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Abstract

The large number of parameters of some promi-
nent language models, such as BERT, makes
their fine-tuning on downstream tasks compu-
tationally intensive and energy hungry. Previ-
ously researchers were focused on lower bit-
width integer data types for the forward propa-
gation of language models to save memory and
computation. As for the backward propagation,
however, only 16-bit floating-point data type
has been used for the fine-tuning of BERT. In
this work, we use integer arithmetic for both
forward and back propagation in the fine-tuning
of BERT. We study the effects of varying the
integer bit-width on the model’s metric perfor-
mance. Our integer fine-tuning uses integer
arithmetic to perform forward propagation and
gradient computation of linear, layer-norm, and
embedding layers of BERT. We fine-tune BERT
using our integer training method on SQuAD
v1.1 and SQuAD v2., and GLUE benchmark.
We demonstrate that metric performance of
fine-tuning 16-bit integer BERT matches both
16-bit and 32-bit floating-point baselines. Fur-
thermore, using the faster and more memory
efficient 8-bit integer data type, integer fine-
tuning of BERT loses an average of 3.1 points
compared to the FP32 baseline.

1 Introduction

Over the past few years, integration of attention
mechanisms into deep learning models led to the
creation of transformer based models. BERT (De-
vlin et al., 2018) is a prominent transformer based
language model which has shown state-of-the-art
performance in natural language processing (NLP)
tasks.

BERT requires high memory and computational
resources due to its large number of parameters.
Having large number of parameters incurs chal-
lenges for inference, training, and also fine-tuning
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Figure 1: Energy consumption and latency of 1 billion
operations using various data types, measured on an
Intel® Xeon® CPU E5-2698 v4.

of this model. Moreover, the training phase i.e. pre-
training and fine-tuning, involves more operations
compared to the inference. More specifically, the
training phase includes gradient computation and
weight update that make the training more compu-
tationally intensive.

One method of reducing the computational com-
plexity of deep learning models is to represent their
parameters and activations in low bit-width data
types. This reduces the memory footprint of the
model and enables more efficient computations.
For instance, Figure 1 shows that low-bit integer
data types have higher throughput and better energy
consumption compared to floating-point.

Previous research attempts at integer quantiza-
tion of transformer based language models were
only focused on forward propagation and the gradi-
ent computation were kept in 32-bit floating-point
data type (FP32) (Bhandare et al., 2019; Kim et al.,
2021; Zafrir et al., 2019).

Furthermore, earlier efforts for using low bit-
width data types for gradient computation of trans-
former based language models has only been lim-
ited to 16-bit floating-point (FP16). This method,
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known as mixed precision training (Micikevicius
et al., 2017), uses FP16 data type to represent
weights, activations and gradients while using FP32
for the weight update.

Here we present an integer fine-tuning method
for transformer based language models such as
BERT. Unlike previous works, we use integer data
types for both forward propagation and gradient
computation during the fine-tuning of BERT. More-
over, we use the dynamic fixed-point format to
represent floating-point numbers as integers.

Our integer mapping strategy can be used along-
side floating-point numbers in fine-tuning and in-
ference similar to mixed precision training. In our
proposed strategy, the arithmetic of all the compute
intensive layers for both forward and back propaga-
tion are performed using integer arithmetic while
other components of the model, such as nonlinear
functions and the weight updates are kept in FP32.
We use integer versions of compute intensive lay-
ers such as linear, normalization (layer-norm), and
embedding layers.

We study the effect of various bit-widths of the
integer input activation and show that increasing
the bit-width of the fixed-point mapping function
improves the convergence behaviour of the model.
This enables us to find the minimum bit-width re-
quired for integer fine-tuning of BERT.

Our fine-tuning experiments show that 16-bit
integer BERT is able to match the metric perfor-
mance of mixed precision FP16 and FP32 methods.

We also further reduce the bit-widths and show
that integer fine-tuning of BERT with 8-bit integer
weights and 12-bit integer activations has a score
drop of 3.1 compared to the original performance.

To summarize, this paper makes the following
contributions:

• Integer fine-tuning of transformer based lan-
guage models that uses integer arithmetic for
both the forward and back propagation of
compute intensive layers such as linear, layer-
norm, and embedding. To the best of our
knowledge, this is the first time that integer
data type is used for back propagation of pre-
trained language models.

