Y Orig rfyStd

i) gold dereify gold reify 73.8 100.0
ii) gold standard gold reify 73.9 100.0
iii) gold standard gold dereify 100.0 100.0

iv) parser dereify gold reify 60.9 82.8
v) parser reify gold reify 82.8 82.8
vi) parser dereify gold dereify 81.4 82.8
vii) parser standard gold standard 81.4 82.8
viii) parser standard gold reify 60.9 82.8
ix) parser standard gold dereify 81.4 82.8

Table 1: Results of meaning-preserving translations.
rfyStd: score when we project X and Y into standardized
reified space.

Additionally, we gather automatic parses by apply-
ing an AMR parser (Xu et al., 2020).

The results of this experiment are shown in Ta-
ble 1. In the first three lines (i-iii) we compare
equivalent translated versions of the test partition
(gold vs. gold). We find that two equivalent gold
standards can be judged to be very different (73.9
points, -26.1 points). A similar phenomenon can
be observed when looking at the parses. The best
parser score is achieved when comparing parses
and references in the domain of reified graphs (82.8
points). On the other hand, if only the reference is
reified, the parser score drops by 20 points (viii).

However, we also see that the results of a basic
evaluation (vii) is practically the same as the result
when evaluating with de-reified graphs (vi), indi-
cating that both parser and gold annotation abstain
from reification, where possible.

Discussion Having established that rule-based
graph translations can enhance evaluation fairness,
we pose the question: should we prefer reification
or de-reification for space standardization?

The answer should be reification, since it can
be seen as a form of generalization. More pre-
cisely, we note that reification of non-core relations
is always possible. In fact, an interesting effect
of reified structures is that they equip us with the
means to attach further structure, or features, to
semantic relations. On the other hand, however,
de-reification is not always possible. It is only well-
defined if there is no incoming edge into the node
that corresponds to the non-core relation7, and if

7It is not clear to which node the incoming edge (that now
does not have a target) should be re-attached: the arg0 or
arg1 of the outgoing edges of the former node? Either choice
would likely come with a change in meaning.

1598

there are not more than two outgoing edges8.
However, there are also (practical) arguments

against reification. Consider that de/non-reified
MRs are smaller and have more edge label differen-
tiation. This i) may facilitate more intuitive display
for humans and ii) shrinks the alignment search
space. Indeed, a large solution space may have ram-
ifications for evaluation optimality and efficiency
(in §6, we empirically study this issue). Therefore,
when taking into account that the empirical effect
size appears neglectable in the average case, these
trade-offs may not always be justified, and we may
instead use de-reification, where possible.

5.3 Triple removals

Duplicate triples are triples that occur more than
once. We find that they are sometimes produced by
some parsers. Additionally, some parsers introduce
a node more than once, which results in two triples
<x, :instance, a> and <x, :instance,
b>. Currently, SMATCH removes all such introduc-
tions of a second concept, but does not remove du-
plicate triples. By contrast, we propose to remove
all duplicate triples, since they have no clear seman-
tics, and stay agnostic to second introductions of a
concept (in some MRs, it may be acceptable that
an entity is the instance of two concepts), keeping
all such triples (if they are not identical).9

6 Module II: Alignment

The goal of this module is solving Eq. 2, finding a
map⋆ for optimal matching score.

SMATCH uses a hill-climber for solving Eq. 2.
An issue with this is that such a heuristic terminates
at local optima and cannot provide us with any
upper-bounds. Upper-bounds, however, can inform
users about the quality of the outputted solution
and thus increase the trustworthiness of the final
score (and any parser comparison that is based
thereupon). Therefore, we can conclude that using
a hill-climber seems practical but may not be
optimal, especially when considering cases where
fair comparison needs to be guaranteed. Instead,
we would like to use an Integer Linear Program
(ILP) to obtain the (optimal) solution. Alternatively,
at least, we would like to know a tight upper-bound
to inform ourselves about the trustworthiness of

8I.e., since reification can potentially be used to model
n-ary relations, only in the case where n = 2 we can model
the structure with a single (labelled) edge

9Due to rare occurrence of such phenomena in our parsed
data, we find the effects of either choice to be negligible.

2 1 34 6 5 7
2134 76x

5
2134 76x

5

2134 76x
5 2134 76x

5

Graph a Graph b Alignment search space

switch iterations of hill-climber

low. bound: 0up. bound: 3? low. bound: 1up. bound: 3? low. bound: 2up. bound: 3?

converged

Figure 3: Sketch of search space (top) and hill-climber
run (bottom). Every hill-climber step constitutes an
improved lower bound, but we cannot obtain a tight
upper-bound (an accessible trivial upper-bound is the
amount of triples in the smaller of two graphs: 3).

the final score. But ILP is NP hard, and therefore
it seems optimal but possibly not practical, a
conception that might favor the usage of a hill-
climber.

