
Findings of the Association for Computational Linguistics: EACL 2023, pages 2181–2191
May 2-6, 2023 ©2023 Association for Computational Linguistics

JobXMLC: EXtreme Multi-Label Classification of Job Skills with Graph
Neural Networks

Nidhi Goyal
IIIT-Delhi

Jushaan Singh Kalra
DTU, Delhi

Charu Sharma
IIIT-Hyderabad

Raghava Mutharaju
IIIT-Delhi

Niharika Sachdeva
InfoEdge India Limited

Ponnurangam Kumaraguru
IIIT-Hyderabad

Abstract

Writing a good job description is an important
step in the online recruitment process to hire
the best candidates. Most recruiters forget to
include some relevant skills in the job descrip-
tion. These missing skills affect the perfor-
mance of recruitment tasks such as job sugges-
tions, job search, candidate recommendations,
etc. Existing approaches are limited to contex-
tual modelling, do not exploit inter-relational
structures like job-job and job-skill relation-
ships, and are not scalable. In this paper, we
exploit these structural relationships using a
graph-based approach. We propose a novel
skill prediction framework called JobXMLC,
which uses graph neural networks with skill
attention to predict missing skills using job
descriptions. JobXMLC enables joint learn-
ing over a job-skill graph consisting of 22.8K
entities (jobs and skills) and 650K relation-
ships. We experiment with real-world recruit-
ment datasets to evaluate our proposed ap-
proach. We train JobXMLC on 20, 298 jobs
and 2, 548 skills within 30 minutes on a sin-
gle GPU machine. JobXMLC outperforms
the state-of-the-art approaches by 6% on pre-
cision and 3% on recall. JobXMLC is 18X
faster for training tasks and up to 634X faster
in skill prediction on benchmark datasets en-
abling JobXMLC to scale up on larger datasets.
We have made our code and dataset public at
https://precog.iiit.ac.in/resources.html.

1 Introduction

Online recruitment platforms such as LinkedIn and
Glassdoor are extensively used to post jobs, find
relevant candidates, and match resumes to the jobs
posted. Recruiters create job positions mentioning
skills, roles, and responsibilities to reach potential
candidates. Among all these required fields, skills
are crucial parameters to determine whether or not
a candidate is suitable for a job position (Mehta
et al., 2013). Recruiters often miss adding rele-
vant and crucial skills required for the job due to

a communication gap between the domain experts
and recruiters. According to statistics, 65% of the
job descriptions (JDs) do not include relevant and
popular skills, and 40% of JDs miss listing 20% or
more explicitly-stated skills in the prose descrip-
tion (Bhola et al., 2020). It reduces the number of
relevant applications for the job posting and affects
the performance of major recruitment tasks such as
job-to-resume matching. Therefore, it is imperative
to recommend such missing skills to improve the
quality of job postings. Figure 1 shows the sample
(fictitious) job posted over the recruitment platform
where some skills are missing from the textual JD.
Prior works (Bhola et al., 2020; VERMEER et al.,
2020) explored missing skill recommendation
task using large-scale pre-trained language mod-
els. Document embedding and Graph-based sys-
tems (Gugnani and Misra, 2020; Kivimäki et al.,
2013) are used for skill extraction and recommen-
dations. However, these approaches have a few
shortcomings- (a) they do not exploit the structural
relationships between jobs and skills across the
whole dataset. For example, assume jobs j1 and j2
share a common skill s1. If there is another skill s2
relevant to j2 and other similar jobs, we can infer
that s2 might also be relevant to j1. Such transitive
cues can be extremely useful for identifying miss-
ing skills. Current deep extreme classifiers (You
et al., 2019; Prabhu and Varma, 2014) find it hard to
model such implicit relationships unless the train-
ing set explicitly contains a pair (j1, s2), (b) they
give equal importance to every skill corresponding
to the job. However, each skill in the skill label
set has different weights based on the frequency of
their occurrence in job descriptions, (c) language
models bring high computational costs at massive
scales as a task not only involves predicting mul-
tiple missing skills but also requires to precisely
organize the most relevant skills specific to the job
posting. Graphs are naturally suitable to make the
relationships explicit such as job-skill networks.

