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Abstract

We extend a current sequence-tagging approach
to Grammatical Error Correction (GEC) by
introducing specialised tags for spelling cor-
rection and morphological inflection using the
SymSpell and LemmInflect algorithms. Our ap-
proach improves generalisation: the proposed
new tagset allows a smaller number of tags to
correct a larger range of errors. Our results
show a performance improvement both over-
all and in the targeted error categories. We
further show that ensembles trained with our
new tagset outperform those trained with the
baseline tagset on the public BEA benchmark.

1 Introduction

Current approaches to Grammatical Error Cor-
rection (GEC) fall under two broad categories:
sequence-to-sequence and sequence-tagging. The
former treats GEC as a machine-translation prob-
lem, "translating" from error-containing to error-
free language (Yuan and Briscoe, 2016; Schmaltz
et al., 2017; Junczys-Dowmunt et al., 2018; Grund-
kiewicz et al., 2019; Yuan et al., 2019; Rothe et al.,
2021). By contrast, sequence-tagging approaches
tag each input word with an edit operation such
that applying the operations produces the corrected
output (Yannakoudakis et al., 2017; Awasthi et al.,
2019; Omelianchuk et al., 2020; Tarnavskyi et al.,
2022). The basic operations include keeping a word
unchanged, deleting a word, and inserting new
words (Awasthi et al., 2019; Malmi et al., 2019).

One advantage of sequence-tagging over
sequence-to-sequence approaches is computational
efficiency: the former do not require expensive
auto-regressive decoding,1 and currently achieve
competitive performance using smaller models
(Tarnavskyi et al., 2022; Rothe et al., 2021).

1Malmi et al. (2019) show that sequence-taggers can be
orders of magnitude faster than comparable seq-to-seq models
at inference time.
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Figure 1: Our model applied to two inputs. Beneath
each word is the tagger’s output. Arrows denote trans-
formations by SymSpell and LemmInflect respectively.

However, current sequence-tagging approaches re-
quire manual linguistic efforts to curate language-
specific edit tags (Yuan et al., 2021). For example,
Awasthi et al. (2019) introduce rule-based morpho-
logical inflection tags, like replacing the "-ing"
suffix with "-ion" (e.g. completing → comple-
tion). Omelianchuk et al. (2020) introduce a wider
range of operations including verb-form and noun-
number changes. For verb-form inflections, they
use a dictionary to map between verb forms.2

In this paper, we focus on a sequence-tagging
approach. We extend the approach of Omelianchuk
et al. (2020) by introducing more general transfor-
mation tags (Figure 1). Specifically, we introduce:

• A tag for correcting spelling errors.

• Inflection tags capable of a broader range
of inflections than the tags introduced by
Omelianchuk et al. (2020).

These modifications allow a broader range of er-
rors to be handled by a smaller number of transfor-
mation tags, which simplifies the sequence tagging

2https://github.com/gutfeeling/word_forms/
blob/master/word_forms/en-verbs.txt
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problem, as well as improves the generalisation of
the GEC system. Our results show that our modifi-
cations improve the system’s performance on the
BEA-2019 development and test sets. Our code
and model weights are publicly available.3

2 Methods

We extend the system described by Omelianchuk
et al. (2020) by adding new tags to the model’s
output vocabulary and modifying the inference and
dataset preprocessing code to support our new tags.
Our new tags perform spelling correction and mor-
phological inflection and are described in Sections
2.3 and 2.4 below. We evaluate our tagset using the
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2021b), DeBERTaV3 (He et al., 2021a), ELEC-
TRA (Clark et al., 2020) and XLNet (Yang et al.,
2019) encoders, as well as an ensemble of three
encoders (see Section 2.6).

2.1 Model and Training Procedure

Our work builds on GECToR from Omelianchuk
et al. (2020), which follows the sequence tagging
approach to GEC. We use the same sequence tag-
ger architecture: a pre-trained transformer encoder
with two separate "tagging" and "detection" heads.
We also follow the same multi-phase training proce-
dure using the synthetic PIE Corpus (Awasthi et al.,
2019), NUCLE (Dahlmeier et al., 2013), FCE (Yan-
nakoudakis et al., 2011), Lang-8 (Mizumoto et al.,
2011; Tajiri et al., 2012) and W&I + LOCNESS
(Bryant et al., 2019) English datasets.