Triggered by these considerations, we review
the hill-climber and the ILP and assess their effects
on MR evaluation, with two desiderata in mind:
evaluation quality and efficiency. Additionally, we
propose a strategy for loss-less MR compression
that can improve efficiency of any solver.

6.1 Practical but not optimal: hill-climber

SMATCH hill-climbing uses two operations, which
we denote as switch, and assign. The assign-
operation assigns a variable from vars(a) to an
unaligned variable from vars(b): (i, ∅) → (i, j =
map′(i)), where map′ is a candidate map. The
switch operation does an alignment cross-over
with respect to two alignment pairs, i.e.: (i, j =
map(i))∧ (k, l = map(k)) → (i, l = map′(i))∧
(k, j = map′(k)), where map is the current align-
ment and map′ the candidate alignment. In each
iteration, we examine all possible switch- and as-
sign options, and greedily choose the best one.10

An example alignment procedure is shown in Fig-
ure 3.

In practice, we can resort to multiple random
restarts, to find better optima. However, this hardly

10Assign is just a special instance of the more general switch
so we can ablate the assign step. Then, assign becomes (i, ∅ =
map(i)) ∧ (k, j = map(k)) → (i, j = map′(i)) ∧ (k, ∅ =
map′(k)), which is a switch.

1599

addresses the underlying issue: we lack any in-
formation on upper-bounds, which may decrease
trustworthiness of results, especially when facing
larger graphs with lots of local optima.

6.2 ILP: Optimal, but less practical?

We would like to use Integer Linear Programming
(ILP) for optimal solution of the graph alignment.

Problem statement Assume two graphs g, g′

with node sets V, V ′. Let u(i, j) denote the amount
of unary triple matches, given we align i from V to
j from V ′, counting matches of triples that involve
one MR variable. On the other hand, b(i, j, k, l)
will denote the amount of structural binary triple
matches, given we align i from V to j from V ′ and
k from V to l from V ′. Here, we count matching
binary triples that involve two MR variables. Usu-
ally, these data are pre-computed. Let x indicate
our current map, i.e., if xij = 1 then we align i
from V to j from V ′. We find our solution at

max
∑

(i,j)∈
V×V

u(i, j)xij +
∑

(i,j,k,l)∈
(V×V)2

b(i, j, k, l)xijxkl

st
∑

j

xij ≤ 1;
∑

i

xij ≤ 1

xij ∈ {0, 1} ∀(i, j) ∈ V × V ′

The constraint ensures that every node from one
graph is aligned, at maximum, to one node from
the other graph. By linearization, and introducing
structural variables y, we obtain the equivalent ILP:

max
∑

(i,j)∈
V×V ′

u(i, j)xij +
∑

(i,j,k,l)∈
(V×V ′)2

b(i, j, k, l)yijkl

st
∑

j

xij ≤ 1;
∑

i

xij ≤ 1

yijkl ≤ xij , ∀(i, j, k, l) ∈ (V × V ′)2

yijkl ≤ xkl, ∀(i, j, k, l) ∈ (V × V ′)2

xij ∈ {0, 1} ∀(i, j) ∈ V × V ′

yijkl ∈ {0, 1} ∀(i, j, k, l) ∈ (V × V ′)2,

where the structural variables, if active, show us
countable binary triple matches. This is an NP com-
plete problem, imposing limits on its capability to
provide us with optimal solutions for larger graphs
(note, however, that we can retrieve intermediate
solutions and upper-bounds).

6.3 Reduced search space with lossless graph
compression

We observe that in an MR a, every variable
x ∈ vars(a) is related to a concept c, e.g., <x,
:instance, cat>. This means that a concept
c does identify a variable x ∈ vars(a) iff ∀y ∈
vars(a) : <y, :instance, c> ⇒ y = x.
Therefore, if x denotes a cat, and there is no other
entity in the MR that also denotes a cat, then x may
be referred to simply by cat. This carries over to
pairs of MRs: which are the focus of the paper – in-
stead of considering vars(a), we simply consider
vars(a)∪vars(b). Therefore, we can replace all n
variables from vars(a)∪vars(b) that are identified
by concepts, with the corresponding concepts (see
Appendix A.1 for a full example). This shrinks the
search space by reducing the amount of variables
that the optimizer has to consider. Note that such a
compression is lossless, in the sense that the pos-
sibility of full reconstruction of the original MR
is ensured. This implies that if two compressed
MRs are assessed as (non-)isomorphic, then the
uncompressed MRs are also (non-)isomorphic.

6.4 Solver experiments

Two questions are of main interest: 1. RQ1, solu-
tion quality: (How) do the final SMATCH results
depend on the solver? 2. RQ2, solution efficiency:
How does the evaluation time depend on the solver?
In addition, we would like to assess how our an-
swers to RQ1 and RQ2 might be affected by reifi-
cation (resulting in a bigger search space) and MR
compression (resulting in a smaller search space).

