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Abstract

In order for NLP technology to be widely ap-
plicable, fair, and useful, it needs to serve a
diverse set of speakers across the world’s lan-
guages, be equitable, i.e., not unduly biased
towards any particular language, and be inclu-
sive of all users, particularly in low-resource
settings where compute constraints are com-
mon. In this paper, we propose an evalua-
tion paradigm that assesses NLP technologies
across all three dimensions. While diversity
and inclusion have received attention in recent
literature, equity is currently unexplored. We
propose to address this gap using the Gini co-
efficient, a well-established metric used for es-
timating societal wealth inequality. Using our
paradigm, we highlight the distressed state of
current technologies for Indian (IN) languages
(a linguistically large and diverse set, with a
varied speaker population), across all three di-
mensions. To improve upon these metrics, we
demonstrate the importance of region-specific
choices in model building and dataset creation,
and more importantly, propose a novel, gen-
eralisable approach to optimal resource allo-
cation during fine-tuning. Finally, we discuss
steps to mitigate these biases and encourage
the community to employ multi-faceted evalu-
ation when building linguistically diverse and
equitable technologies.

1 Introduction

NLP has seen large advances in recent years driven
by the rapid progress in transfer learning (Ruder
et al., 2019; Devlin et al., 2019). The benefits
of these advances, however, are not equally dis-
tributed across the world’s languages (Joshi et al.,
2020) and users. While linguistic diversity and
inclusion have evolved to be a pressing concern
today, measures to quantify these are still lacking.
The progress of any field is tightly coupled with
∗Equal contribution.
†Work done at Google Research.

its evaluation paradigm and the community is in-
centivized to work on highly visible metrics and
benchmarks. In order for users around the world
to reap the benefits of NLP technology, we must
move from an evaluation that focuses on optimiz-
ing raw performance on available test data to a
more holistic user-centric evaluation (Ethayarajh
and Jurafsky, 2020; Ruder et al., 2021). In this
paper, we attempt to do so by defining an evalua-
tion framework along three dimensions: diversity,
equity, and inclusion.1

Diversity is important as NLP technology should
be available to speakers of any language (European
Language Resources Association, 2019). To this
end, recent work (Blasi et al., 2022) quantifies di-
versity of NLP technology across the world’s lan-
guages by weighing normalized task performance
for each language based on its speaker population.

Equity is key as we should aim to develop tech-
nology that does not discriminate against speakers
of any particular language (Kaneko and Bollegala,
2019). State-of-the-art multilingual models in fact
have been shown to perform much better in lan-
guages with access to many pre-training resources
(Hu et al., 2020). To measure such performance
inequity across languages, we propose to use the
Gini coefficient (Dorfman, 1979), a measure that
has been used to represent the income inequality
within social groups.

Finally, inclusion is a concern as the fact that
NLP technology is performant in a given task and
language does not mean that it is usable by all.
State-of-the-art models are becoming larger and
larger (Fedus et al., 2021) and the low-resource
settings of many languages often coincide with
constraints on computational resources (Ahia et al.,
2021). The value a technology provides to a user
thus also needs to consider how easily such technol-

1We focus on assessing these dimensions on the language
level. Prior work on equity focuses mainly on subpopulations
within a language (Katell et al., 2020).
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ogy can be deployed in practice. Ma et al. (2021)
quantify this based on a model’s runtime efficiency,
considering factors like throughput and memory.

Our proposed paradigm is language and model
agnostic making it applicable to an arbitrary set
of languages and models. We apply our paradigm
to highlight the distressing state of current tech-
nologies for Indian (IN) languages. India is a
multilingual society with 1369 rationalized lan-
guages and dialects being spoken across the coun-
try (Chandramouli, 2011). Of these, 22 scheduled
languages2 spoken by almost 97% of the popula-
tion hold an official recognition and 121 languages
have more than 10,000 speakers. Additionally,
21.92% of its population lives below the poverty
line (RBI, 2021). Serving this large varied pop-
ulation justly requires a multi-faceted effort and
basing our case study on IN languages directs the
way forward.

We evaluate a range of state-of-the-art mod-
els and transfer settings (Hu et al., 2020) across
four standard downstream tasks: Named Entity
Recognition (NER), Part-of-Speech Tagging (POS),
Natural Language Inference (NLI) and Question
Answering (QA). We observe that region-specific
choices, i.e., a) region-specific pre-trained models
(Kakwani et al., 2020; Khanuja et al., 2021) and b)
Hindi as the transfer language during fine-tuning,
generally yield the best results. In terms of effi-
ciency, we find that smaller models are preferable
for easier, syntactic tasks while larger models have
the edge on more complex, semantic tasks.

Our findings, however, also highlight that we are
still a long way from building perfectly inclusive
and equitable NLP technology. Towards bridging
this gap, we explore how we can most effectively
annotate data for the remaining languages. Past
work (Lin et al., 2019; Ahuja et al., 2022) has relied
on heuristic and feature-based approaches to source
language selection. In our work, we propose a
novel, fully computational approach to model the
space of source and target languages, and derive
the optimal allocation of a fixed annotation budget
to maximize performance on our proposed metrics
in a multi-source setting.

Our contributions are the following: 1) We pro-
pose a holistic evaluation paradigm that assesses
NLP technology based on their diversity, equity,

2Assamese, Bengali, Bodo, Dogri, Gujarati, Hindi, Kash-
miri, Kannada, Konkani, Maithili, Malayalam, Manipuri,
Marathi, Nepali, Oriya, Punjabi, Tamil, Telugu, Sanskrit,
Santali, Sindhi, Urdu

and inclusion. 2) Using this paradigm, we evaluate
model capabilities for IN languages and quantify
their shortcomings. 3) We propose a novel ap-
proach to select data for fine-tuning these models
with the objective of maximizing performance on
the proposed metrics. 4) We discuss steps that must
be taken to mitigate these biases and call upon the
community to incorporate our evaluation paradigm
when building models to track progress towards
building linguistically inclusive and diverse tech-
nologies.

2 Background and Related Work

Multilingual Models Transformer-based lan-
guage models (LMs) (Vaswani et al., 2017) trained
on massive amounts of text from multiple lan-
guages have enabled the inclusion of an unprece-
dented number of languages in NLP technologies
(Conneau et al., 2020; Devlin et al., 2018). How-
ever, previous research has shown that these models
do not serve all languages equally, with resource-
poor languages in the long tail suffering the most
(Hu et al., 2020; Lauscher et al., 2020). These mod-
els go through a critical step of fine-tuning for the
downstream task before being deployed. Several re-
cent works focus on optimal fine-tuning strategies
that mitigate transfer gaps and improve overall per-
formance across target languages. Lin et al. (2019)
propose a tool that chooses optimal transfer lan-
guages based on linguistic features. Lauscher et al.
(2020) demonstrate the effectiveness of investing in
few-shot in-language training examples. Recently,
Debnath et al. (2021) show that investing in an
equal number of fine-tuning instances across target
languages performs best. These past approaches
however, have all been heuristically designed based
on the knowledge and intuition of the experimenter.