• Analyzing the effect of changing the bit-width
of dynamic fixed-point format on the conver-
gence of fine-tuning. Remark 3 discusses that
the convergence behaviour of our integer fine-
tuning is directly related to the variance of dy-

namic fixed-point mapping and is controlled
by the bit-width.

• We show that fine-tuning BERT using 16-
bit integer numbers is able to outperform the
FP16 mixed precision fine-tuning method.

The rest of this paper is structured as follows.
Section 2 briefly discusses previous works in which
low bit-width data types are used for inference and
training of deep learning models. Section 3 pro-
vides details of our integer fine-tuning method, in-
cluding the representation mapping functions and
integer-only layers. The convergence behaviour
of the dynamic fixed-point mapping is studied in
Section 4 by providing empirical observations and
theoretical analysis. The fine-tuning experiments
on various integer and floating-point setups are pre-
sented in Section 5. Finally, Section 6 concludes
the ideas proposed in this work.

2 Related Works

In this section we discuss the previous works that
use low bit-width data types in transformer based
language models. These works could be catego-
rized into two major groups. In the first group,
called low-bit inference, the low bit-width data
types are used only in the forward propagation
phase to improve computational complexity and
reduce memory usage during the inference. In the
second group, also known as low-bit training, lower
bit-width data types are used for both the forward
and back propagation phases.

2.1 Low-bit Inference

Previous research on low-bit inference quantize the
model parameters and activations to speed up the
forward propagation. This category is itself divided
into quantization-aware training (QAT) and post-
training quantization (PTQ) methods.

In QAT, quantization is performed during train-
ing, allowing the model parameters to adapt to the
quantization noise. QAT relies on high-precision
FP32 gradients to train the model and adapt it to
the quantization noise.

For instance, (Zafrir et al., 2019) proposed
Q8BERT which quantizes the inference compu-
tations of all linear and embedding layers of BERT
to 8-bit integers and updates the quantization scale
with a moving average. Similarly, (Shen et al.,
2020) suggested Q-BERT which requires the com-
putation of hessian matrix for each group of param-
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eters to be used in a mixed precision fine-tuning
with different bit-widths. (Kim et al., 2021) pro-
posed I-BERT that uses a uniform quantization
scheme to quantize input activations and weights
of various components of BERT. In I-BERT, the
quantization scaling factors are computed based on
the distribution of the training data.

Unlike QAT that performs quantization of in-
ference operations during training, Post-Training
Quantization (PTQ) methods apply quantization
to the parameters when the training is completed.
Thus, they require extra calibration or parameter
tuning to adapt the model to the quantized parame-
ters.

For instance, (Bhandare et al., 2019) quantized
the matrix multiplications of the original trans-
former architecture from (Vaswani et al., 2017) to
8-bit integer data type. Moreover, the quantization
is done only for the forward propagation and re-
quires extra calibration using validation data to tune
the boundaries of the quantization function. (Zadeh
et al., 2020) introduced GOBO which compresses
the fine-tuned weights of BERT by grouping them
into two categories of Gaussian and outlier. The
outlier weights are kept in FP32, while the Gaus-
sian weights are quantized to lower bits. For lower
bit-width regimes, TernaryBERT and BinaryBERT
are able to push the quantization to 2 and 1 bits
respectively (Zhang et al., 2020a; Bai et al., 2020).
They both rely on methods such as data augmenta-
tion and knowledge distillation to adapt the model
to the low-bit weights.

2.2 Low-bit Training

Research on low-bit training try to perform both
the forward propagation and gradient computation
in low-bit arithmetic. Using low precision number
formats for gradients reduces the model’s ability to
adapt the parameters to the quantization noise, but
increases the throughput and reduces the memory
footprint.

FP16 mixed precision training (Micikevicius
et al., 2017) is a common method currently for
low-bit fine-tuning of transformer based language
models. This method uses FP16 data type in both
forward propagation and gradient computation,
while using FP32 for the weight update. Unlike
FP16 mixed precision training, our work uses dy-
namic fixed-point format which allows for multiple
choices of bit-width for the data type. We show that
our 16-bit integer fine-tuning method outperforms

FP16 mixed precision training in terms of metric
score.