Setup We simulate a standard AMR parsing eval-
uation setting. We parse the LDC2017T10 testing
data with six parsers: P1 (Xu et al., 2020), P2 (Cai
and Lam, 2020), P3 (Lindemann et al., 2020), P4

(Zhang et al., 2019), P5 (Lyu and Titov, 2018), P6

(Cai and Lam, 2019). We evaluate the parsers using
ILP or hill-climber (denoted by). As is standard,
we show F1 micro corpus scores. For reference, we
also run evaluation with the standard SMATCH hill-
climbing script (denoted as previous). We observe
that we successfully reproduce the scores from the
standard SMATCH script with our implementa-
tion (first two lines of Table 2).11

1600

parser scores (ranked) time # vars quality
data optim P1 P2 P3 P4 P5 P6 secs (tot., avg., max.) (yield, bound)

basic prev. 81.4(1) 80.3(2) 77.0(3) 76.3(4) 74.5(5) 73.1(6) 50.4 (20346, 15, 129) (217702, +?)
basic 4 81.4(1) 80.3(2) 77.0(3) 76.2(4) 75.1(5) 73.1(6) 49.9 see above (217716, +?)
basic ILP 81.5(1) 80.4(2) 77.1(3) 76.5(4) 75.2(5) 73.3(6) 98.0 see above (218072, +0)

al
lv

ar
s

reify 4 82.8(1) 81.3(2) 78.3(3) 77.7(4) 76.9(5) 74.7(6) 134.5 (27812, 20, 174) (288597, +?)
reify ILP 83.5(1) 82.1(2) 79.3(3) 78.7(4) 77.7(5) 75.8(6) 300.5 see above (291370, +13)

basic 1 72.9(1) 70.9(2) 67.1(3) 66.2(4) 64.6(5) 61.5(6) 7.3 (5568, 4, 62) (74163, +?)
basic ILP 73.3(1) 71.3(2) 67.5(3) 66.3(4) 65.0(5) 62.1(6) 11.7 see above (75036, +0)

reify 1 74.9(1) 72.8(2) 69.5(3) 68.7(4) 67.7(5) 64.6(6) 31.4 (10704, 8, 106) (124323, +?)

co
m

pr
es

s

reify ILP 76.7(1) 74.1(2) 71.3(3) 70.6(4) 69.5(5) 66.4(6) 27.3 see above (129019, +0)

Table 2: Parser evaluation. time refers to the approximate total time needed to evaluate a single parser (i.e.,
processing 1371 graph pairs). -N indicates hill-climber optimizer with N restarts. quality: solution quality
of solver – first number is the amount of matching triples summed over all six parser evaluations (yield); second
number indicates the tightest found upper-bound (which is only known by ILP).

6.4.1 RQ1: solution quality

Insight: Better alignment → safer evaluation
Importantly, we see that the ILP yields score incre-
ments for all parsers, which signals the occurrence
of alignment problems, where the (despite multi-
ple restarts) did not find the optimal solution. The
effect-size is larger for reified graphs. We find dif-
ferences of up to 1 point F1 score (Table 2: reify

4 vs. reify ILP). This can be explained by the
growth of the alignment search space – reification
makes graphs larger and introduces more MR vari-
ables. This explanation is further supported by
contrasting the amount of unique final objective
values against the size of the alignment space with
different random initializations of the hill-climber
(Appendix A.2, Figure 6). We see that i) for many
graph pairs there are multiple local optima, and
ii) the likelihood of finding a non-global optimum
with the increases for larger/reified graphs.

We further study upper-bounds and solution qual-
ity (right column of Table 2). The ILP found
the optimal solution in all cases, yielding 218072
matching triples. The 4 finds 217,700 matching
triples (99.83%), which misses the mark by 350
triples. When evaluating reified graphs, the ILP
returns 291370 matches and thus misses its tempo-
rary tightest upper-bound by 13 triples, indicating
that in a few cases, a sub-optimal solution might
have been found.12 The 4, however, yields only

11An improvement is obtained for P5. We find that we can
mostly attribute this to a bug in the original script that prevents
proper graph reading of some parses of P5.

12Indeed, we find one graph by P2, and one graph by P6,
where the ILP terminates after a 240s timeout that we set, and
returns a temporary solution.

288,597 matches (99.04%) and misses the tempo-
rary ILP upper-bound by 2,786. The growing gap
underlines the degrading quality of the hill-climber
when facing larger graphs.

Finally, the (slight) differences in increments
among parsers when we evaluate them on reified
graphs indicate that different parsers do make dif-
ferent decisions on when to reify an edge. For
instance the score difference ∆ for reified graphs
vs. non-reified graphs (using ILP) of P5,P6 is 2.5
points, for P1 2 points and for P2 1.7 points. This
supports our theoretical insights from §5.2 – reifi-
cation can make parser comparison fairer.