2.2 Baseline Tagset

GECToR’s tagset includes the basic edit
tags, $KEEP, $DELETE, $REPLACE_{t} and
$APPEND_{t}, which respectively leave the word
unchanged, delete the word, replace the word with
another word t, and append t after the input word.

The tagset also contains a set of more complex
grammatical transformation or “g-transform” tags.
These include case, agreement (singular/plural),
verb-form and merge/split transformations. For ex-
ample, there is a tag to transform a verb into its past-
tense equivalent. The verb-form transformations
are performed using a dictionary. Omelianchuk
et al. (2020, Table 9) provide a full list of the trans-
formations and their descriptions.

3https://github.com/StuartMesham/gector_
experiment_public

2.3 Spelling Correction Tag

GECToR corrects spelling errors using its vocabu-
lary of $REPLACE_{t} tags. This limits its ability to
generalise to unseen or rare spelling errors for two
reasons. The first is that GECToR can only correct
misspellings of words which appear in its output
vocabulary. The second is that for each word, there
are many possible misspellings that the model must
learn to associate with the corrected form.

To remedy this, we introduce a new $SPELL tag
for spelling correction. When this tag is predicted
during inference, we use SymSpell4 to produce
the corrected version of the input word (see Sec-
tion A.1 for details). We hypothesise that this im-
proves generalisation because the sequence tagger
need only detect spelling errors, and the corrections
are performed by SymSpell. SymSpell can handle
a variety of misspellings of each word and can cor-
rect words from a dictionary much larger than the
output vocabulary of the sequence tagger.

2.4 Inflection Tags

We introduce inflection tags of the form
$INFLECT_{POS} where POS denotes the Penn
Treebank POS tag of the desired form of the in-
put word. When an inflection tag is predicted at
inference time, the input word is inflected to the
target POS specified in the tag. The inflection is
achieved using the software modules spaCy5 and
LemmInflect6. LemmInflect first attempts to use
a dictionary for the inflection. If the input word is
not in LemmInflect’s dictionary, the inflection is
performed using a rule-based approach (see Sec-
tion A.2 for details).

Our inflection tags offer two main advantages
over GECToR’s dictionary-based verb transforma-
tions. The first is that they are not limited to verbs,
but rather can be used for any inflected part of
speech.7 The second is that words which do not
appear in LemmInflect’s dictionary can still be han-
dled using a rule-based approach (see Section A.2).
We also note that GECToR’s singular/plural trans-
formation tag only adds or removes an "-s" from
the end of the input word, making it unable to han-
dle less trivial cases such as inflecting "activity"
to its plural "activities". By contrast, our system

4https://github.com/wolfgarbe/SymSpell#
single-word-spelling-correction

5https://spacy.io
6https://github.com/bjascob/LemmInflect
7In English, the inflected parts of speech are adjectives,

adverbs, nouns and verbs.
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BEA-2019 dev BEA-2019 test
Model precision recall F0.5 precision recall F0.5 (x̄± σ)

DeBERTa(L)5K basetags 68.13 38.12 58.86 77.89 56.72 72.47 ± 0.56
DeBERTa(L)5K $SPELL 68.37 39.03 59.40 77.96 57.67 72.82 ± 0.49
DeBERTa(L)5K $INFLECT 68.73 38.43 59.33 77.72 57.23 72.51 ± 0.93
DeBERTa(L)5K $SPELL + $INFLECT 69.75 38.97 60.20 78.45 57.44 73.09 ± 0.72

ensemble basetags 73.25 37.17 61.32 83.47 55.64 75.87 ± 0.20
ensemble $SPELL 73.54 37.76 61.79 83.72 56.28 76.26 ± 0.37
ensemble $INFLECT 73.89 37.35 61.80 83.71 55.68 76.06 ± 0.43
ensemble $SPELL + $INFLECT 74.19 38.16 62.39 83.59 56.23 76.17 ± 0.38