2181

Job Title

Job
description

Required
skills

 Market Analyst

Assist the Manager in sourcing the food industry and in conducting product research and analysis. Facilitate
effective communication between the analytics and user experience teams. Evaluates customers' online
behaviour and provide insights and recommendations for further enhancements to the guest experience.
Strong research, data analysis and communication skills.

communication visualizationtableaudata analysis python

Explicit Skills Implicit Skills

Excel

Figure 1: An example of a fictitious job posted over a recruitment platform. The job description does not include
implicit and job-specific skills such as ‘tableau’, ‘visualization’, ‘python’, and ‘Excel’.

Two nodes (jobs) are likely to have common neigh-
bors (skills) if the jobs have overlapping skills. To
model these structural relationships between nodes
(jobs and skills), a Graph neural network (GNN)
is a well-known architecture for representing the
knowledge and additional information (Wu et al.,
2020). Missing skills applications also face ex-
treme skill label sparsity; using label co-occurrence
alone without graphs yields fractured correlations.
To this end, we propose a framework called
JobXMLC, which uses a GNN with label atten-
tion to jointly model the jobs and skills in the same
space. Through the use of ubiquitous job descrip-
tion data, we aim to predict the missing skills using
collaborative learning of jobs and skills. Therefore,
we model our problem as an Extreme Multi-label
Classification (XMLC) task as there is no existing
dataset with manually-annotated labels from tex-
tual JDs, making it sub-optimal to train a sequence
labeling task. The contributions of this work are
summarized as follows:

• We construct a novel job-skill graph consist-
ing of 22, 844 (jobs and skills) and 650K re-
lationships that allow flexible integration of
textual features and various pre-trained lan-
guage representation models.

• We cast our problem as an XMLC using job-
skill graph and propose JobXMLC compris-
ing of graph neural networks with skill atten-
tion to learn multi-resolution graph neighbor-
hoods with the sampling method.

• We also provide the performance comparison
of JobXMLC, which outperforms by a margin
of 6% from the best baselines.

• JobXMLC is lightweight, up to 18X faster
in training and 634X in predicting than exist-
ing deep learning-based extreme classifiers to

scale up to thousands of labels.

2 Background and Related Work

Recently, several works (Bhola et al., 2020;
Jiechieu and Tsopze, 2021) have been done for
skill prediction using Extreme Multi-label Clas-
sification. XMLC refers to the classification of
text where the number of the set of labels is large,
i.e., thousands or millions. One-vs-All (OVA) is
a well-known method for text classification tasks
with high accuracy (Khandagale et al., 2020). The
OVA approach is computationally efficient for the
XMLC task for modest-sized label sets (up to a few
thousand labels).
These methods are broadly classified as (a) Deep
learning-based models, (b) Graph-based, and (c)
Domain-specific methods.
Deep learning-based methods. Deep learning
models that use powerful text representation ca-
pabilities have also been explored for the XMLC
problems (You et al., 2019; Chang et al., 2019).
XML-CNN (Liu et al., 2017) applies a dynamic
max-pooling scheme and a family of CNN models
to learn text representations. AttentionXML (You
et al., 2019) uses the attentional bidirectional long
short-term memory (BiLSTM) networks to ex-
tract embeddings from raw text inputs. How-
ever, the CNN-based models cannot capture the
most relevant parts of the information on each la-
bel. The RNN-based methods fail to model long-
term dependencies due to vanishing gradients. Re-
search (Bhola et al., 2020) explores the language
models such as ELMo, Transformer and BERT (De-
vlin et al., 2019), and X-BERT (Chang et al., 2019)
for XMLC task. These approaches model input lan-
guage’s syntactic and semantic structure to predict
tokens based on the available contextual informa-
tion. However, such models are computationally
expensive and require a predefined meaning of la-