Using integer data types in the training of deep
learning models has been previously studied for
the computer vision tasks. For instance, (Zhang
et al., 2020b) quantized the input activations, gradi-
ents and parameters of the linear layers for various
convolutional neural networks (CNN). Similarly,
(Zhao et al., 2021) adapted the quantization pa-
rameters by detecting the distribution of the gra-
dients in the channel dimension. In both these
works the quantization error is measured during
training and is used to adjust the quantization scale,
whereas our method does not require any informa-
tion about distribution of data or gradients. (Zhu
et al., 2020) applied a quantization scheme to train
CNN architectures with “direction sensitive gradi-
ent clipping” and learning rate scaling to control
the quantization error of gradients. Our integer
fine-tuning method does not require gradient clip-
ping and can follow the same loss trajectory as
the floating-point baseline with the same hyper-
parameters. Our proposed method improves upon
(Ghaffari et al., 2022) which uses dynamic fixed-
point format for integer training of deep learning
models. Unlike (Ghaffari et al., 2022), our work
studies various bit-widths for both weights and ac-
tivations to find the minimum bit-width required
for fine-tuning BERT. Furthermore, we study in-
teger training method on large language models
where low-bit quantization is known to be a chal-
lenging task (Bondarenko et al., 2021). To the best
of our knowledge, this is the first time where inte-
ger numbers are used for the back propagation of
transformer based language models.

3 Methodology

3.1 Representation Mapping

We use the dynamic fixed-point format
(Williamson, 1991) to map the floating-point
numbers to integer data type. This format, also
known as block floating-point, maps floating-point
numbers to blocks of integer numbers, with
each block having its unique scale. For more
information on various number formats refer to
Appendix A.

We use a linear fixed-point mapping function
to map floating-point numbers to integer numbers.
The linear fixed-point mapping converts a floating-
point tensor F to a tensor of integers and a single
scale factor.

1914



Li
ne

ar
 F

ix
ed

-p
oi

nt
M

ap
pi

ng
 

Float 
Parameter

Integer 
Input Activation

Input Activation
Scale

Float 
Input Activation

Integer 
Parameter

Matrix
Multiplication N

on
-li

ne
ar

 In
ve

rs
e

M
ap

pi
ng

 

Output

Parameter 
Scale Add 

U
np

ac
k 

Fl
oa

tin
g-

po
in

t 

Float Tensor

Sign

Mantissa

Exponent Tensor Scale

Signed b-bit
Integer Tensor

b-bit
Rounding 

maximum 

Figure 2: Forward propagation operations in an integer-only linear layer. Green boxes use integer arithmetic and red
boxes use floating-point data type. Here, the integer output is generated using an integer matrix multiplication and
the output scale is generated by a single add operation. The bottom panel shows the linear fixed-point mapping for
the input tensors, that are the input activation and the parameter tensor in this figure.

The integers are obtained by rounding the
floating-point mantissas. The scale is the maximum
of the floating-point exponents of F. The bottom
section of Figure 2 shows the internal operations
of the linear fixed-point mapping.

To map the fixed-point numbers to floating-point,
a non-linear inverse mapping function is used. The
inverse mapping converts integer numbers into nor-
malized floating-point mantissas and packs each
integer with its corresponding scale into a floating-
point number.

Details of the representation mapping functions
are provided in (Ghaffari et al., 2022). Our method-
ology differs in that it includes various bit-widths
for both weights and activations for the fine-tuning
of transformer based language models. We exploit
this mapping strategy to explore various bit-widths
for weights and activations in order to find the min-
imum bit-width for fine-tuning the model.

3.2 Integer Fine-tuning

Our method uses integer arithmetic for weights,
activations and gradients, while the weight update
is kept in FP32. Moreover, our proposed BERT
setups use integer-only versions for all the linear,
layer-norm and embedding layers in which internal
operations are performed with integer arithmetic.

3.2.1 Linear Layer
Figure 2 depicts a high-level view of forward prop-
agation operations of the integer-only linear layer.
All the parameters and activations of the layer are

first mapped to dynamic fixed-point using the linear
fixed-point mapping function. In the case of linear
layer, the integer parameters and input activations
are then sent to an integer matrix multiplication
function to generate the integer output. If needed,
the integer output could be mapped back to floating-
point to be used by other layers of the model using
the non-linear inverse mapping.