User-centric Evaluation At its core, the need
for language diversity in technologies is tied to
the people it serves. Previous work (Ethayarajh
and Jurafsky, 2020; Ma et al., 2021) has high-
lighted the need for transparent and user-centric
leaderboard evaluation, reporting practically rele-
vant statistics such as model size, energy efficiency,
and inference latency. It is common for speaker
populations of under-represented languages to op-
erate in resource-constrained settings. Therefore,
in addition to evaluating linguistic diversity, we
follow Ma et al. (2021) in computing model ef-
ficiency, which serves to assess the inclusivity of
these technologies. With regards to linguistic di-
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versity, Ruder et al. (2021) highlight the need for
more fine-grained evaluation across languages and
introduce language-specific leaderboards. Blasi
et al. (2022) quantify the value of NLP technol-
ogy weighed by speaker population and determine
utilities of several technologies across the world’s
languages. Choudhury and Deshpande (2021) pro-
pose strategies for fair and efficient model selection
depending on one’s application, based on the prin-
ciples of fairness in economics and social choice
theory.

Indian Languages The research community has
actively been contributing to the advancement of
IN NLP by collecting and open-sourcing data (Kak-
wani et al., 2020; Ramesh et al., 2021; Abraham
et al., 2020; Roark et al., 2020; Kunchukuttan
et al., 2017; Khanuja et al., 2020a), building region-
specific multilingual models (Khanuja et al., 2021;
Kakwani et al., 2020; Ramesh et al., 2021) and cre-
ating evaluation benchmarks (Kakwani et al., 2020;
Khanuja et al., 2020b)3 Several of these efforts
have been undertaken by AI4Bharat4, a non-profit
open-source community that has additionally been
working on developing resources for IN signed
languages (Sridhar et al., 2020) and creating key-
boards for IN scripts. Recently, Google Research
India launched a question answering (QA) chal-
lenge named ChAII5. Microsoft Research India has
also made significant contributions to IN NLP with
several efforts directed towards code-mixed lan-
guage processing6 and building tools and datasets
for under-represented languages in India7.

3 Diversity, Equity and Inclusion (DEI)

There is increasing awareness in society to promote
diversity, equity and inclusion in our workforce,
wherein such measures have recently been enforced
by law (Constitution, 2021). In the social construct,
diversity is defined as “the practice of including
the many communities, identities, races, ethnici-
ties, backgrounds, abilities, cultures, and beliefs of
the people, including underserved communities”,
equity refers to “the consistent and systematic fair,
just, and impartial treatment of all individuals” and
inclusion means “the recognition, and use of the
3.https://github.com/AI4Bharat/indicnlp_catalog maintains a
list of resources for Indian NLP.

4https://ai4bharat.org/
5https://www.kaggle.com/c/chaii-hindi-and-tamil-question-
answering

6https://www.microsoft.com/en-us/research/project/melange
7https://www.microsoft.com/en-us/research/project/ellora

talents and skills of employees of all backgrounds”
(Constitution, 2021). Given the ubiquitous use of
technology in our daily lives, we as technology
makers hold the responsibility of making sure all
voices are heard and equally represented in the
technology we serve. Given that our research com-
munity is incentivized to work on highly visible
metrics and benchmarks, an important first step is
to encourage evaluation along these dimensions.
Previous work mainly focused on average perfor-
mance (as measured by accuracy or F1 for NLU
tasks), which is not indicative of differences in DEI.
Hence, while models claim state of the art based on
an increase in average performance, this increase
may only be due to making the “rich richer” (see
Table 4).

We propose an evaluation paradigm for cur-
rent NLP technology that operationalizes the well-
established diversity, equity and inclusion pillars
on a language level: we quantify diversity based on
the value diverse speaker populations derive from
a technology, equity based on egalitarian perfor-
mance across speaker populations, and inclusion
based on a technology’s accessibility. We employ
metrics of Blasi et al. (2022) and Ma et al. (2021)
to measure diversity and inclusion respectively and
propose a new metric to quantify equity. We de-
scribe the metrics in more detail below:

3.1 Diversity: Utility, Demand and the Global
Metric

The global metric introduced by Blasi et al. (2022)
helps quantify linguistic diversity. Formally, this
metric is composed of the utility of a technology
weighed by its demand. The utility ul of a system
for a task and language is its performance normal-
ized by the best possible performance (typically,
human-level performance) afforded by the task:

ul =
performancel

theoretical max performance

Demand dl is characterized by taking into con-
sideration demographic and linguistic perspectives.
Under the demographic perspective, the demand
for a given technology in a language is estimated
to be proportional to the number of speakers of the
language itself nl (dl ∝ nl). Under the linguistic
perspective, the demand across languages is identi-
cal (dl ∝ 1). These two alternatives, as well as any
intermediate combination of them, are parameter-
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Figure 1: Graphical Representation of the Gini coeffi-
cient (G), given by A/(A + B) when G = 0.2. Each
point on the graph depicts the proportion of the to-
tal (cumulative) performance Pall (e.g., accuracy, F1,
etc) that is achieved by the bottom n% of languages
combined. Assume we have a language set {a, b, . . . ,
y, z} with performances Pa ≤ Pb ... ≤ Py ≤ Pz and
Pa + Pb ... Py + Pz = Pall. When all languages per-
form the same, i.e., Pa = Pb = ... = Py = Pz, G = 0,
as represented by the line of equality, i.e., the bot-
tom n% of languages also account for n% of the to-
tal performance. The value of G increases as the dis-
parity in performance between all languages increases,
and approaches unity in the case of perfect inequality
(here, this would mean Pa = Pb = ... = Py = 0 and
Pz = Pall), i.e., the model / application supports only
one language. See §3.2 for details.

ized through a single exponent τ :

d
(τ)
l =

nτl∑
l′ϵL nτl′

where τ = 1 corresponds to a demographic notion
of demand and τ = 0 to a linguistic one. The global
metric can now be defined as:

Mτ =
∑

lϵL

d
(τ)
l . ul

In essence, Mτ = 0 means that no user bene-
fits from language technology and Mτ = 1 cor-
responds to each language user enjoying perfect
technology. Given our people-centric aim to mea-
sure benefit for all speakers, we employ the demo-
graphic notion of demand (Mτ=1).

3.2 Equity: Gini Coefficient
While diversity accounts for a language’s speaker
population, it does not take into account inequal-

ities in the performance across languages. While
several past works have highlighted transfer gaps
in performance across languages (Hu et al., 2020),
none have quantified this dispersion.8 Traditionally
used measures of statistical dispersion like stan-
dard deviation or calculating range are sub-optimal
choices as they are scale-dependant, unbounded
and highly sensitive to outliers, which makes them
unsuitable for data that does not approach a normal
distribution (De Maio, 2007).

Beyond these measures, several nuanced met-
rics have been introduced to quantify disparity in
income distributions. The choice of income in-
equality indicator is of significant importance since
it has implications in measuring health, state-level
mortality, etc. (De Maio, 2007). The Gini coeffi-
cient (Dorfman, 1979) has been most commonly
used for this purpose (De Maio, 2007).

Hurley and Rickard (2009) lay out six desirable
attributes of a measure of sparsity, drawing from
past literature (Dalton, 1920; Rickard and Fallon,
2004) and prove the Gini coefficient to be the only
measure having all six, among a varied set of al-
ternatives. Briefly, these properties and their rele-
vance in measuring linguistic disparity across tasks
include: i) Robin Hood: a drop in high-performant
and gain in low-performant languages should lead
to higher equity; ii) Scale Invariance: no change
in relative performance should lead to no change
in equity, regardless of changes in absolute val-
ues; iii) Rising Tide: adding a constant value to
each language’s performance should increase eq-
uity; iv) Cloning: equity must remain invariant
under cloning, i.e., if two identical distributions are
combined, the equity remains unchanged; v) Bill
Gates: if one language hypothetically gains infinite
performance, equity should tend to zero; vi) Ba-
bies: adding languages with zero performance in
the distribution should decrease equity.

