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Abstract

Neural ranking (NR) has become a key com-
ponent for open-domain question-answering in
order to access external knowledge. However,
training a good NR model requires substan-
tial amounts of relevance annotations, which is
very costly to scale. To address this, a growing
body of research works have been proposed
to reduce the annotation cost by training the
NR model with weak supervision (WS) in-
stead. These works differ in what resources
they require and employ a diverse set of WS
signals to train the model. Understanding such
differences is crucial for choosing the right
WS technique. To facilitate this understand-
ing, we provide a structured overview of stan-
dard WS signals used for training a NR model.
Based on their required resources, we divide
them into three main categories: (1) only docu-
ments are needed; (2) documents and questions
are needed; and (3) documents and question-
answer pairs are needed. For every WS signal,
we review its general idea and choices. Promis-
ing directions are outlined for future research.

1 Introduction

Open-Domain Question Answering (ODQA) aims
to provide precise answers in response to the user’s
questions by drawing on a large collection of doc-
uments (Voorhees et al., 1999). The majority of
modern ODQA models follow the retrieve(-rerank)-
read architecture: 1) given a question, a set of rele-
vant documents are selected from a large document
collection, and 2) the reader model produces an an-
swer given this selected set and the question (Chen
et al., 2017; Verga et al., 2021; Lee et al., 2021).
Compared with parametric models without access
to external knowledge, this architecture can better
adapt to updated knowledge, offer easier interpre-
tation and reduce hallucination (Zhu et al., 2021a;
Shuster et al., 2021; Guo et al., 2022).

Conventional methods use sparse retrievers
(SRs) such as TF-IDF and BM-25 in the first stage

Resource Weak-Supervision Signal

Documents (§3) Self Contrastive Learning (§3.1)
Question Generation (§3.2)

Documents
+Questions (§4)

Sparse Retriever (§4)
Pre-trained Language Model (§4)
Supervised Teacher Model (§4)

Documents
+QA Pairs (§5)

Answer as Document (§5.1)
Answer-Document Mapping (§5.2)
Latent-Variable Model (§5.3)

Table 1: Overview of different weak-supervision signals,
together with their required resources, that we can apply to
train NR models for open-domain question-answering.

to match questions and documents via lexical over-
lap (Robertson and Walker, 1994), a process that
may overlook semantically relevant documents
with low lexical overlap with the question. Neu-
ral ranking (NR) models resolve this issue by en-
coding the questions and documents into dense
vectors so that synonyms and paraphrases can be
mapped to similar vectors through task-specific
fine-tuning (Das et al., 2019; Karpukhin et al.,
2020). However, training good NR models re-
quires substantial amount of relevance annotations
to perform competitively and NR models have been
found to generalize poorly across domains (Thakur
et al., 2021; Ren et al., 2022). In practice, col-
lecting question-document relevance annotations
is time-consuming. For a given question, an exten-
sive annotation effort may be required to find the
relevant documents. Repeating this annotation for
every language and domain is not feasible (Shen
et al., 2022c).

To reduce annotation costs, many techniques
have been proposed to train NR models with weak
supervision (WS) signals instead. This survey
aims to provide a clear taxonomy to characterize
these WS signals based on their required resources.
There are three common resources that can be lever-
aged: (1) Document set, which is a bare minimum
for building a ODQA system; (2) Questions with-
out ground-truth relevance or answer annotations;
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(3) Question-Answer (QA) Pairs, which are a
set of already answered questions. Different ap-
plications have different levels of resource avail-
ability. For example, common domains such as
e-commerce normally already have large amounts
of question-answer pairs from customer services
while smaller domains or low-resource languages
can only have a document set without any existing
questions. For each level of resource availability,
we review the applicable WS signals. An overview
can be seen in Table 1.