2182

bels. In addition, the difficulty of scaling to the ex-
treme label space remains in deep learning methods
as the output layer scales linearly with the product
of label size and feature dimension. The research
gaps with deep-extreme classifiers motivate us to
explore alternative approaches and techniques that
do not require explicit label representation or prede-
fined semantic meaning of labels and are scalable
for extensive datasets.
Graph-based approaches. The recent prolifera-
tion of graph neural networks (Wu et al., 2020)
allows using node neighborhoods to learn more
discriminative features collaboratively. Graph-
SAGE (Hamilton et al., 2017) proposed the com-
putation of node representations inductively by re-
cursively aggregating over fixed-sized neighbor-
hoods. Authors (Xu et al., 2018a) proposed the
Graph Isomorphism Network (GIN) with discrimi-
native power equal to that of the WL test. Graph-
SAINT (Zeng et al., 2020), a graph sampling-based
inductive learning method, compute node represen-
tations based on the local graph structure and node
attributes. However, job-skill graph-based collabo-
rative learning at extreme scales is underexplored
for missing skill prediction task.
Domain-specific methods. Research work identi-
fies the skill bases used for analyzing the job mar-
ket, the type of extracted skills (Khaouja et al.,
2021), the skill identification methods, the studied
sector and their granularity. Literature (Xu et al.,
2018b) build a job-skill network to measure the
popularity of the skills by exploring a large corpus
of job postings. Research (Bhola et al., 2020) em-
ploys an Extreme Multi-label Classification method
that utilizes the Transformer model to predict the
required skills from a textual job descriptions.
However, these approaches are computationally ex-
pensive and either predict frequent skills or miss
rare crucial skills for recruiters. To address all the
existing challenges and limitations, we propose
JobXMLC that uses graph neural networks with
skill attention to learn multi-hop job-skill network.
To the best of our knowledge, this work is the first
to exploit GNNs for the job-skill prediction task.

3 Problem Formulation

Consider the set of jobs J = {j1, j2, · · · · · · , ji}.
A job ji ∈ J corresponds to its textual de-
scription and Si is the set of skill labels for the
ith job. The skill set is represented as, Si =
{s1i , s2i , s3i , · · · · · · , ski } ∀ 1 ≤ k ≤ n, where n

refers to total skills that vary differently for each
dataset. The task of JobXMLC is to learn a function
f : J → 2S that maps a job ji ∈ J to its target
skill set Si ∈ S, where S = {S1∪S2∪ ...∪S|J |}.

4 JobXMLC: EXtreme Multi-label
Classification of Job Skills

In this section, we introduce JobXMLC as shown
in Figure 2. The architecture is inspired by the
models proposed in (Saini et al., 2021).
The architecture comprises of three major compo-
nents: 1) Job-skill graph 2) Graph Neural Network
that learns multi-hop embeddings with neighbour-
hood selection approach on the job-skill graph 3)
a scalable mechanism of extreme classifiers to pre-
dict skill labels in cold and warm-start scenarios.

4.1 Module I: Job-skill graph

We first formally define a job-skill graph, which
is usually represented as a tuple G = (V, E),
where V and E are the set of nodes and edges
respectively. Here V consists of jobs belonging to
J and skill set S (See Section 3). We construct an
edge e ∈ E between ji and ski where E ⊂ J × S
iff ski is relevant to ji i.e., ski is a positive label
for ji. Each node v ∈ V, is initialized as a
d-dimensional vector based on its textual features.
We obtain initial embeddings by fine-tuning the
fastText skip-gram model (Bojanowski et al.,
2017) in an unsupervised manner. fastText is a
lightweight embedding model that is well-suited
when the document misses predicate-argument
structure dependencies (Arora et al., 2020). We
also leverage word-level information, including
POS tagging (Kumawat and Jain, 2015) and word
importance (TF-IDF), to parse the long document
according to relevancy and structure. Since all
the tokens present in job descriptions are not
informative, we apply POS tagging to filter out
verbs, adjectives, and adverbs, which are not
indicators of skills in the job description. The
underlying assumption is that skill labels would
be mostly nouns such as ‘java’, ‘python’, etc. We
found out that there are 60% nouns present in
job descriptions. Further, we use an averaging
technique to get the representation for every job.
For each node v, its initial representation is f̂0

v

(with f̂0
v ≡ f̂0

j if the node v is the job j ∈ J and
f̂0
v ≡ f̂0

s if node v is the skill label s ∈ S).

2183

Figure 2: JobXMLC consists of three components: Module I consists of a mechanism to construct a job-skill
graph, and Module II consists of a graph neural network-based architecture that learns embeddings using multi-hop
neighborhoods using a job-skill graph effectively. Module III uses a scalable mechanism of extreme classifiers to
predict missing skills.

