@inproceedings{nayeem-rafiei-2023-role,
title = "On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction",
author = "Nayeem, Mir Tafseer and
Rafiei, Davood",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-eacl.125",
doi = "10.18653/v1/2023.findings-eacl.125",
pages = "1684--1692",
abstract = "Helpful reviews have been essential for the success of e-commerce services, as they help customers make quick purchase decisions and benefit the merchants in their sales. While many reviews are informative, others provide little value and may contain spam, excessive appraisal, or unexpected biases. With the large volume of reviews and their uneven quality, the problem of detecting helpful reviews has drawn much attention lately. Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted. Moreover, the helpfulness votes suffer from scarcity for less popular products and recently submitted (a.k.a., cold-start) reviews. To address these challenges, we introduce a dataset and develop a model that integrates the reviewer{'}s expertise, derived from the past review history of the reviewers, and the temporal dynamics of the reviews to automatically assess review helpfulness. We conduct experiments on our dataset to demonstrate the effectiveness of incorporating these factors and report improved results compared to several well-established baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nayeem-rafiei-2023-role">
<titleInfo>
<title>On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mir</namePart>
<namePart type="given">Tafseer</namePart>
<namePart type="family">Nayeem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davood</namePart>
<namePart type="family">Rafiei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Helpful reviews have been essential for the success of e-commerce services, as they help customers make quick purchase decisions and benefit the merchants in their sales. While many reviews are informative, others provide little value and may contain spam, excessive appraisal, or unexpected biases. With the large volume of reviews and their uneven quality, the problem of detecting helpful reviews has drawn much attention lately. Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted. Moreover, the helpfulness votes suffer from scarcity for less popular products and recently submitted (a.k.a., cold-start) reviews. To address these challenges, we introduce a dataset and develop a model that integrates the reviewer’s expertise, derived from the past review history of the reviewers, and the temporal dynamics of the reviews to automatically assess review helpfulness. We conduct experiments on our dataset to demonstrate the effectiveness of incorporating these factors and report improved results compared to several well-established baselines.</abstract>
<identifier type="citekey">nayeem-rafiei-2023-role</identifier>
<identifier type="doi">10.18653/v1/2023.findings-eacl.125</identifier>
<location>
<url>https://aclanthology.org/2023.findings-eacl.125</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>1684</start>
<end>1692</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction
%A Nayeem, Mir Tafseer
%A Rafiei, Davood
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Findings of the Association for Computational Linguistics: EACL 2023
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F nayeem-rafiei-2023-role
%X Helpful reviews have been essential for the success of e-commerce services, as they help customers make quick purchase decisions and benefit the merchants in their sales. While many reviews are informative, others provide little value and may contain spam, excessive appraisal, or unexpected biases. With the large volume of reviews and their uneven quality, the problem of detecting helpful reviews has drawn much attention lately. Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted. Moreover, the helpfulness votes suffer from scarcity for less popular products and recently submitted (a.k.a., cold-start) reviews. To address these challenges, we introduce a dataset and develop a model that integrates the reviewer’s expertise, derived from the past review history of the reviewers, and the temporal dynamics of the reviews to automatically assess review helpfulness. We conduct experiments on our dataset to demonstrate the effectiveness of incorporating these factors and report improved results compared to several well-established baselines.
%R 10.18653/v1/2023.findings-eacl.125
%U https://aclanthology.org/2023.findings-eacl.125
%U https://doi.org/10.18653/v1/2023.findings-eacl.125
%P 1684-1692
Markdown (Informal)
[On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction](https://aclanthology.org/2023.findings-eacl.125) (Nayeem & Rafiei, Findings 2023)
ACL