For back propagation, the gradients of the param-
eters and input activations are also computed using
integer arithmetic. Using integer matrix multipli-
cation, the output gradients are multiplied by input
activations and parameters to compute the gradi-
ents. Since the weight update is performed in FP32,
the integer gradients and their scales are passed to
the non-linear inverse mapping to be mapped to
FP32.

3.2.2 Layer-norm
The layer normalization or layer-norm performs
the following operation on its input X (Ba et al.,
2016):

γ
X − µ√
σ2 + ϵ

+ β. (1)

Here γ and β are the weight and bias parameters,
and σ and µ are input standard deviation and mean
respectively. For the forward propagation of inte-
ger layer-norm we map X to dynamic fixed-point
format and compute σ and µ using integer arith-
metic. Note that multiplication to γ and addition
with β are also performed using integer arithmetic.
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Figure 3: F1 score of fine-tuning BERT using b-bit
gradients, and activations on SQuAD v2.0 dataset. For
the 8-bit and 9-bit fixed-point bit-widths, we use 12-bit
input activations.

Moreover, the back propagation also uses integer
arithmetic to compute the gradients for the input,
γ, and β.

3.2.3 Embedding Layer
The embedding layer is a lookup table that stores
embeddings. The layer takes a list of indices as
input and returns the list of corresponding embed-
dings for each index. The integer embedding layer,
handles integer embeddings and needs less mem-
ory footprint to store these values. For the back
propagation, the embedding layer applies the out-
put integer gradients directly to each corresponding
row of the lookup table.

4 Convergence Behaviour of Dynamic
Fixed Point Mapping

4.1 Empirical Observations

Figure 2 shows that the bit-width, b, is controlled by
adjusting the number of rounded bits in the round-
ing function. Here we study the effect of changing
the integer bit-width on the metric performance of
the model.

The motivation of varying the bit-width of the dy-
namic fixed-point is to control the variance induced
by the linear fixed-point mapping. Our experiments
show that using dynamic fixed-point with a bit-
width of 10 achieves the same performance as the
FP32 fine-tuning method. Figure 3 demonstrates
the F1 score of fine-tuning BERT on SQuAD v2.0
dataset against the fixed-point bit-width. Note that
the fixed-point arithmetic with a bit-width higher
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Figure 4: F1 score of fine-tuning BERT using 8-bit
weights and gradients, with varying input activation
bit-width on SQuAD v2.0 dataset. Note that Remark
3 justifies this experiment using the variance of b-bit
dynamic fixed-point mapping.

than 10 bits is able to closely match the F1 score of
the FP32 baseline, that is indicated by the red line
in the figure. Also note that in our experimental
setup for the 8-bit dynamic fixed-point format, we
use 12-bit input activations to close the F1 score
gap with the FP32 baseline. The reason for using
higher bit-width input activations is that we ob-
served 8-bit activation dramatically reduces the F1
score. Figure 4 shows the effect of input activa-
tion bit-width on the F1 score when the weights
are 8-bit integers. Changing the bit-width of the
input activation from 8 bits to 12 bits significantly
increases the F1 score. Increasing the input activa-
tion bit-width beyond 12 bits has a negligible effect
on the F1 score, confirming that 12 bits is the mini-
mum required bit-width of the input activations for
this application with 8-bit integer weights.

4.2 Theoretical Analysis

Here, we study the effect of varying dynamic fixed-
point mapping bit-width on the stochastic gradient
descent method. The goal is to show the relation
of weight and activation bit-widths on the conver-
gence of integer training. Let us consider the fol-
lowing simplified weight update equation

wk+1 = wk + η̄ĝ(wk, ξk), (2)

where ĝ(wk, ξk) is the dynamic fixed-point gradi-
ent and η̄ is the learning rate during the fine-tuning
phase. Furthermore, we also consider the following
common assumptions in sequel.
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Assumption 1 (Lipschitz-continuity). The loss
function L(w) is continuously differentiable and its
gradients satisfies the following inequality where
L > 0 is the Lipchitz constant

L(w) ⩽ L(w̄)+∇L(w̄)⊤(w − w̄)

+
1

2
L||w − w̄||22;

∀ w, w̄ ∈ Rd. (3)

Assumption 2. (i) L(wk) is bounded. (ii) b-bit
dynamic fixed-point gradients ĝ(wk, ξk) is an unbi-
ased estimator of the true gradients of the loss func-
tion ∇L(wk)

⊤Eξk{ĝ(wk, ξk)} = ||∇L(wk)||22 =
||Eξk{ĝ(wk, ξk)}||22, and (iii) with the b-bit dy-
namic fixed-point gradients i.e. ĝ(wk, ξk), there
exist scalars M ⩾ 0 , MV ⩾ 0, M q ⩾ 0 and
M q

V ⩾ 0 such that for all iterations of SGD

Vξk{ĝ(wk, ξk)}
⩽ M +M q + (MV +M q

V )||∇L(wk)||22.