4.2 Module II: Multi-hop job-skill graph
neural network

To learn a job-skill graph, the module introduces
the propagation network and neighborhood selec-
tion approach.
Propagation Network. This network captures
higher-order job-skill graph structure using mul-
tiple layers of aggregation, each layer aggregating
information from the previous layer’s node repre-
sentations. Therefore, we utilize Graph Isomor-
phism Network (GIN) (Xu et al., 2018a) encoder
for representations considering its outstanding ex-
pressive capacity and model simplicity. It consists
of a convolution to aggregate information from
a node’s neighbors and a transformation opera-
tion to update the node representation based on
the convolved embeddings (f (k)

v). To avoid over-
smoothing, we utilize the skip connection operation
that gathers information from historical represen-
tations of nodes. We also learn multi-hop repre-
sentations with k-hop (fanouts) neighbors of each
node, where k is a hyperparameter. For instance,
if k=1, the encoder would only consider the im-
mediate neighbors (skills) of each node (job) in
the graph. If k=2, it would consider the neighbors
(jobs) of the neighbors (skills) and so on. Equa-
tion 1 shows the graph neural network layer that
updates the node representation using a weighted
sum of neighboring node features:

f (k)
v = (1 + λk)f

(k−1)
v +

∑

j∈Nv ,j ̸=v

f
(k−1)
j (1)

where Nv be the set of neighboring nodes of an ith

node; f (k)
v be the representation of the vth node

after layer k, and λ is a fixed scalar for layer k.
Equation 2 shows the final embeddings after
transformation:

h(k)v = f (k)
v + g(δ(Rk ∗ g(f (k)

v))) (2)

where g(.) is ReLU activation, δ(.) is batch nor-
malization and Rk is a parameter matrix for the
residual layer.
Neighborhood selection. Instead of considering
all k-hop neighbors of each node, we sampled a
subset of the neighbors at each layer of the network.
The goal of selection is to reduce the computational
cost of the network and ensure that our model is
scalable in dense settings. Therefore, we select the
top l neighbors based on their frequency. Formally,
for every node v ∈ |V|, we accomplish frequency-
based sorting where a set of fanouts [k] neighbors
are sampled for every node to construct V(n).

4.3 Module III: Extreme multi-label
classification

In this module, we discuss skill attention and pre-
diction pipeline for Extreme multi-label classifica-
tion task.
Skill attention. We incorporate label-wise at-
tention for every skill si ∈ [S] and layer k ∈
[K] in the propagation network. We obtain at-
tention weights αk using a softmax operation.
αsk = exp(esk)/

∑
k′∈[K] exp(esk′). Given multi-

resolution embeddings ĥkv , k ∈ [K] for a job de-
scription, when calculating the score for a label
s ∈ [S], first a label-specific embedding is calcu-
lated as given in Equation 3 and then One-vs-all
classifier depicted as C = [c1, c2,, cS] ∈ RJ×S

is used to obtain a score for the skill label as
scores =

〈
cs, ĥ

(s)
〉

.

ĥ(s) =
∑

k∈K
αsk.ĥ

(s) (3)

2184

Element mycareersfuture.sg StackOverflow Jobs
No. of job posts 20, 298 20, 320

of distinct skills 2, 548 275

of skills with 20 or more mentions 1, 209 50

Average skill tags per job post 19.98 2.8

Average token count per job post 162.27 200.8

Maximum token count in a job post 1, 127 800

Table 1: Dataset statistics for mycareersfuture.sg and StackOverflow Jobs.

Prediction pipeline. Initial representations are
used to construct an Approximate Nearest Neigh-
bors graph (ANNS). Suppose a test job appears at
runtime, First, the relationships in the graph are
introduced to its prediction-introduce-edges (See
Table 8) nearest neighbors. These neighbors can
be a part of J or S. New job nodes are first in-
troduced into the graph for the standard cold start
setting, where jobs are not part of the job-skill
graph used for training. Relationships are intro-
duced to the partially revealed skill labels in warm
start settings. This setting is possible when the
recruiter enters some skills before writing the job
description. Then, JobXMLC is used to obtain
multi-resolution embeddings ĥk ∈ [K] for the test
job.
Shortlisting. Since evaluating skill scores for all
skill labels would take Ω(JS) time. To predict
in milliseconds, the prediction time complexity
should not be worse than Θ(J log(S)). Therefore,
we utilize a shortlisted where a set of O(logS) skill
labels are shortlisted that seem most relevant to it.
For a test job description, the label-wise embed-
dings ĥ(s) are created with respect to skill labels
s ∈ S. To create the shortlister, multi-resolution
representations of skill labels are averaged and a
second ANNS graph is created over these averaged
embeddings. We rank the top num_shortlist (See
Table 8) neighbors, based on their cosine similarity,
for shortlisting to form the set S of potential labels
for which label-wise embeddings are calculated.