Given that the Gini coefficient satisfies all of
these attributes (Hurley and Rickard, 2009), we
propose to use the same in pursuit of quantifying
the inequalities amongst languages with regard to
downstream tasks in NLP. A pictorial representa-
tion of the Gini coefficient for this setting can be
found in Figure 1. Downstream task performance
closely follows the highly skewed data distribu-
tions on which massively multilingual models are
pre-trained. By including the Gini coefficient mea-

8Hu et al. (2020) only considered the difference between En-
glish and other languages as cross-lingual transfer gap.
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sure in our evaluation, we aim to incentivize model
builders to invest in equitable performance, despite
data differences. Details on how the Gini coeffi-
cient is calculated are given in Appendix A.3.

3.3 Inclusion: Efficiency Score

Language technology is only beneficial if it can be
deployed and accessed by users in a region. We em-
ploy efficiency to quantify inclusion as user devices
are resource-constrained in many low-resource set-
tings. Following work on user-centric evaluation
(Ethayarajh and Jurafsky, 2020; Ma et al., 2021),
we propose to incorporate efficiency into model per-
formance based on throughput and memory, each
of which are defined below.9

Throughput Number of instances the model can
process per second on a CPU, assuming that GPUs
are rarely used for deployment at scale in resource-
constrained environments.

Memory Saved The size of the model is consid-
ered to be a measure of how expensive a model is
to use in practice. Since we wish to minimize this
metric, memory used is transformed into memory
saved by subtracting it from a maximum available
memory of 16 GB (Ma et al., 2021). We show the
memory and throughput values for our models in
Appendix A.1.

Following Ma et al. (2021), to calculate the ef-
ficiency score we first convert each metric into
units of performance, by calculating the aver-
age marginal rate of substitution (AMRS) for
each metric M (i.e., throughput and memory).
AMRS(M,perf) tells us the rate at which model
creators, as a group, are trading off M for a
one-point increase in perf while keeping utility
constant. For example, if AMRS of “memory
saved” with respect to accuracy were 0.5 GB,
then each GB of memory saved would on av-
erage be worth 2 points of accuracy. Dividing
M by AMRS(M,perf) converts it to units of
performance. Details on how one can calculate
AMRS(M,perf) can be found in Appendix A.1.
For a model xi, Efficiency(xi) is then defined as :

Efficiency(xi) =
∑

M

wM ∗ M(xi)

AMRS(M, perf)

9Ma et al. (2021) additionally consider fairness and robustness,
both of which are highly contextual and difficult to define
in the context of multilingual models at present. Hence, we
focus on model aspects that are objectively measurable.

where we choose wperf = 0.5, wthroughput = 0.25
and wmemory = 0.25 as default weights. In prac-
tice, these weights can be adjusted based on user
requirements and existing constraints.

4 Egalitarian Annotation Budget
Allocation

Model development involves not just the design
of an architecture or training but also data annota-
tion. The proposed dimensions thus cannot only be
used to assess models but can also inform how data
should be annotated across many languages. As
fine-tuning on a few labeled examples in the target
language has shown to improve zero-shot transfer
performance, we study how to allocate an annota-
tion budget across a number of source languages S
in order to optimize for inclusion and equity across
a set of target languages T. Previous work em-
ploys a feature-based approach to select a single
source language to maximize performance on a
target language (Lin et al., 2019) or labels exam-
ples across all source languages equally (Debnath
et al., 2021). We propose a fully computational ap-
proach for modeling the space of source and target
languages for a multi-source multi-target language
setting. This is done by empirically estimating
performance of language t ϵ T on a held-out set
when fine-tuned on x labeled instances of language
s ϵ S, ∀(s, t) pairs, which follows a power-law dis-
tribution (Rosenfeld et al., 2019). We now seek to
find the optimal allocation {xs : s ∈ S} subject to∑

s∈S xs ≤ X (details in Appendix A.5).
We follow a simple greedy approach to solve

this constrained optimization problem as shown
in Table 10. Specifically, at each step we allocate
a sample to the source language conferring the
highest marginal gain to all target languages, which
is quantified by the summation of the increase in
the global metric and the reduction in Gini.10 At
present, we assign equal weight to each metric but
this can be changed according to user preferences.

5 Experiments

5.1 Experimental setup
Languages We base our case study on the 22
scheduled languages of India spoken by 97% of its
population. We also include English, since it has a
sizeable population of 128.5M speakers (Table 1).
10Future work may consider more complex approaches that

consider language relatedness based on work on transfer
relationship learning (Zamir et al., 2018; Song et al., 2019).
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Language as bn brx doi en gu hi kn kok ks mai ml
Speakers (in M) 23.6 107.4 1.6 2.8 128.5 60.3 691.6 58.8 2.6 7 14.3 35.6

Language mni mr ne or pa sa sat sd ta te ur -
Speakers (in M) 2.2 99.1 3.4 42.6 36.1 3.1 7.7 3.1 76.6 94.5 63.2 -

Table 1: The number of speakers (in millions) for each of the 22 scheduled languages and English. We take the sum
total of first, second and third language speakers for each language.

Task Dataset Test Langs. HP

NER WikiAnn (Pan et al.,
2017; Rahimi et al.,
2019)

bn, en, gu,
hi, ml, mr,
pa, ta, te, ur

97.6

POS Universal Dependen-
cies v2.6 (Nivre et al.,
2018)

en, hi, mr, ta,
te, ur

97

NLI XNLI (Conneau et al.,
2018)

en, hi, ur 92.8

QA XQuAD (Artetxe
et al., 2019); TyDiQA-
GoldP (Clark et al.,
2020)

bn, en, hi, te 91.2;
90.1

Table 2: Finetuning Tasks and Datasets. HP denotes
the human performance for each task. For QA, HP is
91.2 F1 for XQuAD and 90.1 F1 for TyDiQA.

Language NER POS NLI QA

English 20,000 21,261 392,702 88,602
Hindi 5,000 13,305 392,702 (-tran) 88,602 (-tran)

Table 3: Number of training instances for English and
Hindi. (-tran) denotes that the English fine-tuning set
has been translated to Hindi.

Tasks We select tasks from the XTREME (Hu
et al., 2020) benchmark. Dataset details and the hu-
man performance (HP) for each task can be found
in Table 2. For each task, we only evaluate on IN
language test sets.

Models Model selection is motivated by two key
factors that we wish to explore in our study: i)
general vs region-specific choices; and ii) model
efficiency. We choose IndicBERT (Kakwani et al.,
2020), MuRIL (Khanuja et al., 2021) and XLM-R
(Conneau et al., 2020), the first two being region-
specific models and the third being a state-of-the-
art model trained on 100+ languages. We consider
both the base and large versions for MuRIL and
XLM-R. IndicBERT follows the ALBERT architec-
ture (Lan et al., 2019) and is hence much smaller
than the base versions of both models. IndicBERT
is trained on 11, MuRIL on 16, and XLM-R on 15
IN languages (details in Appendix A.2).