DeBERTa(L)10K

⊕
RoBERTa(L)10K

⊕
XLNet(L)5K

(Tarnavskyi et al., 2022)
70.32 34.62 58.30 84.44 54.42 76.05

RoBERTa(L)5K (KD) (Tarnavskyi et al., 2022) - - - 80.70 53.39 73.21
T5 xxl (Rothe et al., 2021) - - - - - 75.88
ESC (Qorib et al., 2022) 73.63 40.12 63.09 86.65 60.91 79.90

Table 1: A table showing BEA-2019 development and test set scores. The top section shows our models with varying
tagsets using the DeBERTa(L)

5K encoder. The middle section shows the results for our ensemble models with varying
tagsets. In the table, "ensemble" denotes the encoders DeBERTa(L)

5K

⊕
ELECTRA(L)

5K

⊕
RoBERTa(L)

5K . Finally, the
bottom section shows models from related work. The model labelled "(KD)" was trained using Tarnavskyi et al.
(2022)’s knowledge distillation procedure. The results in the top and middle sections are averaged over 6 seeds, and
the standard deviation, σ, of the test F0.5 is shown.

applies the full dictionary and rule-based procedure
to singular/plural transformations. In summary, our
inflection tags handle a broader range of transfor-
mations than GECToR’s transformation tags. We
hypothesise that this improves generalisation.

2.5 Preprocessing

To incorporate our $SPELL tag into the training
data, we take data preprocessed with Omelianchuk
et al. (2020)’s code, and for each instance of a
$REPLACE_{t} tag, we apply SymSpell to the input
word. If SymSpell produces the correct output,
t, we change the $REPLACE_{t} tag to a $SPELL
tag. Otherwise, we leave the $REPLACE_{t} tag
unchanged.

For the inflection tags, we first modify
Omelianchuk et al. (2020)’s preprocessing code
by removing existing tags which perform inflec-
tions.8 Then, similar to our process for the $SPELL
tag, for each instance of a $REPLACE_{t} tag, we
attempt to inflect the input word to obtain the tar-
get word t and, if successful, change the tag to an
$INFLECT_{POS} tag. Otherwise, we leave the tag
unchanged. For details about this process, we refer

8We remove tags g-8 to g-29 (Omelianchuk et al., 2020,
Table 9).

the reader to the relevant script in our repository.9

2.6 Ensembling

To create ensemble models, we use the span-based
voting procedure of Tarnavskyi et al. (2022). Their
system takes the corrected output of each model,
compares it with the input text, and extracts edit
spans of the same type (insert, delete, or replace).
In an ensemble of k models, spans predicted by at
least k− 1 models are included in the output of the
ensemble.

Our particular combination of encoders was cho-
sen on the BEA-2019 development set by search-
ing over all possible combinations of three models
from the set of individual models we trained with
the $SPELL + $INFLECT tagset.

3 Results

We report the span-based precision, recall and F0.5

scores on the BEA-2019 development and test sets
(Bryant et al., 2019) using the ERRANT scorer
(Bryant et al., 2017).10 The term "basetags" in-
dicates the tagset proposed by Omelianchuk et al.

9See the lemminflect_preprocess.py script in the
utils directory of our repository.

10https://github.com/chrisjbryant/errant
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Figure 2: A bar graph showing the BEA-2019 development set F0.5 scores for the "spelling" error category for
different encoders, tagsets and vocabulary sizes. Specifically, the $SPELL and basetags tagsets and vocabulary sizes
of 5k and 10k. Each bar represents the mean score over three training runs with different seeds. The error bars show
the standard deviations of the scores.

(2020), and $SPELL and $INFLECT denote our pro-
posed tagsets containing the spelling and inflec-
tion tags respectively. $SPELL + $INFLECT denotes
tagsets containing both the spelling and inflection
tags. We adopt the model and tagset size notation
of Tarnavskyi et al. (2022) which, for example,
denotes a DeBERTa-large model using a 5k vocab-
ulary size as DeBERTa(L)5K .