6.4.2 RQ2: Solution efficiency
Insight I: ILP isn’t that impractical It seems
to be commonly presumed that original SMATCH

uses a hill-climber to make evaluation more prac-
tical and fast. However, our results qualify this
presumption. For evaluating a full corpus (1371
graph pairs), SMATCH with ILP needs only about
48 seconds longer than original SMATCH with hill-
climber (50s vs 98s). When the search space grows
(due to reification) the time gap widens to a dif-
ference of 165 seconds. However, the consistent
improvement of scores due to ILP (signaling sub-
optimal hill-climber solutions) can make the time
increase acceptable for evaluations where fairness
is critical.

Insight II: MR compression increases evalua-
tion speed Viewing the last four rows of Table 2,
we see that the MR compression i) did not lead to
switched system ranks and ii) increased the evalu-
ation speed by a large factor. Using MR compres-
sion, the ILP runs a full system evaluation in 11.7

1601

parser scores
avg. P1 P2 P3 P4 P5 P6

mic. 81.581.180.7 80.481.279.6 77.177.876.2 76.577.275.6 75.275.874.5 73.374.172.4

mac. 82.681.883.3 81.482.180.7 79.079.878.2 78.379.177.5 76.277.075.4 75.975.076.6

Table 3: Evaluation with additional macro statistics and
confidence intervals. Solver: ILP.

seconds for standard graphs and 27.3 seconds for
the reified graphs. Given that the MR compression
is lossless (c.f. §6.2), it provides us with an option
for more efficient evaluation that is also safe (i.e.,
optimal).

7 Module III: scoring

7.1 Main scores: Precision, Recall and F1

The goal of this module is to provide the user with
a final result. As discussed in §3, the main scores
(Precision, Recall, and F1) follow directly from the
map⋆. The final score is typically micro averaged,
summing matching statistics across all graph pairs
before they are normalized. SMATCH++ makes
two additions, macro-scoring and confidence in-
tervals. Macro-averaging scores over graph pairs
can be a useful complementary signal, specifically
when comparing high-performance parsers (Opitz
and Frank, 2022a). Additionally, we adopt the
bootstrap assumption (Efron, 1992) for calculating
confidence intervals. To make calculation feasi-
ble, bootstrapping is performed after the alignment
stage. Table 3 shows results of the additional statis-
tics. Confidence intervals range between +-[0.5, 1]
points for all parsers. Macro score shows an outlier,
where P6 (+2.6 points) is more positively affected
than other parsers (+[1.0, 1.9] points).13

7.2 Measuring aspectual semantic similarity

We observe considerable interest in applying fine-
grained aspectual MR metrics (Damonte et al.,
2017) for inspecting linguistic aspects captured
by MRs (e.g., semantic roles, negation, etc.). Ap-
plications range from parser diagnostics (Lyu and
Titov, 2018; Xu et al., 2020; Bevilacqua et al., 2021;
Martínez Lorenzo et al., 2022), to NLG system di-
agnostics and sentence similarity (Opitz and Frank,
2021, 2022b). Formally, given an aspect of interest
asp and an MR g, we apply a subgraph-extraction

13We find a potential explanation in a motivation of P6’s
creators to focus on semantics in proximity of an MR’s top
node (the proportion of such semantics increases when the
graph is smaller, and smaller graphs have more influence on
macro average than on micro average).

“bob”

name

cat jump
arg0

name

op1 “lisa”

name

cat run
arg0

op1

name

sg(g, NE) w/ SMATCH

sg(g, NE) w/ SMATCH++ sg(g, NE) w/ SMATCH++

sg(g, NE) w/ SMATCH

NE-aspect
signal

Eval
Named Entity:
NE-SM = 1.00
NE-SM++ = 0.5

Figure 4: Named Entitiy (NE) sub-graph extraction with
SMATCH vs. SMATCH++

function sg(g, asp) to build an aspect-focused sub-
graph, and compute a matching score (e.g., F1).

Review of previous implementation We study
the description in Damonte et al. (2017) and the
most frequently used implementation (Lyu, 2018).
The treated aspects14 are divided in two broad
groups: i) alignment-based matching: For some
aspects, we extract aspect-related genuine sub-
graphs, on which we calculate an optimal align-
ment. ii) bag-of-label matching: for other aspects,
we detect aspect-related variables and gather asso-
ciated node labels15 in a bag/list, to compute an
overlap score based on simple set intersection.

E.g., SRL-aspect belongs to the first category
(i): we extract <x, :argn, y> relations, and
their corresponding instance triples (here: <x,
:instance, c>, and <y, :instance,
c’>). Then we calculate SMATCH on such SRL-
subgraphs. The Negation, Named Entity (NEs)
and Frames aspect is put into the second group
(ii). We look for a relation/node-label that signals
a particular aspect, e.g., <x, :polarity, ->
(for negation) or <x, :name, y> (for NEs), we
extract x, and replace x with the descriptive label
c from <x, :instance, c>. For Frames,
we search for <x, :instance, c> where c
is a PropBank predicate, and collect c. Finally,
we can evaluate without an alignment, using set
intersection.