Task Model
Baseline Diversity Equity Inclusion

F1/Accuracy ↑ Mτ=1 ↑ Gini Coeff. ↓ Efficiency ↑

NER
MuRILbase 77.6 69.6 0.59 69.1
XLM-Rlarge 68.0 61.2 0.60 44.4
MuRILlarge 77.7 68.2 0.59 63.1

POS
MuRILbase 75.0 54.7 0.76 52.5
XLM-Rlarge 79.2 60.3 0.75 48.0
MuRILlarge 77.3 58.6 0.76 51.8

NLI
MuRILbase 74.1 45.5 0.88 58.7
XLM-Rlarge 78.7 46.6 0.88 57.3
MuRILlarge 78.6 47.4 0.88 57.8

QA
MuRILbase 76.1 53.8 0.83 77.8
XLM-Rlarge 75.7 56.6 0.83 76.3
MuRILlarge 77.7 57.9 0.83 75.7

Table 4: DEI Results compared to baseline F1/accuracy
performance. Here, we compare models’ accuracy/F1
performances (usually reported as the evaluation metric)
to their DEI metrics. We observe that while perfor-
mances may significantly vary, DEI metrics (especially
equity) don’t change as much, indicating that multilin-
gual models make the rich "richer" to increase average
performance but may not be moving towards being truly
multilingual and equitable across languages. More dis-
cussions in Section 5.2.

Fine-tuning We initially fine-tune the selected
models using training data in English (EN) given
the availability of labeled data across tasks. How-
ever, past works highlight that this choice is sub-
optimal and one can obtain better performance
by transferring from closely related languages
(Lauscher et al., 2020; Cotterell and Heigold, 2017;
Dong et al., 2015; Turc et al., 2021). To examine
this effect in our case study, we additionally fine-
tune models on Hindi (HI) because i) 15 out of 22
languages belong to the same language family as
HI (Indo-Aryan); ii) we have training data avail-
able for all tasks in HI11; and iii) HI has the highest
speaker population, which may lead to higher de-
mographic utility and is a future-safe choice to ob-
tain annotations for any task. Table 3 summarizes
training data statistics for EN and HI.

11Training sets for NLI and QA have been machine-translated
from English, which has been shown to perform similar to
human-generated train sets (Turc et al., 2021).
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Metric Train Lang. Model NER POS NLI QA Average

Mτ=1 ↑
English

MuRILbase 69.6 54.7 45.5 53.8 55.9
XLM-Rlarge 61.2 60.3 46.6 56.6 56.2
MuRILlarge 68.2 58.6 47.4 57.9 58.0

(Diversity)
Hindi

MuRILbase 75.1 67.3 46.8 54.7 61.0
XLM-Rlarge 74.4 66.8 49.4 53.2 60.9
MuRILlarge 74.8 66.5 49.2 54.6 61.3

Gini Coeff. ↓
English

MuRILbase 0.59 0.76 0.88 0.83 0.76
XLM-Rlarge 0.6 0.75 0.88 0.83 0.77
MuRILlarge 0.59 0.76 0.88 0.83 0.77

(Equity)
Hindi

MuRILbase 0.59 0.75 0.87 0.83 0.76
XLM-Rlarge 0.59 0.76 0.88 0.83 0.77
MuRILlarge 0.59 0.75 0.87 0.83 0.76

Efficiency ↑
English

MuRILbase 69.1 52.5 58.7 77.8 64.5
XLM-Rlarge 44.4 48 57.3 76.3 56.5
MuRILlarge 63.1 51.8 57.8 75.7 62.1

(Inclusion)
Hindi

MuRILbase 69.8 56.2 59.8 77.3 65.8
XLM-Rlarge 49.2 49.0 59.1 75.1 58.1
MuRILlarge 65.2 53.7 58.8 75.0 63.2

Table 5: Region-specific fine-tuning results. Note that
the metrics are computed considering all 23 languages
as detailed in Section 5.1. Region-specific fine-tuning
helps, but disparities along DEI axes persist. More
discussions in Section 5.2.

5.2 Zero-shot transfer results

How do DEI metrics compare to baseline
standard performance metrics (F1/Accuracy)?
We report results of the best-performing models
in Table 4. While average performance is similar
across tasks, there are stark differences in DEI
metrics. The diversity metric helps discern whether
the change in performance is more skewed towards
languages with a relatively high or low speaker
population. For example, for POS, MuRILbase and
XLMRlarge have a 4.2% difference in performance
but a 5.9% difference in Mτ=1. This indicates that
the difference is more pronounced for languages
with large speaker populations. Similarly, for NLI,
the difference in performance and Mτ=1 is 4.6%
and 1.1% respectively, which also highlights a
lack of test data to quantify larger differences in
diversity. With regards to equity, we observe that
even though major differences exist compared
to average performance, the Gini coefficient
remains relatively unchanged, indicating that while
overall performance has increased, the disparity in
performance amongst languages has not yet been
addressed by any model. Regarding efficiency or
inclusion, while MuRILlarge beats MuRILbase in
performance, MuRILbase is more efficient to use,
across all tasks.

Where are we today w.r.t DEI of NLP technol-
ogy? We report results of best-performing mod-
els (fine-tuned on EN and HI) in Table 5 (de-
tailed results with XLMRbase and IndicBERT in
Table 13). Overall, the diversity metric is highest

Metric Budget Model
Fine-tuning Strategy

English Hindi Egalitarian Greedy

Mτ=1 ↑

1,000
XLM-Rlarge 54.0 66.2 65.4 65.3
MuRILlarge 60.4 71.3 74.1 73.6

5,000
XLM-Rlarge 59.4 74.4 75.4 75.7
MuRILlarge 65.4 74.8 78.2 78.3

10,000
XLM-Rlarge 59.0 - 77.6 77.6
MuRILlarge 70.5 - 79.6 79.9

Gini Coeff. ↓

1,000
XLM-Rlarge 0.6 0.6 0.59 0.59
MuRILlarge 0.6 0.6 0.58 0.58

5,000
XLM-Rlarge 0.6 0.59 0.59 0.59
MuRILlarge 0.59 0.59 0.58 0.58

10,000
XLM-Rlarge 0.61 - 0.59 0.59
MuRILlarge 0.59 - 0.58 0.58

Table 6: Performance on NER under different annota-
tion budgets. We observe that the greedy approach (§4)
performs best across all metrics. Note that the HI train
set has 5,000 examples only. Details in §5.3.

for MuRILlarge, when fine-tuned on HI. We also
observe that the diversity metric increases with
region-specific choices, both in pre-training and
fine-tuning. The Gini coefficient remains relatively
high at around 0.76 even for the best models, which
highlights the disparity in performance even among
languages within a single region.12 With regards
to efficiency, averaging across languages and tasks,
MuRILbase performs best.

What is the way forward? Overall, the absolute
values of the global metric and the Gini coeffi-
cient indicate that there lies great potential in both
increasing the utility of our models and making
them more equitable. Since model performances
partially reflect the amount of raw data used in
pre-training (Lauscher et al., 2020), creating eq-
uitable unlabeled data resources would alleviate
these issues. However, this is an ambitious under-
taking that is extremely resource intensive and can
certainly not be achieved for 6500 languages in
the near future. We thus investigate how limited
amounts of data can be used to maximally improve
utility and equity during fine-tuning.