While there have been surveys that describe
general neural information retrieval (IR) ap-
proaches (Mitra et al., 2018; Guo et al., 2020; Lin
et al., 2021a; Zhu et al., 2021a; Guo et al., 2022),
we focus specifically on the low-resource scenarios,
which makes our contribution unique in this respect.
The closest to our work is the BEIR benchmark
for zero-shot cross-domain evaluation of IR mod-
els (Thakur et al., 2021) and its multiple related
studies (Mokrii et al., 2021; Reddy et al., 2021;
Wang et al., 2022; Ren et al., 2022). Nonetheless,
these studies test specific algorithms but do not
provide a holistic overview of how they are related.
Our survey can be useful in that: (1) future WS
research can use it as a reference book to compare
with similar techniques. (2) It can serve as a practi-
cal guide for choosing the best WS sginals to train
NR models given different availability levels of re-
sources. (3) As the retrieve(-rerank)-read paradigm
is generic and has been increasingly popular across
NLP tasks like machine translation (He et al., 2021)
and intent detection (Mehri and Eric, 2021), it can
have broader impact in many other applications.
Therefore, although this survey illustrates with the
use case of ODQA, the introduced techniques are
intended to go beyond specific applications.

In the following sections we first lay out the nec-
essary background knowledge (§2), then explain
popular WS signals when different resources are
available in sections 3 to 5. In conclusion, we high-
light promising directions for future work (§6).

2 Background

Neural Ranking (NR) for ODQA Let Q,D and
A denote the question, document and answer set.
Given a question q ∈ Q, the NR model assigns
a relevance score R(q, d) to each d ∈ D and se-
lects top-k document Dtopk ∈ D with the highest
relevance scores. Afterwards, a reader will esti-
mate the score G(a|q,Dtopk) to predict the final

answer a ∈ A conditioned on both q and Dtopk.
The NR model can be implemented using various
architecture with increasing model complexity. For
computational efficiency, normally a bi-encoder ar-
chitecture (Bromley et al., 1993) is first applied to
pre-select top candidates from the whole document
set, then a more complex cross-interaction model is
applied to provide more accurate relevance scores
only for the preselected candidates (Lee et al.,
2021). The training objective for the NR model
R can be formalized as:

min
R

Eq,d+,d−1∼n∈Q×DL(R, q, d+, d−1∼n) (1)

where Q × D indicates the full set of question-
document pairs, d+ is a positive (relevant) docu-
ment for q, d−1∼n is the sampled n negative (irrel-
evant) documents and L is the loss function. A
common choice for L is the contrastive loss:

L =− log
eR(q,d+)

eR(q,d+) +
∑n

j=1 e
R(q,d−j )

(2)

Neural Ranking with Weak Supervision In the
standard supervised setting we need relevance an-
notations for (q, d) → {+,−} to train R with Eq 1.
Obtaining high-quality relevance annotations re-
quires tremendous human labor and is expensive to
scale to multiple domains (Del Tredici et al., 2021;
Ram et al., 2022). Weak supervision (WS) is a
widely-used approach to reduce such cost by lever-
aging supervision signals from e,g., heuristic rules,
knowledge bases or external models (Zhang et al.,
2021). WS signals are cheap to obtain but might
contain significant noise which will affect the NR
performance. Therefore, understanding their work-
ing mechanisms and pros and cons are important
to obtain a good NR model. We group WS signals
into 3 classes by the resources that they need: (1)
Documents: only document collection D is needed;
(2) Documents + Questions: document collection
D and question set Q are needed; (3) Documents
+ QA Pairs: document collection D and QA pairs
(Q,A) are needed. In the next section, we will
present the three classes of WS signals and discuss
their pros and cons.

3 Resource: Documents

This section discusses two main techniques to pro-
duce WS signals requiring only the document set:
(1) self-contrastive learning and (2) question gener-
ation. This makes the minimum assumption about
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Method Pseudo Question

Perturbation d with added perturbation

Summary (Pseudo) summary of d

Proximity Nearby text of d

Cooccurrence Text sharing cooccurred spans with d

Hyperlink Text with a hyperlink to/from d

Table 2: Given a document d, different heuristics to con-
struct pseudo questions. Contrastive samples made from these
heuristics serve as WS signals to train the NR model.

resource availability since having the document set
is a prerequisite for building an ODQA system.

3.1 Self Contrastive Learning

Self contrastive learning relies on heuristics to con-
struct pseudo question-document pairs (q′, d′+/−)
from D, then uses them to supervise training of a
NR model. The objective is:

min
R

Eq′,d′+,d′−1∼n∈DL(R, q′, d′+, d′−1∼n) (3)

where L is the ranking loss as in Eq 1. Since neg-
ative pairs can be easily constructed by random
sampling, the main difficulty is to design good
heuristics for constructing positive pseudo pairs
(q′, d′+). There are 5 popular heuristics to construct
such positive pairs: perturbation-based, summary-
based, proximity-based, cooccurence-based and
hyperlink-based. An overview is in Table 2.