Table 1 shows the scores of our models on the
BEA-2019 development and test sets. Of the three
encoders chosen for our ensemble, DeBERTa(L)5K

had the highest mean development set score when
using $SPELL + $INFLECT tagset, and is thus shown
in Table 1.11

For the DeBERTa(L)5K encoder, on both the de-
velopment and test sets, the $SPELL and $INFLECT
tagsets provide an improvement over the basetags
tagset, and the $SPELL + $INFLECT tagset provides
a larger improvement. Similarly, for the ensemble
models, on the development set, the $SPELL and
$INFLECT tagsets show an improvement over the
basetags tagset, and the $SPELL + $INFLECT tagset
obtains the highest score. However, on the test set,
the $SPELL tagset scores the highest.

11See Section A.6 for the results of the other encoders, and
Section A.8 for CoNLL-2014 results.

3.1 Target Error Categories

Figures 2 and 3 show BEA-2019 development set
scores in the ERRANT error categories (Bryant
et al., 2017, Table 2) targeted by the $SPELL and
$INFLECT tagsets respectively. The former targets
only the "spelling" error category, and the latter
targets categories related to inflection.12 In Figure 2
we observe substantial performance improvements
in the spelling category for all models. Figure 3
shows a smaller improvement in the target error
categories of the $INFLECT tagset for all models
except XLNet(L)10K .

4 Discussion

In general, the $SPELL and $INFLECT tagsets both
improve performance over the baseline tagset. The
results of Section 3.1 show that the tagsets improve
performance in their respective targeted error cate-
gories. This indicates that our modifications were
successful.

In the results showing all error categories (Ta-
ble 1), the inclusion of many non-targeted cate-
gories reduces the weighting of targeted categories,
resulting in smaller apparent differences between
models. For the ensemble models, the $SPELL

12Specifically, the ADJ:FORM, MORPH, NOUN:INFL,
NOUN:NUM, VERB:FORM, VERB:INFL, VERB:SVA and
VERB:TENSE categories.

1611



DeBERTa (L
)10K

DeBERTa (L
)5K

DeBERTaV3 (L
)10K

DeBERTaV3 (L
)5K

ELECTRA (L
)10K

ELECTRA (L
)5K

RoBERTa (L
)10K

RoBERTa (L
)5K

XLNet (L
)10K

XLNet (L
)5K

60

62

64

F
0
.5

basetags
$INFLECT

Figure 3: A bar graph showing the BEA-2019 development set F0.5 scores for inflection-related errors for different
encoders, tagsets and vocabulary sizes. Specifically, the $INFLECT and basetags tagsets and vocabulary sizes of 5k
and 10k. Each bar represents the mean score over three training runs with different seeds. The error bars show the
standard deviations of the scores.

tagset obtains a higher test score than the $SPELL
+ $INFLECT tagset. This is contrary to our expec-
tation that the combination of our modifications
should provide a cumulative improvement. It is
also unexpected that the ranking of the ensemble
models on the development and test sets differs.

Differences in error-type frequencies in the de-
velopment and test sets do not provide an expla-
nation, since the frequency of spelling errors is
lower in the test set than in the development set,
and the frequencies of the error types which the
$INFLECT tagset most impacts13 are higher in the
test set than in the development set (Bryant et al.,
2019, Table 4). We therefore hypothesise that this
unexpected pattern is an artefact of the variation
between different random seeds.

5 Conclusions

We have motivated and described new tags for
spelling correction and morphological inflection.
These tags are capable of correcting a broader range
of errors than previous tags, thereby improving
generalisation. Our results show that the new tags
improve performance both in the targeted error cat-
egories and overall for both single-encoder models
and ensembles.

13Specifically the NOUN:NUM, VERB:FORM and
VERB:SVA error types. See Section A.7 for details.

Our findings ultimately show there is great scope
for improving GEC sequence-labelling model per-
formance by introducing tags capable of correcting
more general and possibly complex classes of er-
rors.

Finally, we believe our results are of immediate
value to practitioners building GEC applications
since they offer improved performance without the
use of seq-to-seq models which can require orders
of magnitude more computation at inference time.