5.3 Few-shot results

Problem Formulation For few-shot fine-
tuning, we focus on NER where sufficient
labeled training data for seven IN languages
is available. We employ the source languages
S = {bn, en, hi,ml,mr, ta,ur} and seek to
optimize metrics on the target languages
T = {bn, en, gu, hi,ml,mr, pa, ta, te,ur}. In

12For comparison, for OECD countries from 2008–2009, the
Gini coefficient on income for the entire population ranged
between 0.34 and 0.53 while the Gini coefficient for the
entire world has been estimated to be between 0.61 and 0.68
(Hillebrand et al., 2009; Klugman and Nations, 2010).
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each setting, we have a limited annotation budget,
which we can divide among the source languages.
We compare against several competitive baselines:
i) using only examples from EN or HI respectively;
ii) distributing the annotation budget in an egali-
tarian (uniform) way across all source languages
(Debnath et al., 2021); and iii) our novel greedy
approach proposed in §4. For the greedy approach,
we illustrate the best-fit curves for each (s, t) pair
in Appendix A.5 (Table 11).

Results We show the results under various anno-
tation budgets in Table 6. Overall, we find that our
method yields a higher global metric under most
budgets (5 of 6 cases) and also yields a lower Gini
coefficient under all budget schemes. The optimal
allocations for each budget are shown in Table 12.
As we can see, the greedy algorithm converges to a
solution that is close to uniform. This provides fur-
ther evidence for the benefits of an egalitarian dis-
tribution of annotation budget in order to maximize
performance across all languages as the expected
marginal gain for languages that have been under-
represented during training will be highest. Both
the egalitarian and greedy approaches significantly
outperform fine-tuning on EN or HI. For instance,
our greedy approach outperforms fine-tuning on
10,000 EN examples by 1–3% with a budget of
only 1,000 examples.

6 Discussion

Building evaluation datasets Having uncovered
the linguistic inequity and exclusivity of current
NLP technologies, we seek to identify practical
measures we can take in order to mitigate these
biases. As a first step, it is paramount to build rep-
resentative evaluation sets for all languages as they
are required to accurately measure diversity and
equity. Out of the 23 languages in our case study,
most do not have evaluation data across tasks de-
spite holding official recognition and being spoken
by 97% of the population. In light of the bene-
fits of an egalitarian data distribution during few-
shot learning, we also recommend the collection
of small amounts of data across many languages
for training, in order to maximize marginal gain.
These datasets should be collected at the grass-
roots level, involving the community they need to
serve to capture culturally relevant phenomenon.
A prime example of this is the Masakhane organi-
sation13 steering efforts towards data collection in
13https://www.masakhane.io/

African languages, involving the local community.
Incentivizing rural, low-income workers to provide
for such data also serves as a viable source of sup-
plementary income, and does not degrade dataset
quality (Abraham et al., 2020).

Trading off multilinguality and regionality
From a modeling perspective, multilingual pre-
trained models have been instrumental to NLP
systems supporting an unprecedented number of
languages, because of their zero-shot transfer ca-
pabilities. However, while these are a big step
towards linguistic inclusion, they are subject to
limitations such as highly skewed pre-training dis-
tributions and limited transfer to under-represented
languages (Hu et al., 2020; Lauscher et al., 2020), a
bias towards the source language, and sub-optimal
tokenization (Wang et al., 2021). A way to com-
bat these issues is to make region-specific choices,
both in pre-training and fine-tuning, as observed
in §5.2. Localizing the problem also enables one
to incorporate linguistic expertise (Nzeyimana and
Niyongabo Rubungo, 2022) and provide support
for culturally relevant phenomena like transliter-
ation or code-mixing. Despite this, we must be
wary of excessive fragmentation in pre-training as
it leads to higher maintenance costs and there is
a possibility that these benefits will be overcome
with advances in compute and model capacity in
the near future. Optimal fine-tuning however, is
promising, as evidenced in §5.3 where we observe
significant gains in moving away from the zero-
shot paradigm.

7 Conclusion

We have proposed a framework for the evaluation
of NLP technology based on diversity, equity, and
inclusion and proposed the Gini coefficient to quan-
tify equity. We have assessed to what extent several
modeling and data choices affect the value NLP
technology confers to speakers of Indian languages.
We have also proposed an algorithmic method for
resource allocation for task-specific fine-tuning,
which outperforms a purely egalitarian distribu-
tion of data labeling. Finally, we highlight the
importance of building representative evaluation
sets from the grass-roots level to enable tracking
progress, and discuss how even with the best mod-
eling strategies, we have a long road ahead in build-
ing inclusive, equitable systems. While region-
specific choices help to a certain extent, building a
single global multilingual model without compro-
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mising on the three metrics is something we should
move towards in the future. We sincerely hope
our evaluation paradigm aids in tracking the com-
munity’s progress in building linguistically diverse
technologies.

Limitations

We do not consider the inequalities that may ex-
ist within subgroups in a language given the lack
of fine-grained evaluation data. In multilingual
countries like India, each language is composed of
several dialects (Hindi alone is composed of 58 di-
alects (Chandramouli, 2011)). As disparities exist
along multiple axes such as caste, gender, religion
and so on (Sambasivan et al., 2021), it is imperative
to go beyond the language level. We only consider
pre-trained language models for our experiments
given their massive language coverage and zero-
shot transfer capabilities. There have been efforts
to build language-specific, task-specific models
which we do not include in our study. Our greedy
data allocation method is a strong baseline that out-
performs standard approaches such as selecting a
single source language or uniform selection. It can
be improved by incorporating notions of language
similarity, which requires more complex methods
(Song et al., 2019).
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A Appendix

A.1 Efficiency
We report the throughput and memory for each
model and task in Table 7. For NLI, POS and NER,
the maximum sequence length is 128 and for QA
it’s 384.

As detailed in Section 3.3, we need to calcu-
late the AMRS for each metric M (throughput and
memory saved), to calculate the efficiency score.
As described in (Ma et al., 2021), each model has
properties (or goods) that inform its utility. Here,
these goods are throughput, memory saved, and
performance. A model is a point in this space of
goods and an indifference curve is a set of points
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that provide the same utility (for different values of
these properties). These curves are monotonically
negatively sloped, i.e., for a model with higher ac-
curacy to be on the same curve as one with a lower
accuracy, it will have to use up more memory or
have lower throughput. For a given indifference
curve, the rate at which this trade-off is made, is
called the marginal rate of substitution (MRS).

To calculate MRS, and consequently AMRS,
(Ma et al., 2021) make two key assump-
tions: i) All models lie on the same in-
difference curve; ii) if M(xi) > M(xi+1) and
perf(xi) > perf(xi+1), then there exists a model
⟨perf(xi+1),M(xi) + (M(xi)−M(xi+1))⟩ on the
same indifference curve as xi. For our case study,
we believe that assuming regional and global mod-
els to lie on the same indifference curve would
be inaccurate, since models with the same capacity
(size and architecture) have been trained on a differ-
ent set of languages. In the case of (Ma et al., 2021),
they only consider models pre-trained on English.
Here, we assume that regional models (trained on
15-17 languages) would be strictly better on all di-
mensions and hence lie on a different indifference
curve as compared to global models (trained on
100+ languages). Hence, we assume IndicBERT,
MuRILbase and MuRILlarge to lie on one indiffer-
ence curve and XLMRbase and XLMRlarge to lie
on another. The second assumption holds in our
case as well.