Open questions We pose two questions:

1. Can the sub-graph extraction be improved?

2. Are there other aspects that we can measure?

7.3 Improving sub-graph extraction
Sensible range of extraction For some phenom-
ena, the current extraction range is clearly too lim-
ited. For instance, let us consider named entities,
which can be captured in more complex and nested

14See Appendix A.3 for a full overview.
15I.e., from <x, :instance, label> triples

1602

MR structure. E.g., in AMR, one node typically
indicates the type of the named entity (NE), and an-
other multi-node structure represents its name and
other attributes. Consider two AMRs a and b, from
which we want to extract NE structures to measure
the agreement of the graphs w.r.t. NE similarity. As
shown in Figure 4, assume that one graph is about
a cat named Bob16, while the other graph is about
a cat named Lisa17. Obviously, the MRs have simi-
larities in their NE structure (since there are named
cats), but also differences (since the cats have differ-
ent names). However, NE-focused SMATCH only
extracts cat and cat, and returns maximum score.

Hence, for all finer-grained aspects that are cap-
tured by non-atomic MR structures (e.g., Named
Entities), we propose to gather the full sub-graph
starting at the aspect-indicating relation or node
label. In the NE example, as shown in Figure 4, we
would be provided a score of 0.5, better reflecting
the similarity of the two NE structures.

Sub-graph compression, align and match We
find a middle-ground in the advantages of the
coarse matching (concreteness, efficiency) and
graph alignment (safe matching) by using align-
ment with lossless MR compression. This is opti-
mal and efficient, and alleviates the need to switch
among fine and coarse extraction methods.

7.4 Extending fine-grained scores

Beyond negation and named entities – other
semantic aspects We find that the fine-grained
SMATCH metrics by Damonte et al. (2017) miss
some interesting features captured by MRs. For
instance, four interesting AMR aspects that are
currently not captured are cause, location, quan-
tification, and tense. SMATCH++ allows their inte-
gration in a straightforward way. An example for
tense extraction is displayed in Figure 5, where our
SMATCH++ sub-graph extraction extracts the com-
plete temporal sub-graph, triggered by the edge
label :time (if we would resort to the style of
fine-grained SMATCH, we would miss larger parts
of the temporal structure, only extracting the node
label end).

Results of fine-grained parser diagnostics for
cause, location, quantification, and tense are shown

16Triples: <x, :instance, cat>, <y,
:instance, name>, <x, :name, y>, <y, :op1,
"bob">.

17Triples: <x, :instance, cat>, <y,
:instance, name>, <x, :name, y>, <y, :op1,
"lisa">.

ordinal-entity

century

end

flourish
time

good

bake

4

arg1

ord

value

arg0

Tense-aspect signal

sg(g, tense)
w/ SMATCH++

Figure 5: Temporal sub-graph extraction with
SMATCH++ for an MR capturing “Baked goods flour-
ished at the end of the fourth century”.

parser scores
aspect P1 P2 P3 P4 P5 P6

cause 47.8 47.4 44.4 35.7 31.4 31.2
location 61.8 53.2↓ 54.7↑ 49.2↓ 51.7↑ 40.0
quant 69.4 67.4 58.4 56.8 56.5 55.8
tense 67.7 62.3 58.5 56.5 50.3 48.4

Table 4: Evaluation for causal and temporal structures.
↓↑ indicate switched ranks. Solver: ILP.

in Table 4.
Interestingly, we see that projecting causality

seems hard: all parsers tend to struggle when as-
sessing causal structures (31.2 up to 47.8 F1 points),
showing much room for improvement. The tempo-
ral structures, on the other hand, can be assessed
with somewhat higher accuracy (48.4 up to 67.7
points). We also see some switched ranks, indi-
cating different parser strengths. Overall, parser
score differences seem notably more pronounced
than when calculating SMATCH (++) on the full
graphs, showing the difficulty of capturing finer
phenomena, and highlighting strengths of more
recent parsers.

8 Conclusion

SMATCH++ is the first specification of a standard-
ized, extended, and extensible SMATCH metric. We
aim at i) standardized and transparent comparison
of graph parsing systems, and ii) improved extensi-
bility for custom applications.18 The applications
can include finer parser diagnostics and measuring
semantic sub-graph similarities such as quantifica-
tion, cause, or tense with our fine-grained metrics.

Acknowledgments

We thank our reviewers for their helpful feedback.
18See Appendix A.4 for a summary of the default setup.