Perturbation-based heuristics add perturbations
to some text, then treat the perturbed text and the
original text as a positive pair. The intuition is that
perturbed text should still be relevant to the origi-
nal text. Typical choices of perturbations include
word deletion, substitution and permutation (Zhu
et al., 2021b; Meng et al., 2021), adding drop
out to representation layers (Gao et al., 2021), or
passing sentences through different language mod-
els (Carlsson et al., 2021), among other.

Summary-based heuristics extract a summary
from the document as the pseudo question based
on the intuition that questions should contain rep-
resentative information about the central topic of
the document. The summary can be the document
title (MacAvaney et al., 2017, 2019; Mass and Roit-
man, 2020), a random sentence from the first sec-
tion of the document (Chang et al., 2020), ran-
domly sampled ngrams (Gysel et al., 2018) or a set

of keywords generated from a document language
model (Ma et al., 2021a).

Proximity-based heuristics utilize the position
information in the document to obtain positive pairs
based on the intuition that nearby text should be
more relevant to each other. The most famous
one is the inverse-cloze task (Lee et al., 2019),
where a sentence from a passage is treated as the
question and the original passage, after removing
the sentence, is treated as a positive document.
They can be combined with typical noise injec-
tion methods like adding drop-out masks (Xu et al.,
2022), random word chopping or deletion (Izacard
et al., 2021) to further improve the model robust-
ness. Other methods include using spans from
the same document (Gao and Callan, 2022; Ma
et al., 2022), sentences from the same paragraph,
paragraphs from the same document as positive
samples (Di Liello et al., 2022), etc.

Cooccurrence-based heuristics construct posi-
tive samples based on the intuition that sentences
containing cooccurred spans are more likely to be
relevant (Ram et al., 2021). For example, Glass
et al. (2020) constructs a pseudo question with a
sentence from the corpus. A term from it is treated
as the answer and replaced with a special token.
Passages retrieved with BM25 which also contains
the answer term are treated as pseudo positive doc-
uments. Ram et al. (2022) treat a span and its
surrounding context as the pseudo question and use
another passage that contains the same span as a
positive document.

Hyperlink-based heuristics leverage hyperlink
information based on the intuition that hyperlinked
text are more likely to be relevant (Zhang et al.,
2020; Ma et al., 2021b). For example, Chang et al.
(2020) takes a sentence from the first section of a
page p as a pseudo question because it is often the
description or summary of the topic. A passage
from another page containing hyperlinks to p is
treated as a positive document. Yue et al. (2022a)
replace an entity word with a question phrase like
“what/when” to form a pseudo question. A passage
from its hyperlinked document that contains the
same entity word is treated as a positive sample.
Zhou et al. (2022) build positive samples with two
typologies: “dual-link” where two passages have
hyperlinks pointed to each other, and “co-mention”
where two passages both have a hyperlink to the
same third-party document.
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Input

Document
Document + Answer
Document + Answer + Question Type
Document + Answer + Question Type + Clue

Question
Generator

Rule-based Generator
Prompt-based Generator
Fine-tuned Generator⋄

Filter

LM Score
Round-trip Consistency
Probability from pre-trained QA
Influence Function
Ensemble Consistency
Entailment Score
Learning to Reweight⋄

Target-domain Value Estimation⋄

Table 3: Different choices for a question generation model
setup. ⋄ means minimal relevance annotations are needed.

3.2 Question Generation
Self contrastive learning relies on sentences already
present in D. Question generation leverage a ques-
tion generator (QG) to generate new questions not
found in D, which can then be used to provide WS
signals for the NR model. It often employs a fil-
ter Fil to filter poorly generated questions. The
training objective is:

min
R

Eq=QG(d+)&Fil(q,d+)=0L(R, q, d+, d−1∼n)

where the expectation is with respect to documents
d+ and d−1∼n drawn from D, the q are generated
from d+, Fil(q, d+) = 0 requires that these ques-
tions not be discarded by Fil, and L is the standard
ranking loss. There are various ways of designing
the question generator and filter. We will cover
the popular choices in the following section. An
overview can be seen in Table 3.