For a model xi, Efficiency(xi), MRS, and
AMRS are given by :

Efficiency(xi) =
∑

M

wM ∗ M(xi)

AMRS(M,perf)

AMRS(M,perf) = MRS

MRS =

{∣∣∣∣∣
M(xi)−M(xi+1)

perf(xi)− perf(xi+1)

∣∣∣∣∣1 ≤ i < n

}

A.2 Pre-training Languages
In Section 5.1, we choose IndicBERT, MuRIL and
XLM-R as pre-trained multilingual models to base
our analysis upon. IndicBERT is trained on 11 IN
languages that include Assamese (as), Bengali (bn),
Gujarati (gu), Hindi (hi), Kannada (kn), Malayalam
(ml), Marathi (mr), Oriya (or), Punjabi (pa), Tamil
(ta), Telugu (te). XLM-R includes 15 IN languages
in training with the addition of Nepali (ne), Sanskrit
(sa), Sindhi (sd) and Urdu (ur) over IndicBERT
and MuRIL is trained on 16 IN languages, with the
addition of Kashmiri (ks) over XLM-R.

Model Metric NER PoS NLI QA

IndicBERT
Memory Saved 15.9GB

Throughput 22.6 20.2 22.9 10.5
Perf (EN) 41.3 71.6 69.7 52.4

XLM-Rbase

Memory Saved 15GB
Throughput 24.4 23.2 26.4 14.9
Perf (EN) 61.7 82.2 77.1 72.1

MuRILbase

Memory Saved 15.1GB
Throughput 23.8 23.1 26.2 15.7
Perf (EN) 74.9 80.3 78.9 77.5

XLM-Rlarge

Memory Saved 13.9GB
Throughput 9.4 10.0 10.4 4.1
Perf (EN) 64.6 83.7 81.8 81.4

MuRILlarge

Memory Saved 14.1GB
Throughput 9.8 9.9 10.5 4.2
Perf (EN) 71.8 83.4 82.8 83.0

AMRS (Regional)
Throughput 1.7 3.4 2.2 1.1

Memory 0.1 0.3 0.2 0.1

AMRS (Global)
Throughput 3.7 7.1 3.3 1.2

Memory 0.3 0.5 0.2 0.1

Table 7: The throughput is given by the number of
instances processed per second by the fine-tuned models
on CPU.

A.3 Gini Coefficient
The Gini coefficient is mathematically computed
based on the Lorenz curve, which plots the rela-
tion between population size and the cumulative
income earned by that population as shown in Fig-
ure 1. To plot the Lorenz curve, individuals are
sorted in increasing order of income (x-axis) and
their cumulative wealth is plotted on the y-axis. In
essence, a point (x, y) indicates that the bottom
x% of the population holds y amount of wealth.
The line at 45 degrees represents perfect equality
of incomes. The Gini coefficient G is then calcu-
lated as the ratio of the area that lies between the
line of equality and the Lorenz curve (A in Figure
1), over the total area under the line of equality
(A+ B in Figure 1). If G = 0, every person in
the population receives an equal percentage of in-
come and if G = 1, a single person receives 100%
of the income. Since the axes scale from 0 to 1,
A+ B = 0.5. In essence, if the Lorenz curve is
represented by the function Y = L(X) then G can
be given as:

G =
A

A+ B
= 2A = 1− 2B = 1− 2

∫ 1

0

L(X)dX

For a population with values yi, i = 1 ... n, that are
indexed in non-decreasing order (yi ≤ yi+1):

G =
1

n

(
n + 1− 2

∑n
i=1(n + 1− i)yi∑n

i=1 yi

)

For comparison, for OECD countries from 2008–
2009, the Gini coefficient on income for the entire

1774



Metric Train Lang. Model NER PoS NLI QA Average

Gini Coeff. ↓

English

IndicBERT 0.155 0.107 0.051 0.091 0.101
XLM-Rbase 0.095 0.067 0.058 0.048 0.067
MuRILbase 0.047 0.086 0.048 0.03 0.052
XLM-Rlarge 0.084 0.06 0.049 0.026 0.055
MuRILlarge 0.051 0.086 0.051 0.027 0.057

Hindi

IndicBERT 0.173 0.073 0.004 0.041 0.073
XLM-Rbase 0.067 0.037 0.039 0.046 0.047
MuRILbase 0.062 0.032 0.036 0.012 0.035
XLM-Rlarge 0.057 0.04 0.033 0.029 0.04
MuRILlarge 0.065 0.057 0.033 0.014 0.042

Table 8: Gini Coefficient for all models calculated only
across languages having evaluation sets for each task.

Task
Batch Learning No. of Warmup Max. seq.
Size Rate Epochs Ratio Length

NER 32 2e-5 10 0.1 128
POS 32 2e-5 10 0.1 128
NLI 64 2e-5 3 0.1 128
QA 32 3e-5 2 0.1 384

Table 9: Hyperparameter details for each fine-tuning
task

population ranged between 0.34 and 0.53. The Gini
coefficient on income for the entire world has been
estimated to be between 0.61 and 0.68 (Hillebrand
et al., 2009; Klugman and Nations, 2010). In our
experiments on Indian languages, state-of-the-art
models achieve an average Gini coefficient of 0.77,
which highlights the disparity in performance even
among languages within a single region.

As mentioned in Section 5.2, calculating the Gini
coefficient across all 23 languages doesn’t reflect
the dispersion in performances across languages for
which we have test sets. To compare between base-
lines, we additionally report the Gini coefficient
evaluated only across those languages for which
we have test sets as shown in Table 8. We observe
that region-specific choices (MuRILbase fine-tuned
on HI) lead to the lowest value, similar to what we
observe with the global metric.

A.4 Fine-tuning Details

We fine-tune all models using the hyperparameters
mentioned in Table 9 for each task and model con-
sistently throughout the paper. We make use of the
XTREME codebase14 to finetune these models us-
ing a NVIDIA A100 GPU. We make an exception
for IndicBERT when fine-tuning on NER, where
we fine-tune for 15 epochs instead of 10, to reach
convergence.

A.5 Budget Allocation

In Section 4, we describe an empirical budget allo-
cation scheme for fine-tuning of pre-trained models

14https://github.com/google-research/xtreme

that can jointly optimize on our proposed metrics.
We follow a greedy approach to solve this prob-
lem, as shown in Table 10. In this paper, we solve
this for one task, namely NER, but the methodol-
ogy proposed is generally extensible to any task
and combination of languages since it is purely
empirical. We select seven source languages for
which we have enough training data and fine-tune
MuRILlarge and XLM-Rlarge for each of these
source languages independently, for two epochs.
During fine-tuning, we evaluate on each of our
target languages after every 10 steps of training.
Given our batch-size is 32, we gather data-points
at a step size of 320 training instances. Conse-
quently, say we have 5000 training instances for
a source language, we gather approximately 30
sample points for that source language and any tar-
get language. Using these, we plot best-fit curves
for ∀(s, t) pairs using the scipy.optimize.curve_fit
package. Given a function, f(x), curve_fit uses non-
linear least squares to fit f(x) to the observed data-
points. We define f(x)s,t = as,t + bs,t ∗ x−cs,t , be-
cause the relation between model performance
and training data follows a power-law distribution
(Rosenfeld et al., 2019). The best-fit curves for
each source and target pair are shown in Table
11. The visualizations of the best-fit curves for
a sample training language (Tamil) are shown in
Figures 2, 3. Having determined constant values
{as,t,bs,t, cs,t} ∀(s, t) independently, we proceed
with finding the optimal allocation using the algo-
rithm described in Table 10. We solve this for three
different budgets, i.e., 1,000; 5,000 and 10,000 and
the optimal allocations for each budget are shown
in Table 12.
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Greedy Algorithm
1: Input: Fine-tuning labeled data ∀s ϵ S. A fixed budget of labeled data instances X
2: Initialize: Set the total number of allocated instances to zero, i.e., allocated = 0, the number of

allocated samples for each source language to zero, i.e. samples[s] = 0∀s ϵ S, the current global metric
for each source language to -inf, i.e. current_gm[s] = −inf∀s ϵ S and the current gini coefficient for
each source language to 1, i.e. current_gini[s] = 1∀s ϵ S