6 Future Work

We used SymSpell in its context-free configura-
tion when correcting spelling errors. We chose this
method because of its speed and simplicity, how-
ever, better performance could likely be obtained
by switching to a context-sensitive spelling correc-
tion algorithm.

Although our experiments demonstrate a per-
formance improvement over the results of Tar-
navskyi et al. (2022), other recent work has demon-
strated further performance improvements (Lai
et al., 2022; Qorib et al., 2022). Our contribution
is orthogonal to these, and so future work could in-
vestigate whether using our tagset for the sequence
tagger used by Lai et al. (2022) or using our models
in the ensemble described by Qorib et al. (2022)
would yield further improvements.
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Limitations

The results obtained have high variance with re-
spect to the random seed used (see Appendix Fig-
ures 5 and 6). Due to compute limitations, we
were unable to run more seeds to better observe the
distributions of development and test scores.

The generalised tags we experimented with are
also somewhat language specific, as, for example,
the $INFLECT tagset will not be beneficial to a lan-
guage with little or no morphology.

Ethics Statement

This work is conducted in accordance with the
ACM Code of Ethics.14 In this section we comment
on the topics of privacy, safety and accessibility,
as we believe they are particularly relevant to the
development and use of our system.

Privacy
Since machine learning systems can reveal sen-
sitive information about their training data, it is
important to consider privacy concerns relating to
the development and use of such systems. The
training data for our system originates from two
primary sources: publicly available text and essays
collected from examinations and online error cor-
rection services. The PIE Corpus is derived from
publicly available texts (Awasthi et al., 2019). The
Lang-8 and Write & Improve essays are collected
in accordance with the services’ respective privacy
policies. The FCE dataset is anonymised before
use (Yannakoudakis et al., 2011). Privacy-related
information is not documented for the NUCLE and
LOCNESS datasets.

Safety
Automated GEC systems have the potential to
change the meaning of the input text. Therefore,
the systems described in this work should be ap-
plied with caution. In scenarios where miscommu-
nication is dangerous, the system should only be
used as an aid for the manual correction of text,
rather than a fully automated system.

Accessibility
The development of our system required compute-
intensive model training and data preprocessing.15

This cost may be prohibitive for some research
groups or potential users. We make our trained

14https://www.acm.org/code-of-ethics
15See Section A.5 for details.

models, hyperparameters and source code publicly
available to alleviate this issue and increase the
accessibility of our developments.
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A Appendix

A.1 SymSpell

SymSpell is an open-source spelling correction sys-
tem. It is initialised with a dictionary of correct

words and their frequency in some sample of En-
glish text. Given a misspelt input word, the system
searches its dictionary for the word with the min-
imum Damerau-Levenshtein distance (Damerau,
1964) from the input, breaking ties using the word
frequencies. A parameter n limits the maximum
number of edits allowed. If the dictionary contains
no words within n Damerau-Levenshtein edits of
the input, the system reports that the input could
not be corrected.

We initialise SymSpell using n = 2 and use
the dictionary of approximately 83k English words
included with SymSpell.16 The dictionary is de-
rived from the Spell Checker Oriented Word Lists17

database and contains both British and American
spelling variants. Word frequencies are obtained
from the Google Books n-gram dataset.18

A.2 LemmInflect

LemmInflect is a software module which per-
forms lemmatisation and inflection on English
words. For example, we may want to in-
flect the singular present tense verb “runs”
to its past tense form “ran”. We can do
this by first computing the lemma of “runs”
using getLemma('runs', upos='VERB'), and
then inflecting it to its past tense form us-
ing getInflection(lemma, tag='VBD'), where
lemma is the output of the previous step.19 Lem-
mInflect’s functions first attempt to use dictionaries
to map between word forms. If the input does not
appear in its dictionary, LemmInflect uses a classi-
fication model to determine which of a pre-defined
set of morphing rules to apply (e.g. adding “-ed” to
the input).