Choices of Input A variety of information can
be provided as input for the QG. The most straight-
forward approach is answer-agnostic which pro-
vides only the document (Du and Cardie, 2017;
Kumar et al., 2019). In this way, the model can
choose to attend to different spans of the document
as potential answers and so generate different, cor-
responding questions. A more common method
is answer-aware where an answer span is first ex-
tracted from a document, then the QG generates
a question based on both the document and an-
swer (Alberti et al., 2019; Shakeri et al., 2020).
Finer-grained information can also be provided
such as the question type (“what/how/...”) (Cao and
Wang, 2021; Gao et al., 2022) as well as additional
clues (such as document context to disambiguate
the question) (Liu et al., 2020). Adding more in-
formation reduces the entropy of the question and

makes it easier for the model to learn, but also in-
creases the possibility of error propagation (Zhang
and Bansal, 2019). In practice, well-defined filters
should be applied to remove low-quality questions.

Choices of Question Generator There are three
popular choices for the question generator. (1)
Rule-based methods (Pandey and Rajeswari, 2013;
Rakangor and Ghodasara, 2015) rely on hand-
crafted templates and features. These are time-
consuming to design, domain-specific, and can
only cover certain forms of questions. (2) Prompt-
based methods relying on pre-trained language
models (PLMs). Documents can be presented to
a PLM, with an appended prompt such as “Please
write a question based on this passage” so that the
PLM can continue the generation to produce a ques-
tion (Bonifacio et al., 2022; Sachan et al., 2022;
Dai et al., 2022). (3) Fine-tuned generators that
are trained on annotated question-document pairs.
When in-domain annotations are not enough, we
can leverage out-of-domain (OOD) annotations, if
any, to fine-tune the QG. The first two QGs require
no training data, but their quality is often inade-
quate. In practice, we should only consider them
when there is a complete lack of high-quality su-
pervised data for fine-tuning the QG. When target-
domain questions are available, we can also apply
semi-supervised techniques such as back-training
to adapt the QG to the target domain (Zhao et al.,
2019; Kulshreshtha et al., 2021; Shen et al., 2022a).

Choices of Filter Filtering is a crucial part of QG
since a significant portion of generated questions
could be of low quality and would provide mislead-
ing signals when used to train the NR model (Al-
berti et al., 2019). A typical choice is filtering
based on round-trip consistency (Alberti et al.,
2019; Dong et al., 2019), where a pre-trained QA
system is applied to produce an answer based on
the generated question. A question is kept only
when the produced answer is consistent with the
answer from which the question is generated. We
can also relax this strict consistency requirement
and manually adjust an acceptance threshold based
on the probability from the pre-trained QA sys-
tem (Zhang and Bansal, 2019; Lewis et al., 2021),
LM score from the generator itself (Shakeri et al.,
2020; Liang et al., 2020), or an entailment score
from a model trained on question-context-answer
pairs (Liu et al., 2020). Influence functions (Cook
and Weisberg, 1982) can be used to estimate the
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effect on the validation loss of including a syn-
thetic example (Yang et al., 2020), but this does not
achieve satisfying performances on QA tasks (Bar-
tolo et al., 2021). Bartolo et al. (2021) propose
filtering questions based on ensemble consistency,
where an ensemble of QA models are trained with
different random seeds and only questions agreed
by most QA models are selected. When minimal
target-domain annotation is available, we can also
learn to reweight pseudo samples based on the vali-
dation loss (Sun et al., 2021), or use RL to select
samples that lead to validation performance gains
(value estimation) (Yue et al., 2022b).

3.3 Discussion

If the heuristics or QG are properly designed, NR
models trained from their supervision can even
match the fully-supervised performance (Wang
et al., 2022; Ren et al., 2022). The biggest chal-
lenge is the difficulty to pick the most suitable
heuristics or QG when we face a new domain. A
general solution is to automatically select good
pseudo pairs with reinforcement learning (RL)
when minimal target-domain annotations are avail-
able (Zhang et al., 2020), so as avoiding the need
to manually fixing the WS signals, but this would
bring significant computational overhead. In prac-
tice hyperlink-based approaches often perform the
best among the heuristics as they have additional
reference information to leverage, which makes
them most similar to the actual relevance annota-
tions. However, hyperlink information is not avail-
able in most domains and thereby limits its use
cases (Sun et al., 2021). QG-based WS signals are
often preferred over heuristics-based ones as they
can produce naturally-sound questions themselves
without relying on the chance to find good pseudo
questions in the documents. Nonetheless, obtaining
a high-performing QG can also be non-trivial. One
big challenge comes from the one-to-many map-
ping relations between questions and documents.
Under this situation, standard supervised learning
tends to produce safe questions with less diver-
sity and high lexical overlap with the document.
For example, Shinoda et al. (2021) found that QG
reinforces the model bias towards high lexical over-
lap. We will need more sophisticated training tech-
niques such as latent-variable models (Shen and
Su, 2018; Xu et al., 2020; Li et al., 2022) and rein-
forcement learning (Yuan et al., 2017; Zhang and
Bansal, 2019; Shen et al., 2019a) to alleviate the