3: while allocated < X do
4: highest_marginal_gain = 0
5: for s in S do
6: gms =

∑
tϵT d

(τ)
t ∗ (as,t + bs,t ∗ (samples[s] + 1)−cs,t)

7: ginis = F[abs(performances,t(samples[s] + 1))∀t ϵ T]
8: ∆gms = gms − current_gm[s]
9: ∆ginis = current_gini[s]− ginis
10: marginal_gain = α ∗∆gms + β ∗∆ginis
9: if marginal_gain > highest_marginal_gain do
10: highest_marginal_gain = marginal_gain
11: best_language = s
12: best_gm = gms

13: best_gini = ginis
14: end if
15: end for
16: samples[s] = samples[s] + 1
17: allocated = allocated + 1
18: current_gm[best_language] = best_gm
19: current_gini[best_language] = best_gini
20: end while

Table 10: A greedy approach to solve the constrained optimization for the budget allocation problem as described in
Appendix A.5.

Figure 2: Best-fit curves for XLM-R when fine-tuned on Tamil for each of the target languages.

Figure 3: Best-fit curves for MuRIL when fine-tuned on Tamil for each of the target languages.
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Test Train
MuRIL XLM-R

Edge Weight R-squared Edge Weight R-squared

bn

bn 1.2− 29.0 ∗ x−0.5 0.88 1.3− 11.5 ∗ x−0.4 0.93
en 1.2− 11.4 ∗ x−0.4 0.78 1.1− 8.1 ∗ x−0.3 0.89
hi 1.4− 9.4 ∗ x−0.3 0.85 1.1− 8.1 ∗ x−0.3 0.92
ml 1.2− 10.7 ∗ x−0.3 0.86 2.3− 4.8 ∗ x−0.1 0.92
mr 1.9− 6.5 ∗ x−0.2 0.88 1.9− 4.6 ∗ x−0.1 0.93
ta 1.2− 10.5 ∗ x−0.3 0.83 1.3− 6.1 ∗ x−0.2 0.90
ur 1.0− 13.5 ∗ x−0.4 0.88 1.0− 6.5 ∗ x−0.3 0.91

en

bn 0.9− 4.4 ∗ x−0.3 0.86 1.0− 5.2 ∗ x−0.3 0.90
en 1.1− 16.4 ∗ x−0.4 0.82 1.1− 14.6 ∗ x−0.4 0.85
hi 1.0− 5.6 ∗ x−0.3 0.88 1.0− 7.6 ∗ x−0.3 0.90
ml 1.9− 3.5 ∗ x−0.1 0.88 1.0− 6.1 ∗ x−0.3 0.86
mr 1.2− 3.2 ∗ x−0.2 0.84 1.2− 4.8 ∗ x−0.2 0.91
ta 0.8− 4.2 ∗ x−0.3 0.76 0.7− 6.9 ∗ x−0.4 0.76
ur - 0.88 1.0− 3.9 ∗ x−0.2 0.90

gu

bn 2.6− 4.3 ∗ x−0.1 0.93 1.0− 4.8 ∗ x−0.3 0.88
en 0.9− 5.5 ∗ x−0.3 0.80 0.7− 11.3 ∗ x−0.5 0.78
hi 1.2− 5.4 ∗ x−0.2 0.87 0.7− 13.3 ∗ x−0.5 0.86
ml 1.2− 7.8 ∗ x−0.3 0.85 1.6− 4.3 ∗ x−0.2 0.90
mr 1.1− 6.4 ∗ x−0.3 0.87 1.1− 6.0 ∗ x−0.3 0.85
ta 0.8− 11.3 ∗ x−0.4 0.78 1.0− 7.6 ∗ x−0.3 0.84
ur 1.4− 3.4 ∗ x−0.1 0.91 1.6− 3.2 ∗ x−0.1 0.89

hi

bn 0.9− 17.2 ∗ x−0.5 0.88 1.2− 4.8 ∗ x−0.2 0.94
en 1.0− 11.7 ∗ x−0.4 0.83 0.9− 8.6 ∗ x−0.4 0.88
hi 1.1− 23.9 ∗ x−0.5 0.90 1.3− 9.5 ∗ x−0.3 0.92
ml 1.1− 12.4 ∗ x−0.4 0.85 1.4− 5.7 ∗ x−0.2 0.90
mr 1.1− 17.6 ∗ x−0.5 0.85 2.0− 5.3 ∗ x−0.2 0.93
ta 1.0− 19.1 ∗ x−0.5 0.78 1.1− 8.7 ∗ x−0.3 0.88
ur 1.0− 8.0 ∗ x−0.3 0.92 1.2− 4.6 ∗ x−0.2 0.94

ml

bn 1.1− 5.9 ∗ x−0.3 0.88 1.3− 4.3 ∗ x−0.2 0.92
en 1.2− 5.0 ∗ x−0.2 0.85 0.8− 7.6 ∗ x−0.3 0.85
hi 2.1− 5.0 ∗ x−0.1 0.86 1.0− 10.8 ∗ x−0.4 0.90
ml 1.1− 21.4 ∗ x−0.5 0.83 1.3− 7.8 ∗ x−0.3 0.90
mr 1.5− 7.3 ∗ x−0.3 0.86 1.4− 6.4 ∗ x−0.3 0.91
ta 1.1− 12.8 ∗ x−0.4 0.81 1.1− 10.0 ∗ x−0.4 0.86
ur 1.1− 5.1 ∗ x−0.2 0.89 1.1− 4.7 ∗ x−0.2 0.89

mr

bn 1.0− 9.3 ∗ x−0.4 0.88 1.1− 5.1 ∗ x−0.2 0.89
en 0.9− 8.8 ∗ x−0.3 0.81 0.9− 7.6 ∗ x−0.3 0.87
hi 1.3− 10.3 ∗ x−0.3 0.86 1.1− 9.6 ∗ x−0.4 0.91
ml 1.1− 15.2 ∗ x−0.4 0.83 1.3− 6.4 ∗ x−0.3 0.90
mr 1.2− 21.9 ∗ x−0.5 0.86 1.6− 7.6 ∗ x−0.3 0.92
ta 1.1− 17.3 ∗ x−0.4 0.79 1.1− 10.7 ∗ x−0.4 0.85
ur 1.2− 5.2 ∗ x−0.2 0.92 1.3− 4.2 ∗ x−0.2 0.91

pa

bn 1.0− 6.4 ∗ x−0.3 0.86 0.9− 4.2 ∗ x−0.3 0.82
en 1.2− 4.0 ∗ x−0.2 0.84 1.1− 2.9 ∗ x−0.2 0.85
hi 1.9− 5.9 ∗ x−0.2 0.84 1.8− 4.0 ∗ x−0.1 0.93
ml 1.0− 9.7 ∗ x−0.4 0.83 1.2− 3.6 ∗ x−0.2 0.87
mr 2.7− 5.3 ∗ x−0.1 0.88 1.3− 3.9 ∗ x−0.2 0.84
ta 1.4− 6.3 ∗ x−0.2 0.86 1.0− 4.7 ∗ x−0.2 0.84
ur 1.2− 4.5 ∗ x−0.2 0.92 0.8− 4.2 ∗ x−0.3 0.87