1603

Limitations

We have to leave some questions open. First, we
would have liked to shed more light on the solvers’
behaviors when facing large graphs, in isolation.
On one hand, our benchmark corpus indeed con-
tains some large MRs with many variables, includ-
ing reified MRs and MRs that represent multiple
sentences (up to 174 variables, cf. Table 2). We
have shown that ILP could cope with these harder
problems, providing optimal solutions in reason-
able time. When facing bigger graphs, however,
we can expect that the solution quality of the hill-
climber quickly degrades, while the ILP will strug-
gle to find optimal solutions. While our graph
compression strategy can help mitigate this issue
by reducing the alignment search space, it would
be interesting to study the quality of temporary so-
lutions, or of solutions of LP relaxation. There are
also relaxed ILP solvers (Klau, 2009) that itera-
tively tighten the lower and the upper-bound. They
could prove useful for aligning larger MR graphs,
or, at least, to find useful upper-bounds.

Second, in this paper we studied SMATCH (++)
that measures structural overlap and assigns each
triple the same weight. But structural differences
of similar degree can have a different impact on
overall meaning similarity as perceived by humans,
which can have ramifications for measuring sen-
tence similarity (Opitz et al., 2021) and meaning-
ful evaluation of strong AMR parsers (Opitz and
Frank, 2022a). Therefore, for a deeper assessment
of MR similarity we may have to use conceptu-
ally different metrics, or explore SMATCH++-based
strategies and (sensibly) weigh triples depending
on label importance or compose an overall score
by weighting measured sub-aspect similarities.

References
Rafael Torres Anchiêta, Marco Antonio Sobrevilla

Cabezudo, and Thiago Alexandre Salgueiro Pardo.
2019. Sema: an extended semantic evaluation for
amr. In (To appear) Proceedings of the 20th Compu-
tational Linguistics and Intelligent Text Processing.
Springer International Publishg.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai,
Madalina Georgescu, Kira Griffitt, Ulf Herm-
jakob, Kevin Knight, Philipp Koehn, Martha
Palmer, and Nathan Schneider. 2019. Amr
guidlines. https://github.com/amrisi/amr-
guidelines/blob/master/amr.md.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation without
a complex pipeline. In Proceedings of AAAI.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for AMR parsing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3799–3809, Hong
Kong, China. Association for Computational Linguis-
tics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. Asso-
ciation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Meaning
Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Bradley Efron. 1992. Bootstrap methods: another look
at the jackknife. Springer.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the Abstract Meaning Repre-
sentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1426–1436, Bal-
timore, Maryland. Association for Computational
Linguistics.

Michael Wayne Goodman. 2019. AMR normalization
for fairer evaluation. CoRR, abs/1909.01568.

Thanh Lam Hoang, Gabriele Picco, Yufang Hou, Young-
Suk Lee, Lam Nguyen, Dzung Phan, Vanessa López,
and Ramon Fernandez Astudillo. 2021a. Ensembling
graph predictions for amr parsing. Advances in Neu-
ral Information Processing Systems, 34.

Thanh Lam Hoang, Gabriele Picco, Yufang Hou, Young-
Suk Lee, Lam Nguyen, Dzung Phan, Vanessa Lopez,
and Ramon Fernandez Astudillo. 2021b. Ensembling

1604

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
http://arxiv.org/abs/1909.01568
http://arxiv.org/abs/1909.01568
https://proceedings.neurips.cc/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf

graph predictions for amr parsing. In Advances in
Neural Information Processing Systems, volume 34,
pages 8495–8505. Curran Associates, Inc.

Alexander Miserlis Hoyle, Ana Marasović, and Noah A.
Smith. 2021. Promoting graph awareness in lin-
earized graph-to-text generation. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 944–956, Online. Association
for Computational Linguistics.

Gunnar W Klau. 2009. A new graph-based method for
pairwise global network alignment. BMC bioinfor-
matics, 10(1):1–9.

Zi Lin, Jeremiah Liu, and Jingbo Shang. 2022. Neural-
symbolic inference for robust autoregressive graph
parsing via compositional uncertainty quantification.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4759–4776, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3929–3951, On-
line. Association for Computational Linguistics.

Chunchuan Lyu. 2018. Fine-grained smatch imple-
mentation. https://github.com/ChunchuanLv/amr-
evaluation-tool-enhanced.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

Emma Manning and Nathan Schneider. 2021. Ref-
erenceless parsing-based evaluation of AMR-to-
English generation. In Proceedings of the 2nd Work-
shop on Evaluation and Comparison of NLP Systems,
pages 114–122, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Abelardo Carlos Martínez Lorenzo, Marco Maru, and
Roberto Navigli. 2022. Fully-Semantic Parsing and
Generation: the BabelNet Meaning Representation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1727–1741, Dublin, Ireland.
Association for Computational Linguistics.

Jonathan May and Jay Priyadarshi. 2017. Semeval-2017
task 9: Abstract meaning representation parsing and
generation. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 536–545.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.