model bias towards safe questions.

4 Resource: Documents + Questions

This section includes WS signals that require addi-
tional access to a question set Q. In practice, anno-
tating question-document relations usually requires
domain experts to read long documents and careful
sampling strategies to ensure enough positive sam-
ples, while unlabeled questions are much easier to
obtain either through real user-generated content or
simulated traffic. Therefore, it is common to have a
predominance of unlabeled questions. The crucial
point is to establish the missing relevance labels.
Suppose a WS method can provide the missing la-
bel WS(q, d) for a question-document pair (q, d),
then we can use it to supervise the NR model by:

min
R

Eq∈Q,d∈DL(R(q, d),WS(q, d)) (4)

where L is the loss function that encourages simi-
larity between R(q, d) and WS(q, d).

There are three popular types models that can
provide such WS signal here: (1) sparse retriever,
(2) pre-trained language model and (3) supervised
teacher model.

Sparse Retriever (SR) Recent research finds that
NR and SR models are complementary. NR mod-
els are better at semantic matching while SRs are
better at capturing exact match and handling long
documents (Chen et al., 2021; Luan et al., 2021).
SRs are also more robust across domains (Thakur
et al., 2021; Chen et al., 2022). This motivates the
use of unsupervised sparse retrievers like BM25 as
WS signals. For example, Dehghani et al. (2017);
Nie et al. (2018) train a NR model on samples an-
notated with BM25. Xu et al. (2019) apply four
scoring functions to auto-label questions and docu-
ments with: (1) BM25 scores, (2) TF-IDF scores,
(3) cosine similarity of universal embedding repre-
sentation (Cer et al., 2018) and (4) cosine similarity
of the last hidden layer activation of pre-trained
BERT model (Devlin et al., 2019). Both papers ob-
serve that the resulting model outperforms BM25
on the test sets. Chen et al. (2021) further show that
distilling knowledge from BM25 helps the retriever
to better match rare entities and improves zero-shot
out-of-domain performance.

Pre-trained Language Model (PLM) As PLMs
already encode significant linguistic knowledge,
there have also been attempts at using prompt-
based PLMs to provide WS signals for question-
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document relations (Smith et al., 2022; Zeng et al.,
2022). Similar as in question generation, we can
use prompts like “Please write a question based on
this passage”, concatenate the document and ques-
tion, then use the probability assigned by the PLM
to auto-label question-document pairs. To max-
imize the chances of finding positive document,
normally we first obtain a set of candidate docu-
ments by BM25, then apply PLM to auto-label the
candidate set (Sachan et al., 2022). This can fur-
ther exploit the latent knowledge inside PLMs that
has been honed through pre-training, so it often
shows better performance compared with weak su-
pervision only using BM25 (Nogueira et al., 2020;
Singh Sachan et al., 2022).

Supervised Teacher Model A very common
choice is using a supervised teacher model to pro-
vide WS signals. The teacher model is “super-
vised” because it is explicitly fine-tuned on anno-
tated question-document pairs. When in-domain
annotations are not sufficient, we can leverage out-
of-domain (OOD) annotations, if available, to train
the teacher model. The teacher model usually em-
ploys a more powerful architecture such as with
more complex interactions or larger sizes. It may
not be directly applicable in downstream tasks due
to the latency constraints, but can be useful in pro-
viding WS signals for training the NR model. For
example, previous research has shown that models
with larger sizes or late/cross-interaction structures
generalize much better on OOD data (Pradeep et al.,
2020; Lu et al., 2021; Ni et al., 2021; Rosa et al.,
2022; Muennighoff, 2022; Zhan et al., 2022). Af-
ter training a teacher model on OOD annotations,
applying it to provide WS signals through target-
domain question and document collections can sig-
nificantly improve the in-domain performance of
the NR model (Hofstätter et al., 2021; Lin et al.,
2021b; Lu et al., 2022). Kim et al. (2022) further
show that we can even use the same architecture
and capacity to obtain a good teacher model. They
expand the question with centroids of word embed-
dings from top retrieved passages (using BM25),
and then use the expanded query for self knowl-
edge distillation. Similar ideas of reusing the same
architecture to provide WS signals have also been
explored by Yu et al. (2021a); Kulshreshtha et al.
(2021); Zhuang and Zuccon (2022).