5 Experimental Setup

5.1 Datasets

We utilize two real-world recruitment datasets,
namely mycareersfuture.sg (Bhola et al., 2020)
and StackOverflow Jobs1 collected from popular
recruitment platforms. These datasets consist of

1https://stackoverflow.com/

over 20, 000 richly-structured job posts with 23
informative fields about the advertisement details
and current status. Table 1 reports the statistics for
recruitment domain datasets. Small-scale datasets
vary from 100 to 300, whereas large-scale ranges
from 300 to millions of labels. Similar scales for
the XMLC task are demonstrated in (Jain et al.,
2019; Liu et al., 2017).
Data Pre-processing. We filtered out job descrip-
tions, job title, required skills corresponding to ev-
ery job posting. From mycareersfuture.sg dataset,
we consider concatenation of ‘roles & responsi-
bilities’ and ‘job requirements’ fields as the ‘job
description’, and ‘required skills’ as the set of tar-
get discrete labels. Similarly, for StackOverflow
Jobs dataset, we consider the ‘job description’ and
‘required skills’ sections. We filtered out the jobs
with either empty or single words in the textual
content. We also perform lower-casing, stopwords
removal, and removal of less important strings such
as ‘available’, ‘requirements’, which are present in
most JDs. StackOverflow Jobs dataset consists of
6M words with 298,729 unique words. We split the
dataset into training, validation and testing datasets
with an 80:10:10 proportion. Similar splits has
been utilized by competitive methods (Bhola et al.,
2020).

5.2 Implementation and Competing Methods

This section will discuss the training details and
baselines.
Training details: We utilize binary cross-entropy
loss and Adam optimizer. We use the drop out layer
after every ReLU layer. We conducted our experi-
ments using the list of hyperparameters reported in
Table 8 and Table 9 (See appendix B) for details.
Baselines: We show the effectiveness of different
aspects of JobXMLC and evaluate our model per-
formance against competitive transformer-based
baselines. These constitute CNN (Kim, 2014),
LSTM (Rocktäschel et al., 2015), BiLSTM (Sun

2185

Model R@5 R@10 R@30 P@5 P@10 P@30
CNN 14.17 23.58 45.34 56.67 47.17 30.23

LSTM† 11.67 18.44 35.02 46.67 36.89 23.34
Bi-LSTM† 13.02 21.37 41.54 52.07 42.75 27.70
Bi-GRU† 13.98 23.43 44.41 55.94 46.87 29.61

BERT +XMLC 15.27 25.96 51.18 61.06 51.92 39.32
RoBERTa+XMLC 16.15 26.52 51.99 60.08 53.85 39.87

BERT +XMLC+CAB 16.72 29.45 58.98 66.87 58.90 41.21
GalaXC 16.31 28.34 54.16 65.25 56.7 36.11

JobXMLC (GraphSaint) 16.23 27.79 53.32 64.93 55.59 35.55
JobXMLC (GraphSAGE) 16.84 29.18 56.89 67.36 58.36 37.93

JobXMLC 18.29 32.33 63.18 73.20 64.66 42.22

Table 2: Results of JobXMLC along with state-of-the-art approaches on mycareersfuture.sg dataset. For RNN-
based models (†), we have limited all model architectures to two layers.

et al., 2017), BiGRU (Halder et al., 2018),
BERT-XMLC (Bhola et al., 2020), RoBERT-
XMLC (VERMEER et al., 2020), GalaXC (Saini
et al., 2021), JobXMLC (GraphSaint) (Hamilton
et al., 2017), and JobXMLC (GraphSAGE) (Hamil-
ton et al., 2017). We discuss transformer-based
approaches, BERT-XMLC (Bhola et al., 2020) en-
codes the words of the job descriptions using a pre-
trained BERT model. The encoding of the [CLS]
token is then used as representation of the job de-
scription. The job representation is passed to a
bottleneck layer (i.e., an added linear layer before
the output layer). The last layer treats every skill as
a binary classification problem, so for each skill it
calculates the probability that the skill is associated
with JD.
State-of-the-art models such as CNN, LSTM, Bi-
GRU, and Bi-LSTM are self-explanatory. We
utilize two neural network layers for all RNN-
based models. GalaXC (Saini et al., 2021) de-
scribes a novel framework for extreme classi-
fication using graph neural networks (GNNs).
GraphSAGE (Hamilton et al., 2017) and Graph-
Saint (Hamilton et al., 2017) encodes the node
information and useful for graphs that have rich
node attribute information for extreme multi-label
classification.