2020. Mrp 2020: The second shared task on cross-
framework and cross-lingual meaning representation
parsing. In Proceedings of the CoNLL 2020 Shared
Task: Cross-Framework Meaning Representation
Parsing, pages 1–22.

Juri Opitz, Angel Daza, and Anette Frank. 2021.
Weisfeiler-leman in the bamboo: Novel AMR graph
metrics and a benchmark for AMR graph similarity.
Transactions of the Association for Computational
Linguistics, 9:1425–1441.

Juri Opitz and Anette Frank. 2021. Towards a decom-
posable metric for explainable evaluation of text gen-
eration from AMR. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
1504–1518, Online. Association for Computational
Linguistics.

Juri Opitz and Anette Frank. 2022a. Better Smatch
= better parser? AMR evaluation is not so simple
anymore. In Proceedings of the 3rd Workshop on
Evaluation and Comparison of NLP Systems, pages
32–43, Online. Association for Computational Lin-
guistics.

Juri Opitz and Anette Frank. 2022b. SBERT studies
meaning representations: Decomposing sentence em-
beddings into explainable semantic features. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 625–638, Online only. Association for
Computational Linguistics.

Juri Opitz, Letitia Parcalabescu, and Anette Frank. 2020.
AMR Similarity Metrics from Principles. Transac-
tions of the Association for Computational Linguis-
tics, 8:522–538.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–
106.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, and Iryna Gurevych.
2021. Structural adapters in pretrained language
models for AMR-to-Text generation. In Proceed-
ings of the 2021 Conference on Empirical Methods

1605

https://proceedings.neurips.cc/paper/2021/file/479b4864e55e12e0fb411eadb115c095-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2021.findings-acl.82
https://aclanthology.org/2022.emnlp-main.314
https://aclanthology.org/2022.emnlp-main.314
https://aclanthology.org/2022.emnlp-main.314
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://aclanthology.org/2021.eval4nlp-1.12
https://aclanthology.org/2021.eval4nlp-1.12
https://aclanthology.org/2021.eval4nlp-1.12
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.1162/tacl_a_00435
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2021.eacl-main.129
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://doi.org/10.18653/v1/2022.eval4nlp-1.4
https://aclanthology.org/2022.aacl-main.48
https://aclanthology.org/2022.aacl-main.48
https://aclanthology.org/2022.aacl-main.48
https://doi.org/10.1162/tacl_a_00329
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2021.emnlp-main.351
https://doi.org/10.18653/v1/2021.emnlp-main.351

in Natural Language Processing, pages 4269–4282,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Linfeng Song and Daniel Gildea. 2019. SemBleu: A
robust metric for AMR parsing evaluation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4547–
4552, Florence, Italy. Association for Computational
Linguistics.

Elias Stengel-Eskin, Aaron Steven White, Sheng Zhang,
and Benjamin Van Durme. 2020. Universal decompo-
sitional semantic parsing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 8427–8439, Online. Association
for Computational Linguistics.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-
López, Bastian Rieck, and Karsten Borgwardt. 2019.
Wasserstein weisfeiler-lehman graph kernels. In Ad-
vances in Neural Information Processing Systems,
volume 32, pages 6436–6446. Curran Associates,
Inc.

Sarah Uhrig, Yoalli Garcia, Juri Opitz, and Anette Frank.
2021. Translate, then parse! a strong baseline for
cross-lingual AMR parsing. In Proceedings of the
17th International Conference on Parsing Technolo-
gies and the IWPT 2021 Shared Task on Parsing
into Enhanced Universal Dependencies (IWPT 2021),
pages 58–64, Online. Association for Computational
Linguistics.

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC-2018), Miyazaki, Japan. European
Languages Resources Association (ELRA).

Shira Wein, Wai Ching Leung, Yifu Mu, and Nathan
Schneider. 2022. Effect of source language on AMR
structure. In Proceedings of the 16th Linguistic Anno-
tation Workshop (LAW-XVI) within LREC2022, pages
97–102, Marseille, France. European Language Re-
sources Association.

Shira Wein and Nathan Schneider. 2022. Accounting
for language effect in the evaluation of cross-lingual
AMR parsers. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3824–3834, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Boris Weisfeiler and Andrei Leman. 1968. The reduc-
tion of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020. Improving AMR parsing with
sequence-to-sequence pre-training. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2501–
2511, Online. Association for Computational Lin-
guistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Association
for Computational Linguistics.

Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh,
and Benjamin Van Durme. 2018. Cross-lingual de-
compositional semantic parsing. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1664–1675, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

A Appendix

A.1 Lossless graph pair reduction example
Consider the cat scratches another cat:
a=

{
<s, :instance, scratch>,

<c, :instance, cat>,
<d, :instance, cat>, <s, :arg0, c>,
<s, :arg1, d>

}

and the gray cat scratches the small plant:
b=

{
<x, :instance, scratch>,

<y, :instance, cat>,
<z, :instance, plant>,
<w, :instance, small>,
<v, :instance, gray>,
<x, :arg0, y>, <x, :arg1, z>,
<y, :mod, v>, <z, :mod, z>

}
.