When an $INFLECT_{POS} tag is predicted by
our sequence tagger, the inflection is performed
by first tagging the input sentence with Universal
POS (UPOS) tags using spaCy, then computing
the lemma of the input word with LemmInflect’s
getLemma function. Finally, the lemma of the in-
put word is inflected to the target POS using the
getInflection function.

16https://github.com/wolfgarbe/SymSpell/blob/
master/SymSpell/frequency_dictionary_en_82_765.
txt

17http://wordlist.aspell.net
18https://storage.googleapis.com/books/ngrams/

books/datasetsv2.html
19The “upos” and “tag” arguments are the Universal POS

tag (Nivre et al., 2020) of the input word and the Penn Tree-
bank POS tag (Marcus et al., 1993) of the desired output
respectively.
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A.3 Training Details
We use a batch size of 256 in stages 1 and 2, and
128 in stage 3. During training, the model is evalu-
ated on the development set every 10k steps in stage
one, and every epoch in stages two and three. Train-
ing is stopped when the development set accuracy
does not improve for three consecutive evaluations
or a maximum number of training steps or epochs
have been completed. The accuracy is computed
as the combined tag-level accuracy of the detection
and tagging heads. We use a maximum of 200k
steps for stage one, and a maximum of 15 epochs
for stages two and three. In our experiments, stages
two and three never reach this maximum.

We use the cross entropy loss function20 and
the Adam optimiser (Kingma and Ba, 2015) with
the default parameters (β1 = 0.9, β2 = 0.999,
ϵ = 10−8).21 We follow the learning rate sched-
ule of (Omelianchuk et al., 2020). Specifically,
we perform the first 20k steps and first 2 epochs
of training stages one and two respectively with
a learning rate of 10−3 and the encoder weights
frozen.22 After these respective points in training
are reached, the encoder weights are unfrozen and
the learning rate is decreased to 10−5. In stage
three, the encoder weights are never frozen and we
only use a learning rate of 10−5.

Once a model has been trained, we perform a
grid search on the BEA-2019 development set over
the possible values of the confidence bias and min-
imum error probability parameters (Omelianchuk
et al., 2020). We later refer to these as the "in-
ference tweak" parameters. For both parameters,
we test values ranging from 0.0 to 0.9 inclusive,
in increments of 0.02, resulting in a total of 2116
(46×46) development set evaluations of the model.
We have included, in our public repository, the
BEA-2019 development set scores for all of the pa-
rameter combinations tested, as well as the chosen
parameters for each of the models.

A.4 Dataset Sizes and Splits
We use the same datasets for each training stage
as Omelianchuk et al. (2020). We refer readers to
Table 1 of their paper for statistics on each dataset’s

20https://pytorch.org/docs/stable/generated/
torch.nn.CrossEntropyLoss.html

21We use the PyTorch implementation of the AdamW op-
timiser (Loshchilov and Hutter, 2019) with the weight decay
parameter set to zero, making it equivalent to the Adam opti-
miser.

22During this initial phase, only the weights of the predic-
tion heads are updated.

Encoder Parameters

DeBERTa-large 405M
DeBERTaV3-large 435M
ELECTRA-large 335M
RoBERTa-large 355M
XLNet-large 360M

Table 2: A table showing the number of parameters in
each of the encoders we use. Note that these numbers
do not include the weights of the detection and tagging
heads which vary based on the vocabulary size used.

size and error frequencies. For stages 1 and 2, we
combine the relevant datasets as described in their
repository.23 We generate a random split of each
dataset into training and development sets, which
contain 98% and 2% of the data respectively.24 For
stage 3, we use the pre-defined training, develop-
ment and test sets of the W&I + LOCNESS dataset
(Bryant et al., 2019).

A.5 Model Size and Compute Requirements

We use the standard "large" configuration of each
of our encoders. The number of parameters in each
encoder is shown in Table 2.

Training took 15-20 hours per model with four
NVIDIA A100 GPUs connected via NVLink, each
with 80 GB of VRAM, using the HuggingFace
PyTorch DistributedDataParallel trainer implemen-
tation. Our grid search over the inference tweak
hyperparameters took 8-13 hours on one A100.