Discussion The three WS signals listed above
work directly on actual questions instead of pseudo

pairs as in §3 so that the NR model can adapt bet-
ter to the target-domain question distribution. The
bottleneck is the quality of the WS signals. SRs
and PLMs are unsupervised, which could be more
robust when we face a completely different do-
main (Dai et al., 2022). Otherwise, if we already
have certain amounts relevance annotations from
the target or similar domains, usually using a su-
pervised teacher model is preferred. Nevertheless,
these WS signals inevitably contain noise, and can
harm the downstream performance if the noise is
significant. There are two main strategies to reduce
the noise effects: (1) Apply less strict margin-based
loss such as the hinge loss (Dehghani et al., 2017;
Xu et al., 2019) and MarginMSE loss (Hofstät-
ter et al., 2020; Wang et al., 2022), then models
have fewer chances of overfitting to the exact la-
bels, and (2) Apply noise-resistant training meth-
ods such as confidence-based filtering (Mukherjee
and Awadallah, 2020; Yu et al., 2021b) and meta-
learning-based refinement (Ren et al., 2018; Zhu
et al., 2022). Another potential issue is that the
amount of training data in this section relies on the
amount of questions we have. Unlike the docu-
ment set which we can obtain for free, the question
set takes time to collect and are often orders of
magnitudes smaller. If no sufficient questions are
available, we can use synthetic questions from ques-
tion generation, then apply same WS signals in this
section, which has been shown to perform on par
with using real questions in certain domains (Wang
et al., 2020, 2022; Thakur et al., 2022).

5 Resource: Documents + QA Pairs

Many domains have large numbers of already an-
swered questions from customer services, technical
support or web forums (Huber et al., 2021). These
QA pairs can provide richer information than only
unlabeled questions. However, most answers are
based on personal knowledge, derived from experi-
ence, and do not include a reference to any external
document. This prevents their direct use as training
data for the NR model. This section introduces
three standard methods that exploit QA pairs to
provide WS signals despite this difficulty: (1) An-
swer as document, (2) Answer-document mapping
and (3) Latent-variable models.

5.1 Answer as a Document

As a straightforward way to leverage QA pairs, this
method directly treats QA pairs as positive samples
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and does not distinguish between documents and
answers (Lai et al., 2018). These QA pairs can
provide direct WS signals to train the NR model:

min
R

Eq,a+,a−1∼n∈Q×AL(R, q, a+, a−1∼n) (5)

where (q, a+) ∈ Q×A are question-answer pairs
in the target domain, a−1∼n are sampled n negative
answers and L is the standard ranking loss.

Though simple, this has been a common prac-
tice to “warm up” the NR model when no suffi-
cient relevance annotations are available. For large-
sized models, this can be crucial to fully leverage
the model capacity since we often have orders of
magnitude more QA pairs than relevance annota-
tions (Ni et al., 2021; Oğuz et al., 2021). However,
the style, structure and format differ between the
document and the answer. The answer is a direct
response to the question, and so it is easier to pre-
dict due to its strong semantic correlation with the
question. Whereas the document can be implicit
and may contain fewer obvious clues that can imply
an answer; deep text understanding is required to
predict the relevance between questions and docu-
ments (Zhao et al., 2021; Shen et al., 2022b). There-
fore, this approach may be insufficient to reach
satisfying results as a standalone method.