Where M q and M q
V denote the added variance of

b-bit dynamic fixed-point mapping on the true gra-
dient variance. Also note that in order for Assump-
tion 2 (i) to hold true, we use stochastic rounding
for back propagation.

Suppose Assumption 1 and Assumption 2 are
true, then inequality (4) follows from (Ghaffari
et al., 2022, Remark 2)

Eξk{L(wk+1)} − L(wk)

⩽ −(1− 1

2
η̄L(MG +M q

G))η̄||∇L(wk)||22

+
1

2
η̄2L(M +M q),

with MG := 1 +MV and M q
G := 1 +M q

V ,
(4)

which shows the effect of added variance of fixed
point mapping, i.e. M q

V and M q, on each step of
the optimizer.

Remark 1. In inequality (4), the first term,
−(1− 1

2 η̄L(MG +M q
G))η̄||∇L(wk)||22 contribute

to decreasing the loss L while the second term,
1
2 η̄

2L(M +M q), prevents it. Also note that when
M q and M q

G are increased, they negatively affect
the descent of the loss L. This means for a good
convergence behaviour, representation mapping

variance bounds, i.e. M q and M q
G, must be con-

trolled.

Remark 2. For dynamic fixed-point mapping with
b-bit integers, the representation mapping variance
bounds i.e. M q and M q

G, are closely related to the
bit-width b. Here, we study these two constants for
a linear layer. Let us denote Â as the b-bit dynamic
fixed-point version of tensor A and âij as its ijth

element. We can relate âij and aij with an error
term δ such as âij = aij + δAij . For a linear layer
Ŷ = X̂Ŵ, the computation of the b-bit dynamic
fixed-point gradients in the back propagation is

Ĉ =
∂L̂

∂Ŵ
=

∂Ŷ

∂Ŵ

∂L̂

∂Ŷ
= X̂⊤ ∂L̂

∂Ŷ
= X̂⊤Ĝ. (5)

It is of interest to find the relation between Ĉ =
X̂⊤Ĝ in the integer back propagation and the true
gradients C = X⊤G. We can derive the variance
for each element ĉij by expanding the error terms
δ,

V{ĉij} = V

{
N∑

n=1

x̂niĝnj

}

= V

{
N∑

n=1

(xni + δXni)(gnj + δGnj)

}

⩽ V

{
K∑

n=1

xnignj

}

+ σ2
GE{||X⊤

i. ||22}+ σ2
XE{||G.j ||22}

+Nσ2
Xσ2

G

= V{cij}+ σ2
GE{||X⊤

i. ||22}
+ σ2

XE{||G.j ||22}+Nσ2
Xσ2

G.

(6)

In inequality (6), σ2
G = maxi,j(V{δGi,j}) and

σ2
X = maxi,j(V{δXi,j}). Also note ||X⊤

i. ||22 =∑J
j x

2
ji denotes the squared L-2 norm of the ith row

of X⊤ and ||G.j ||22 =
∑I

i g
2
ij denotes the squared

L-2 norm of the jth column of G. Furthermore, by
defining

{
M q := σ2

G(E{||X⊤
i. ||22}+Nσ2

X)

M q
V := σ2

X

(7)

Equation (7) shows that M q depends on variance
of dynamic fixed-point mapping for input activa-
tions and gradients while M q

G only depends on b-bit
dynamic fixed-point gradients variance.
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QQP QNLI MNLI SST-2 STSB RTE MRPC CoLA Average
FP32 91.0/88.0 91.1 84.2 92.5 88.3 63.8 82.5/87.8 57.2 82.6