We did not perform detailed inference time ex-
periments. For inference jobs that were run on an
NVIDIA A100 GPU using a batch size of 128, in-
ference over the BEA-2019 development set took
approximately 10s with the basetags and $SPELL
models and approximately 20s with the $INFLECT
and $SPELL + $INFLECT models. We note that our
implementation was not optimised for inference
speed. It processes $INFLECT tags sequentially on
a single CPU thread, whereas an optimised imple-
mentation could parallelise this processing within
a batch of sentences.

This paper reports results from 156 models25

23https://github.com/grammarly/gector/blob/
master/docs/training_parameters.md

24The 98/2 training/development split was used by
Omelianchuk et al. (2020). This is documented in the main
README file in their repository.

25Figures 2-4 show the results from 120 models (5 encoders
× 2 vocabulary sizes × 4 tagsets × 3 seeds) and Tables 1 and
4 required a further 36 models to be trained (3 encoders × 4
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Figure 4: A bar graph showing the BEA-2019 devel-
opment set F0.5 scores of single models using different
tagsets. Each bar represents the mean score over three
training runs with different seeds. The black lines are
error bars showing the standard deviations.
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Figure 5: A bar graph showing the BEA-2019
development set F0.5 scores of our ensemble mod-
els using different tagsets with six different random
seeds. Each model is an ensemble of three encoders:
DeBERTa(L)

5K

⊕
ELECTRA(L)

5K

⊕
RoBERTa(L)

5K

which took approximately 12.5k GPU hours to
train and tune. Before this, we used approximately
2k GPU hours for development and preliminary
experiments with smaller models. Therefore in to-
tal, approximately 14.5k GPU hours were used in
creating this paper.

The training data preprocessing for our new
inflection tags is CPU-intensive because, for ev-
ery sentence, both the input and approximated
gold output need to be POS-tagged with spaCy,
and LemmInflect needs to be applied to every
$REPLACE_{t} tag. In our experiments, prepro-
cessing the datasets for all three training stages
took approximately 35 minutes on a dual-socket
76-core Intel(R) Xeon(R) Platinum 8368Q CPU
@ 2.60GHz. This process was run for both the
$INFLECT and $SPELL + $INFLECT tagsets.

tagsets × 3 seeds).
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Figure 6: A bar graph showing the BEA-2019
test set F0.5 scores of our ensemble models us-
ing different tagsets with six different random seeds.
Each model is an ensemble of three encoders:
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Figure 7: A box plot showing the change in BEA-2019
development set F0.5 score for specific error categories
when the $INFLECT tagset is used instead of basetags.
Each result shows the distribution of deltas over 10
combinations of encoders and tagset sizes. For each
such combination and tagset, we take the mean F0.5

score over three seeds and subtract the $INFLECT mean
from the basetags mean. The categories are ordered by
frequency, decreasing from left to right.

A.6 Additional Single Encoder and Ensemble
Results

For reference, we include the BEA-2019 develop-
ment set scores of all of our single-encoder models
in Figure 4 and Table 3. These models were trained
as part of our search process for the best combina-
tion of encoders for our ensemble.

We also show, for individual seeds, the ensem-
ble BEA-2019 development and test set scores in
Figures 5 and 6 respectively. This illustrates the
variance in F0.5 score over different random seeds.
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encoder & tagset size basetags $SPELL $INFLECT $SPELL + $INFLECT