5.2 Answer-document Mapping
This approach leverages an additional mapping
function to automatically link answers to the corre-
sponding documents. The NR model can get WS
signals from the linked answers:

min
R

Eq,a∈(Q,A),d−1∼n∼DL(R, q,M(a), d−1∼n)

where (q, a) ∈ (Q,A) are question-answer pairs,
M is a mapping function from an answer to its
corresponding document, and L is the standard
ranking loss. The mapping function is based on
hand-crafted heuristics. For long-form descriptive
answers, a popular way is to map them to doc-
uments with highest ROUGE scores (Lin, 2004)
since the answers can be considered as summaries
of the original documents (Fan et al., 2019). For
short-span answers, a popular way is to map them
to top-ranked documents retrieved using BM25 that
contain the answer span (Karpukhin et al., 2020;
Sachan et al., 2021; Christmann et al., 2022).

Answer-document mapping was widely adopted
for constructing large-scale datasets in information
retrieval (Joshi et al., 2017; Dunn et al., 2017; El-
gohary et al., 2018). This can work well if the

Distribution of R(z|q) Optimization Method
Categorical Top-k approximation

Multinomial EM algorithm
Learning from attention

Table 4: Distribution assumptions made about the neural
ranker and corresponding optimization methods, suppose we
train the NR model following Equation 6.

mapping has high accuracy, which is often diffi-
cult to achieve. Frequent answers or entities might
lead to false positive mappings. It is also difficult to
find positive documents for boolean and abstractive
answers using only heuristics-based mapping func-
tions (Izacard and Grave, 2021). Models can easily
overfit to the biases introduced via such mapping
function (Du et al., 2022).

5.3 Latent-Variable Model
We can still train the NR model on question-
document pairs as in Answer-Document Mapping.
However, instead of relying on a heuristic-based
mapping function, we can treat this mapping as a
“latent variable” within a probabilistic generative
process (Lee et al., 2019; Shen, 2022). By this
means, the NR model R gets WS signals from the
QA reader G by maximizing the marginal likeli-
hood:

max
R,G

Eq,a∈(Q,A) log
∑

z∼Z

R(z|q)G(a|q, z) (6)

where Z indicates all possible document combina-
tions. Directly optimizing over Eq 6 is infeasible
as it requires enumerating over all documents. A
closed-form solution does not exist due to the deep
neural network parameterization of R and G. The
following section explains popular optimization
options. An overview can be seen in Table 4.

Top-k approximation A popular approach is to
assume a categorical distribution for R(Z|q); that
is, to assume for each question only a single docu-
ment is selected and the answer is generated from
that one document. Eq 6 can be approximated by
enumerating over only the top-k documents, as-
suming the remaining documents having negligibly
small contributions to the likelihood:

max
R,G

Dq,a∈(Q,A) log
∑

z∼Etopk

R(z|q)G(a|q, z)

This has been a popular choice in end-to-end
training of text generation models (Lee et al., 2019;
Shen et al., 2019b; Guu et al., 2020; Lewis et al.,
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2020; Shuster et al., 2021; Ferguson et al., 2022).
Despite its simplicity, the top-k approximation has
two main drawbacks. (1) The approximation is
performed on the top-k documents obtained from
the NR model. If the NR model is very weak at
the beginning of training, these top-k documents
can be a bad approximation to the real joint likeli-
hood and the model might struggle to converge. (2)
The assumption that document follow a categori-
cal distribution might be problematic especially if
the answer requires evidence from multiple docu-
ments (Wang and Pan, 2022).

Expectation–Maximization (EM) algorithm
To address the second drawback of the top-k ap-
proximation approach, we can assume a multino-
mial distribution for R(Z|q) so that an answer can
be generated from multiple documents. The cost
of this relaxation is the increased difficulty of opti-
mization. Approximating the joint likelihood from
top-k samples becomes infeasible due to the com-
binatorial distribution of document. Singh et al.
(2021) propose optimizating it with the EM algo-
rithm under an independent assumption about the
posterior distribution of R(z|q):

max
R,G

Eq,a∈(Q,A)[log
∑

z∈Dtopk

R(z|q)

× SG(G(a|q, z)) + log G(a|q,Dtopk)]

(7)

where SG means stop-gradient (gradients are not
backpropagated through G). As can be seen, the
training signal for the NR model is essentially the
same as in the Top-k Approximation case, except
that the reader is trained by conditioning on all
top-k documents to generate the answer. Singh
et al. (2021) also find that Eq 7 is quite robust with
respect to parameter initialization. Similarly, Zhao
et al. (2021) apply the hard-EM algorithm to train
the NR model, which only treats documents with
the highest likelihood estimated by the reader as
positive. Izacard et al. (2022) further experiment
with using the leave-one-out perplexity from the
reader to supervise the ranker.