FP16 AMP 90.9/87.9 91.2 84.1 92.4 88.3 64 82.1/87.7 57.5 82.6
16-bit integer 91.0/88.0 91.2 84.2 92.5 88.3 64.5 82.3/87.6 57.7 82.7
12-bit integer 90.9/88.0 91.2 84.0 92.6 87.9 63.5 81.3/87.4 56.7 82.4
10-bit integer 90.8/87.8 91.0 84.0 92.5 87.5 62.7 78.4/85.8 57.6 81.8
8-bit integer 90.1/86.8 90.8 83.7 92.3 87 61.8 76.8/84.7 55.0 80.9

Table 1: Metric performance of integer fine-tuning of BERT on selected GLUE tasks. The reported metric for QQP
and MRPC is accuracy and F1 score, for QNLI, MNLI, RTE, and SST-2 is accuracy, for STSB is the Pearson-
Spearman correlation, and for CoLA is the Matthews correlation.

Proposition 1. For dynamic fixed-point representa-
tion of tensor Â with b-bit integers, the variance of
error for element i satisfies the following inequality

V{δAi } ⩽ 22(escaleA−b+2). (8)

Proof. Using dynamic fixed-point mapping to b-bit
integers, the error δAi satisfies the following bound

−2escaleA (0.000001)2︸ ︷︷ ︸
b−1

⩽ δAi ⩽ 2escaleA (0.000001)2︸ ︷︷ ︸
b−1

−2escaleA−b+2 ⩽ δAi ⩽ 2escaleA−b+2.
(9)

Thus, the inequality (8) is obtained by using
Popoviciu’s inequality on variances

V{δAi } ⩽ 1

4
(2escaleA−b+2 − (−2escaleA−b+2))2

⩽ 22(escaleA−b+2). (10)

Remark 3. Inequality (8) shows that increasing bit-
width b in dynamic fixed-point mapping reduces
the variance of the error. This confirms our ex-
perimental results on SQuAD v2.0 dataset that for
b > 10, F1 score can match FP32 baseline, see
Figure 3. Also note in equation (7), both M q and
M q

V depend on b-bit dynamic fixed-point mapping
variance of input activation σ2

X. Hence, increas-
ing b for input activations while keeping weights
in 8-bit format must improve the convergence be-
haviour. This phenomenon is also confirmed by
our experimental results on SQuAD v2.0 dataset
demonstrated in Figure 4.

5 Experimental Results

5.1 Experimental Setup
We fine-tuned BERT base on a series of down-
stream tasks to compare the performance of our in-
teger fine-tuning method with FP16 and FP32 fine-
tuning methods. FP16 AMP setup uses NVIDIA’s

SQuAD v1.1 SQuAD v2
FP32 80.5/88.0 70.6/73.8

FP16 AMP 79.9/87.6 70.6/73.9
16-bit integer 80.7/88.0 70.6/73.9
12-bit integer 79.8/87.6 70.5/73.8
10-bit integer 78.4/86.6 69.8/73.2
8-bit integer 75.6/84.5 65.5/69.2

Table 2: Metric performance of fine-tuning BERT on
SQuAD v1.1 and v2.0 datasets. For both datasets the
exact match metrics and F1 scores are reported.

automatic mixed precision1 and the FP32 baseline
is the default implementation from Pytorch.

The model is fine-tuned on selected tasks of
GLUE benchmark (Wang et al., 2018), along with
the Stanford Question Answering Datasets, i.e.
SQuAD v1.1 and SQuAD v2.0 (Rajpurkar et al.,
2016).

All the fine-tuning setups use the same hyper-
parameters and are fine-tuned for the same number
of epochs. Each reported metric is the average
of five runs with five different random seeds to
mitigate the effects of random variation of the re-
sults. The fine-tuning experiments are performed
based on the fine-tuning scripts of the Hugging
Face library (Wolf et al., 2019). For GLUE exper-
iments the fine-tuning is performed for 5 epochs
and the learning rate is set to 2× 10−5. Also, the
per-device fine-tuning batch-size is set to 32. Fine-
tuning BERT on SQuAD datasets is done for 2
epochs and the learning rate is 5 × 10−5 and the
per-device fine-tuning batch-size is 12. All experi-
ments are run on eight NVIDIA V100 GPUs with
32 gigabytes of VRAM.

