@inproceedings{rajaby-faghihi-etal-2023-role,
title = "The Role of Semantic Parsing in Understanding Procedural Text",
author = "Rajaby Faghihi, Hossein and
Kordjamshidi, Parisa and
Teng, Choh Man and
Allen, James",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Findings of the Association for Computational Linguistics: EACL 2023",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-eacl.137",
doi = "10.18653/v1/2023.findings-eacl.137",
pages = "1837--1849",
abstract = "In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help reasoning over the states of involved entities in a procedural text. We consider a deep semantic parser (TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework. Second, we integrate semantic parsing information into state-of-the-art neural models to conduct procedural reasoning. Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rajaby-faghihi-etal-2023-role">
<titleInfo>
<title>The Role of Semantic Parsing in Understanding Procedural Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hossein</namePart>
<namePart type="family">Rajaby Faghihi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parisa</namePart>
<namePart type="family">Kordjamshidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Choh</namePart>
<namePart type="given">Man</namePart>
<namePart type="family">Teng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Allen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help reasoning over the states of involved entities in a procedural text. We consider a deep semantic parser (TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework. Second, we integrate semantic parsing information into state-of-the-art neural models to conduct procedural reasoning. Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.</abstract>
<identifier type="citekey">rajaby-faghihi-etal-2023-role</identifier>
<identifier type="doi">10.18653/v1/2023.findings-eacl.137</identifier>
<location>
<url>https://aclanthology.org/2023.findings-eacl.137</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>1837</start>
<end>1849</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Role of Semantic Parsing in Understanding Procedural Text
%A Rajaby Faghihi, Hossein
%A Kordjamshidi, Parisa
%A Teng, Choh Man
%A Allen, James
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Findings of the Association for Computational Linguistics: EACL 2023
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F rajaby-faghihi-etal-2023-role
%X In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help reasoning over the states of involved entities in a procedural text. We consider a deep semantic parser (TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework. Second, we integrate semantic parsing information into state-of-the-art neural models to conduct procedural reasoning. Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.
%R 10.18653/v1/2023.findings-eacl.137
%U https://aclanthology.org/2023.findings-eacl.137
%U https://doi.org/10.18653/v1/2023.findings-eacl.137
%P 1837-1849
Markdown (Informal)
[The Role of Semantic Parsing in Understanding Procedural Text](https://aclanthology.org/2023.findings-eacl.137) (Rajaby Faghihi et al., Findings 2023)
ACL