Learning from attention Another way to opti-
mize the NR model in Eq 6 is to leverage attention
scores from the reader G. The assumption is that
when training G to generate the answer, its atten-
tion score is a good approximation of question-

document relevance. The training objective is:

min
R,G

Eq,a∈(Q,A)

∑

z∼Etopk

L(Az|R(z|q))

− log G(a|q, Z = Dtopk)

(8)

where G is trained to generate the right answer
based on the question and the top-k document,
same as in the EM algorithm. Az is the attention
score of G on the document z. L is the loss function
to encourage the similarity between distributions
of the attention scores and retrieving scores.

Izacard and Grave (2021) propose a training pro-
cess that optimizes R and G iteratively. R is trained
to minimize KL divergence between relevance and
attention scores. (Lee et al., 2021) jointly opti-
mize R and G and apply a stop-gradient operation
on G when updating R. Sachan et al. (2021) use
retriever scores to bias attention scores on the con-
trary. These can be considered as first-order Taylor
series approximations of Eq. 6 by replacing R(Z|q)
with attention scores (Deng et al., 2018).

Discussion Training with latent-variable models
can perform close to fully supervised models under
certain scenarios (Zhao et al., 2021; Sachan et al.,
2021). The main challenge is the training difficulty.
In practice, we can often initialize the NR model
using the answer as document or answer-document
mapping to make the training more stable. If not
enough QA pairs are available, we can use heuris-
tics like masked salient entities (Guu et al., 2020)
to form pseudo pairs, then apply the same WS tech-
niques in this section. Combining supervision sig-
nals from various various optimization techniques
such as learning from attention and EM algorithm
can also be beneficial (Izacard et al., 2022). If
the independence assumption made by Eq 7 does
not hold, we need to resort to more complex op-
timization algorithms. A potential direction is to
apply a Dirichlet prior over R(z|qt), which is a
conjugate distribution to the multinomial distribu-
tion (Minka, 2000), with the result that the sampled
document are not independent individuals but a
combination set. Eq 6 can then be estimated by
rejection sampling (Deng et al., 2018) or a Laplace
approximation (Srivastava and Sutton, 2017) so
as to avoid the independence assumption about the
posterior distribution. Nonetheless, this will further
increase the training complexity, which is already
a key bottleneck for training the NR model.
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6 Conclusions

We review standard WS signals used for training
NR models in ODQA and provide a structured
way of classifying them according to the required
resource. For WS signal, we discuss different op-
tions and summarize the pros and cons. As a final
wrap-up, we list promising directions that we be-
lieve worth exploring further: (1) How to select
the most suitable technique for a given scenario?
Despite the wide range of applicable techniques,
it is non-trivial to decide how to select the best
one except for an empirical experimentation. (2)
To which extent are these techniques complemen-
tary? Existing work compares performance only
between similar types of methods but not across the
whole range of techniques and resources available.
This makes it hard to decide whether different ap-
proaches could potentially complement each other
and how they should be combined effectively. (3)
Do methods work across languages? The vast ma-
jority of current research is conducted on English
datasets. Even though all described methods in this
survey have no explicit restrictions on languages
they can be applied to, it is likely that their perfor-
mance will vary across languages, especially for
the methods relying on handcrafted heuristics.

Limitations

This survey covers introductions and related work
of major WS algorithms used for neural ranking.
Due to the space limit, most methods included in
this paper are brief. Readers might not have a good
understand on all the introduced methods. Inter-
ested readers can refer to existing surveys about
general knowledge in QA (Zeng et al., 2020; Zhu
et al., 2021a; Roy and Anand, 2021; Rogers et al.,
2021; Pandya and Bhatt, 2021). Furthermore, we
did not provide points to existing ODQA datasets
and the performance of recent models. The con-
clusions in this survey also come from summaries
of previous works. The lack of datasets including
various resources needed for different WS algo-
rithms prevents a comprehensive, fair comparison
across algorithms. We hope future research can
work on the creation of more datasets with various
availabilitis of resources in different domains to
enable this comparison. Lastly, we aim to create
a big picture from the technology level, so we did
not strictly limit our references only to the applica-
tion of ODQA. The connection to specific ODQA
applications might be loose, readers would need

to extract useful information for the specific use
cases.
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