The lossless compression is
a′=

{
<c, :instance, cat>,

<d, :instance, cat>,
<scratch, :arg0, c>,
<scratch, :arg1, d>

}
and

b′=
{
<y, :instance, cat>,

<scratch, :arg0, y>,
<scratch, :arg1, plant>,
<y, :mod, gray>,
<plant, :mod, small>

}
.

The alignment search space is reduced from a
size of more than 100 candidates to 2 candidate
options (y = c, or y = d).

A.2 Assessing solution quality variability in
dependence of variables

We use the parses of an example parser (P5)19. For
every evaluation pair, we re-start the hillclimber 20
times, and collect the scores related to the found
local optima. The Y-axis in Figure 6 shows the
amount of unique scores found among the 20 tries
(note that there could be more unique alignments

19We ran the experiment also with parses from other sys-
tems but always ended up with essentially the same results

1606

https://doi.org/10.18653/v1/P19-1446
https://doi.org/10.18653/v1/P19-1446
https://doi.org/10.18653/v1/2020.acl-main.746
https://doi.org/10.18653/v1/2020.acl-main.746
https://proceedings.neurips.cc/paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf
https://doi.org/10.18653/v1/2021.iwpt-1.6
https://doi.org/10.18653/v1/2021.iwpt-1.6
https://www.aclweb.org/anthology/L18-1267
https://www.aclweb.org/anthology/L18-1267
https://aclanthology.org/2022.law-1.12
https://aclanthology.org/2022.law-1.12
https://aclanthology.org/2022.coling-1.336
https://aclanthology.org/2022.coling-1.336
https://aclanthology.org/2022.coling-1.336
https://doi.org/10.18653/v1/2020.emnlp-main.196
https://doi.org/10.18653/v1/2020.emnlp-main.196
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D18-1194
https://doi.org/10.18653/v1/D18-1194

Figure 6: Assessing solution quality variability. Top:
basic graphs, bottom: reified graphs. Diagonal line:
linear trend. Horizontal line: arithmetic mean. See text
in §A.2 for more description and §6.4.1 for discussion.

that would result in the same score – this is not cap-
tured in this Figure). The X-axis shows the amount
of alignment variables. In different terms, a higher
point in this Figure is equivalent to a larger pool
of local optima of different quality, and thus we
can conjecture a greater likelihood that the optimal
solution is not returned by the hill-climber.

A.3 Aspect overview
Previously measured aspects For all aspects we
retrieve F1, Precision, and Recall.

1. Measured under alignment

(a) SRL: extract <x, argn, y> triples
and corresponding instance triples.

(b) Coreference/Re-entrancies: extract <x,
rel, y> triples for which there is an-
other triple <z, :rel’, y> (mean-
ing y is a re-entrant node) and also ex-
tract corresponding instance triples.

2. Measured via bag-of-structure extraction and
set operations

(a) Concepts: collect all node labels.
(b) Frames: collect all node labels where the

label is a PropBank predicate frame.
(c) NonSenseFrames: see above, but with

sense label removed

(d) NE: Named entities, collect all node la-
bels that have an outgoing :name rela-
tion.

(e) Negation: collect all node labels that
have an outgoing :polarity relation.

(f) Wikification: collect all node labels that
have an incoming :wiki relation.

(g) IgnoreVars: replace all variables in
triples with concepts, collect triples.

SRL, Named Entities, coreference (re-entrant
nodes)

Additional aspects measured by us: Cause,
Tense, Location, Quantifier.

We change: Add default option for extracting
aspect sub-graphs, measure all aspects under align-
ment.

Aspects we added:

• Cause: Cause is modeled via cause-01. We
extract label of :arg1 (what is caused?) and
subgraph of :arg2, the cause itself.

• tense: Tense is modeled via <x, :time,
y> edge. We extract label of the thing
that happens and subgraph of y, the tem-
poral description where it happens.

• location: Similar to above but with
:location edge.

• quantifier: Similar to above but with :quant
edge.

A.4 Best practice
To provide a balance between efficiency, safety
and meaningfulness of scores, default procedure of
SMATCH++ is currently set to:

1. Pre-processing: lower-casing, duplicate-
removal, de-reify where applicable.

2. Alignment: Solver: ILP. Triple-match: wt
t =

1 ∀t, t′; sim(c, c′) := I[c = c′]

3. Scoring: Precision, Recall, F1, Bootstrap con-
fidence intervals

An option to increase efficiency without incur-
ring a loss in safety and meaningfulness is achieved
by adding graph compression to the pre-processing.
It is set as the default for fine semantic aspect
scores. Also, to ensure utmost safety, we have
to consider applying reification standardization (in-
curring a significantly longer evaluation time).

1607