DeBERTa(L)10K 58.91 ± 0.62 59.16 ± 0.16 59.11 ± 0.52 60.00 ± 0.36

DeBERTa(L)5K 59.02 ± 0.19 59.60 ± 0.56 59.36 ± 0.49 60.04 ± 0.49

DeBERTaV3(L)10K 59.25 ± 0.64 59.49 ± 0.39 59.41 ± 0.09 59.77 ± 0.19

DeBERTaV3(L)5K 59.25 ± 0.53 58.56 ± 1.74 59.41 ± 0.07 60.10 ± 0.22

ELECTRA(L)
10K 56.89 ± 0.15 57.32 ± 0.37 57.72 ± 0.12 58.17 ± 0.17

ELECTRA(L)
5K 56.83 ± 0.22 57.74 ± 0.35 57.71 ± 0.05 58.38 ± 0.31

RoBERTa(L)10K 58.99 ± 0.38 59.11 ± 0.22 58.98 ± 0.59 59.47 ± 0.92

RoBERTa(L)5K 58.63 ± 0.16 59.31 ± 0.22 59.26 ± 0.32 59.50 ± 0.77

XLNet(L)10K 59.00 ± 0.36 58.65 ± 0.36 58.41 ± 0.40 58.69 ± 0.58

XLNet(L)5K 58.20 ± 0.31 58.76 ± 0.19 58.29 ± 0.43 59.02 ± 0.20

Table 3: A table showing BEA-2019 development set F0.5 scores of single models using different tagsets and
encoders. We show the mean and standard deviation of the scores over three training runs with different seeds.

CoNLL-2014 test
Model precision recall F0.5 (x̄± σ)

DeBERTa(L)5K basetags 76.70 42.73 66.16 ± 0.47
DeBERTa(L)5K $SPELL 77.15 43.19 66.64 ± 0.40
DeBERTa(L)5K $INFLECT 76.43 42.57 65.90 ± 0.49
DeBERTa(L)5K $SPELL + $INFLECT 76.62 42.67 66.06 ± 0.44

ensemble basetags 80.70 41.25 67.72 ± 0.32
ensemble $SPELL 80.86 41.72 68.06 ± 0.43
ensemble $INFLECT 80.60 41.31 67.70 ± 0.54
ensemble $SPELL + $INFLECT 80.65 41.70 67.93 ± 0.40

DeBERTa(L)10K

⊕
RoBERTa(L)10K

⊕
XLNet(L)5K

(Tarnavskyi et al., 2022)
76.1 41.6 65.3

RoBERTa(L)5K (KD) (Tarnavskyi et al., 2022) 74.40 41.05 64.0
T5 xxl (Rothe et al., 2021) - - 68.87
ESC (Qorib et al., 2022) 81.48 43.78 69.51

Table 4: A table showing CoNLL-2014 test set scores (using the M2 scorer). The top section shows our models
with varying tagsets using the DeBERTa(L)

5K encoder. The middle section shows the results for our ensemble models
with varying tagsets. In the table, "ensemble" denotes the encoders DeBERTa(L)

5K

⊕
ELECTRA(L)

5K

⊕
RoBERTa(L)

5K .
Finally, the bottom section shows models from related work. The model labelled "(KD)" was trained using
Tarnavskyi et al. (2022)’s knowledge distillation procedure. The results in the top and middle sections are averaged
over 6 seeds, and the standard deviation, σ, of the test F0.5 is shown.
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A.7 Performance Analysis of
Inflection-Related Error Categories

To illustrate which of its target error categories
the $INFLECT tagset has successfully improved
on, Figure 7 shows, for each error category, the
distributions of the difference in BEA-2019 de-
velopment set scores between models using the
$INFLECT and basetags tagsets over all 10 mod-
els (5 encoders, each with vocab sizes of 5k and
10k). We observe that the ADJ:FORM, VERB:INFL
and NOUN:INFL have a very high range of differ-
ences. This is expected because these three cat-
egories have frequencies of 11, 6 and 4 respec-
tively in the development set. The small sample
size makes it difficult to draw conclusions about
these error categories. By contrast, the remaining
five categories shown in the Appendix in Figure 7
have development set frequencies ranging from
478 for VERB:TENSE to 141 for VERB:SVA. Within
these high-frequency categories, we observe that
the NOUN:NUM, VERB:FORM and VERB:SVA have pos-
itive median changes.

A.8 CoNLL-2014 Results
For interested readers, we have included results
on the CoNLL-2014 benchmark (Ng et al., 2014)
in Table 4. The scores are computed with the M2

scorer (Dahlmeier and Ng, 2012). In both the single
and ensemble models, the $SPELL tagset performs
best. However, these results should be interpreted
with caution, since the model hyper-parameters
were not tuned on the CoNLL-2014 development
set.
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