1https://developer.nvidia.com/automatic-mixed-precision
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Figure 5: Integer fine-tuning loss trajectory of BERT on
SQuAD v2.0 dataset for 2750 iterations.

5.2 Results

The results of fine-tuning BERT base on GLUE
benchmark and SQuAD datasets are presented in
Table 1 and Table 2 respectively. GLUE benchmark
contains a series of downstream tasks, designed to
evaluate a diverse set of language understanding
abilities of NLP models. SQuAD datasets con-
tain a series of text passages accompanied by a
question and the task is to predict the span of the
answer in the passage. Using 16-bit integer data
type, BERT is able to either match or outperform
the FP32 performance for all tasks. The 16-bit inte-
ger BERT also shows similar or better performance
compared to the FP16 mixed precision fine-tuning
method. Further reducing the integer bit-width to 8,
fine-tuning BERT exhibits an average of 1.7 point
drop on GLUE benchmark and 4.5 point drop for
SQuAD datasets. Moreover, our experiments show
that using 10-bit and 12-bit integers has average
score drops of 0.8 and 0.3 points for GLUE tasks,
and 0.8 and 0.2 point for SQuAD datasets respec-
tively.

5.3 Loss Trajectory

Figure 5 shows the loss trajectory of integer fine-
tuning BERT on SQuAD v2.0 dataset using 16-bit
and 8-bit integers, along with FP32 method. The
fine-tuning loss trajectory of BERT using 16-bit
integer closely follows the FP32 loss trajectory. On
the other hand, when fine-tuning with 8-bit integer
parameters and 12-bit integer input activations, the
loss trajectory is slightly shifted, but follows the
same trend of its FP32 counterpart.

6 Conclusion

We proposed an integer fine-tuning method for
transformer based language models using dynamic
fixed-point format. We used dynamic fixed-point
data type to represent parameters, input activations
and gradients in integer values. As a result, our
fine-tuning method uses integer arithmetic for the
forward and back propagation of compute intensive
layers such as linear, layer-norm and embedding
layers of BERT model. Furthermore, we studied
that increasing the bit-width of the dynamic fixed-
point format reduces the variance of the mapping
function and thus, improves the convergence of our
integer fine-tuning method. We conduct fine-tuning
experiments on GLUE benchmark and SQuAD
datasets to compare the metric performance of our
integer BERT with FP16 mixed precision and FP32
fine-tuning methods. Our experiments show that
the 16-bit integer fine-tuning is able to achieve the
same metric performance as the FP16 mixed pre-
cision fine-tuning method. In addition, fine-tuning
BERT with lower bit-width data types, i.e. 8-bit
integer, maintains an average drop of metric score
within 3.1 points of the FP16 setup.

Limitations

Although our integer fine-tuning method uses inte-
ger numbers for compute intensive layers of BERT,
integer support for non-linear layers of BERT, e.g.
softmax and GELU activation, are left for future
work.

We have shown in Figure 1 that the integer data
types are faster for the general case. However, a
direct comparison of the time and memory cost of
our integer fine-tuning method with the FP16 and
FP32 methods is left for future works due to lack
of access to a proper hardware with integer tensor
core support.

Despite the similarities between fine-tuning and
pre-training phases, they differ in key aspects of
training such as dataset size and number of epochs.
The challenges of using integer arithmetic in the
pre-training phase will be studied in the future
work.
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A Data Types

In this section we provide a brief overview of vari-
ous data types mentioned in this work.

Floating-point data type is used to represent dec-
imal fractional numbers. A binary floating-point
number has three components of sign (s), mantissa
(m), and exponent (e). Using these components,
floating-point number x is shown as:

x = (−1)s ×m× 2e−t

where t is the precision and 0 ≤ m ≤ 2t − 1. An-
other way of representing floating-point numbers
is as

x = (−1)s × 2e(
d1
2

+
d1
4

+ . . .+
dt
2t
)
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where di are binary digits of m. For FP32, exponent
and mantissa are 8 and 23 bit integer numbers.

Fixed-point is another data type for representing
fractional numbers. Unlike floating-point numbers
where each mantissa is scaled using its respective
exponent, fixed-point uses a single scale factor for
all the numbers.

We use the dynamic fixed-point data type in our
integer fine-tuning method. Also known as block
floating-point, this format uses a different scale for
each block of numbers to allow for more flexibility.
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