ta

bn 1.1− 7.2 ∗ x−0.3 0.89 1.0− 4.6 ∗ x−0.2 0.93
en 1.0− 7.9 ∗ x−0.3 0.83 0.8− 6.7 ∗ x−0.3 0.86
hi 1.4− 6.7 ∗ x−0.3 0.90 1.2− 5.9 ∗ x−0.3 0.92
ml 1.0− 14.1 ∗ x−0.4 0.83 1.3− 4.7 ∗ x−0.2 0.92
mr 1.3− 9.7 ∗ x−0.3 0.86 2.7− 5.0 ∗ x−0.1 0.94
ta 1.1− 19.7 ∗ x−0.5 0.79 1.2− 9.4 ∗ x−0.3 0.88
ur 1.2− 5.0 ∗ x−0.2 0.92 1.5− 3.4 ∗ x−0.1 0.92

te

bn 1.1− 5.4 ∗ x−0.3 0.90 0.8− 4.7 ∗ x−0.3 0.88
en 0.8− 10.1 ∗ x−0.4 0.79 0.7− 6.7 ∗ x−0.4 0.83
hi 1.0− 9.7 ∗ x−0.4 0.91 0.9− 7.3 ∗ x−0.3 0.86
ml 1.0− 15.3 ∗ x−0.4 0.83 1.1− 5.6 ∗ x−0.3 0.88
mr 1.0− 12.5 ∗ x−0.4 0.87 1.7− 4.5 ∗ x−0.2 0.93
ta 1.0− 16.5 ∗ x−0.4 0.81 1.0− 7.7 ∗ x−0.3 0.87
ur 1.4− 4.2 ∗ x−0.2 0.91 1.4− 3.1 ∗ x−0.1 0.90

ur

bn 0.6− 11.3 ∗ x−0.5 0.86 - 0.76
en 1.1− 5.5 ∗ x−0.2 0.83 1.0− 5.9 ∗ x−0.3 0.81
hi 2.6− 4.8 ∗ x−0.1 0.85 - 0.96
ml 1.1− 8.2 ∗ x−0.3 0.80 2.5− 5.0 ∗ x−0.1 0.85
mr 4.3− 6.1 ∗ x−0.1 0.87 5.2− 7.0 ∗ x−0.0 0.91
ta 1.1− 5.0 ∗ x−0.2 0.83 1.2− 5.2 ∗ x−0.2 0.83
ur 1.0− 42.2 ∗ x−0.6 0.87 1.1− 20.9 ∗ x−0.5 0.90

Table 11: Power-law equations empirically determined
for each source and target pair. Please refer to Section
A.5 for more details

Metric Budget Model bn en hi ml mr ta ur

GMτ=0

1,000
XLM-Rlarge 128 157 145 134 133 163 140
MuRILlarge 137 135 134 158 142 159 135

5,000
XLM-Rlarge 704 792 693 794 696 628 693
MuRILlarge 743 644 749 783 745 852 484

10,000
XLM-Rlarge 1322 1349 1400 1481 1457 1479 1512
MuRILlarge 1302 1468 1379 1421 1425 1448 1557

GMτ=1

1,000
XLM-Rlarge 126 160 159 134 129 163 129
MuRILlarge 142 136 152 143 148 157 122

5,000
XLM-Rlarge 710 805 713 803 707 639 623
MuRILlarge 744 644 761 772 747 848 484

10,000
XLM-Rlarge 1308 1363 1456 1465 1459 1471 1478
MuRILlarge 1308 1488 1396 1406 1416 1441 1545

Table 12: Optimal allocations under different budgets.
Please refer to Section A.5 for more details

Metric Train Lang. Model NER POS NLI QA Average

Mτ=0 ↑

English

IndicBERT 16.5 16.1 6.5 5.3 11.1
XLM-Rbase 27.0 21.4 10.3 13.8 18.1
MuRILbase 33.4 20.7 10.5 14.9 19.9
XLM-Rlarge 28.7 21.9 11.0 15.6 19.3
MuRILlarge 31.5 21.3 11.1 15.9 20.0

(Linguistic)

Hindi

IndicBERT 23.7 17.6 6.6 4.8 13.2
XLM-Rbase 30.4 22.4 10.6 13.5 19.2
MuRILbase 34.0 22.7 10.8 14.7 20.6
XLM-Rlarge 33.0 22.4 11.5 15.2 20.5
MuRILlarge 33.4 22.4 11.4 15.7 20.7

Mτ=1 ↑

English

IndicBERT 39.2 44.2 36.6 28.4 37.1
XLM-Rbase 59.2 58.1 43.6 49.9 52.7
MuRILbase 69.6 54.7 45.5 53.8 55.9
XLM-Rlarge 61.2 60.3 46.6 56.6 56.2
MuRILlarge 68.2 58.6 47.4 57.9 58.0

(Demographic)

Hindi

IndicBERT 61.0 61.6 39.8 29.9 48.1
XLM-Rbase 70.3 66.7 45.8 50.6 58.3
MuRILbase 75.1 67.3 46.8 54.7 61.0
XLM-Rlarge 74.4 66.8 49.4 53.2 60.9
MuRILlarge 74.8 66.5 49.2 54.6 61.3

Gini Coeff. ↓

English

IndicBERT 0.67 0.81 0.92 0.84 0.81
XLM-Rbase 0.61 0.76 0.88 0.83 0.77
MuRILbase 0.59 0.76 0.88 0.83 0.76
XLM-Rlarge 0.6 0.75 0.88 0.83 0.77
MuRILlarge 0.59 0.76 0.88 0.83 0.77

Hindi

IndicBERT 0.68 0.8 0.91 0.83 0.81
XLM-Rbase 0.59 0.75 0.87 0.83 0.76
MuRILbase 0.59 0.75 0.87 0.83 0.76
XLM-Rlarge 0.59 0.76 0.88 0.83 0.77
MuRILlarge 0.59 0.75 0.87 0.83 0.76

Efficiency ↑

English

IndicBERT 53.6 50.2 56.7 66.0 56.6
XLM-Rbase 44.4 48.1 57.4 76.7 56.7
MuRILbase 69.1 52.5 58.7 77.8 64.5
XLM-Rlarge 44.4 48 57.3 76.3 56.5
MuRILlarge 63.1 51.8 57.8 75.7 62.1

Hindi

IndicBERT 62.5 53.7 56.9 64.5 59.4
XLM-Rbase 48.3 50.0 58.5 75.9 58.2
MuRILbase 69.8 56.2 59.8 77.3 65.8
XLM-Rlarge 49.2 49.0 59.1 75.1 58.1
MuRILlarge 65.2 53.7 58.8 75.0 63.2

Table 13: Zero-shot fine-tuning results. Overall,
MuRILlarge scores highest on the utility metrics, the
Gini coefficient is relatively high across all models
and both MuRILbase and MuRILlarge are, on average,
equal with regards to efficiency. Note that the metrics
are computed considering all 23 languages as detailed
in Section 5.1. More discussions in Section 5.2.
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