5.3 Evaluation metrics

We utilize Precision@k (P@k), Recall@k (R@k),
Normalized Discounted NDCG@k (N@k),
Mean Reciprocal Rank (MRR), EIM, REIM,
RIIM (Bhola et al., 2020) as evaluation metrics for
the skill prediction task.
Precision@k: includes the proportion of skills in

the top-k skill prediction list that are relevant.
Recall@k: includes the proportion of relevant
skills found in the top-k skill prediction list.
NDCG@k: discounts the true positives that occur
later in the prediction rankings.
MRR: indicates the position (reciprocal) of the
first true positive in the predicted set of skills.
EIM (Explicit Inference Measure): the micro,
instance-based measure of explicit skills predicted
by the model, compared against gold-standard
explicit skills mentioned, for instance.
RIIM (Relative Implicit Inference Measure):
macro, the recall-based measure of implicit skills
predicted by the model, relative to the entire set of
implicit skills.
REIM (Relative Explicit Inference Measure):
macro, recall-based measure of explicit skills
predicted by the model compared to the entire set
of explicit skills.

6 Results and Analysis

Table 2 and Table 3 reports Recall@k and
Precision@k for all state-of-the-art approaches
and JobXMLC on both datasets. Compared to
leading deep extreme classifiers, BERT-XMLC
and RoBERTa-XMLC, JobXMLC is up to 18X
faster to train on a single GPU. Compared to
other baselines, JobXMLC is at least 3% better
than Bi-LSTM (Sun et al., 2017) in R@5, which
helps demonstrate the efficacy of modelling the
sequence by JobXMLC. Further, fastText initial-
ization in JobXMLC is 7-8% better than BERT-
XMLC+CAB (Bhola et al., 2020) in R@5, indicat-
ing that the global relationships improve the model

2186

Model R@5 R@10 R@30 P@5 P@10 P@30
CNN 25.16 39.39 64.80 15.24 11.72 6.36

LSTM† 26.63 40.47 67.89 16.07 11.95 6.65
Bi-LSTM† 41.46 55.27 76.38 23.83 16.12 7.56
Bi-GRU† 46.15 59.01 78.61 26.68 17.23 7.79

BERT +XMLC 35.50 50.95 76.06 20.75 14.99 7.58
RoBERTa +XMLC 36.20 52.23 77.05 21.98 15.09 7.88

BERT +XMLC+CAB 37.20 51.24 78.98 22.18 15.02 8.03
GalaXC 43.27 51.47 67.50 24.23 14.53 6.50

JobXMLC (GraphSaint) 39.16 51.73 73.99 22.28 14.88 7.22
JobXMLC (GraphSAGE) 38.76 52.26 74.19 21.98 14.99 7.23

JobXMLC 47.85 59.26 74.53 26.92 16.94 7.23

Table 3: Results of JobXMLC along with state-of-the-art approaches on StackOverflow Jobs dataset. For RNN-
based models (†), we have limited all model architectures to two layers.

better in addition to local connections through
joint learning. Compared to BERT-XMLC (Bhola
et al., 2020) and RoBERTa (VERMEER et al.,
2020), both utilize transformer-based embeddings
and skill correlation-based features for training,
JobXMLC is 4% better in recall and precision met-
rics. JobXMLC outperforms Graph-based meth-
ods such as GalaXC (Saini et al., 2021) across
all metrics. Table 4 reports NDCG and MRR val-

Model N@5 N@10 N@30 N@50 N@100 MRR
CNN 28.21 40.23 60.60 66.37 71.96 0.77
LSTM 29.27 40.66 59.43 69.61 71.53 0.70
Bi-LSTM 30.32 48.07 44.55 50.30 57.04 0.76
Bi-GRU 30.83 50.52 46.45 52.37 59.15 0.76
BERT-
XMLC

28.05 38.81 57.62 64.68 71.28 0.83

BERT-
XMLC+CAB

29.13 40.74 60.60 67.51 73.74 0.85

GalaXC 32.86 44.51 63.73 70.11 74.77 0.82

JobXMLC 37.91 49.63 67.83 73.81 78.94 0.90

Table 4: Normalized Discounted Cumulative Gain
(NDCG) is represented by N and Mean Reciprocal
Rank (MRR) comparison of JobXMLC along with State-
of-the-art approaches on mycareersfuture.sg dataset.

ues for mycareersfuture.sg dataset. We observe
that JobXMLC outperforms all state-of-the-art ap-
proaches by significant margin of 8% from deep
extreme classifiers.
Inference time: Table 5 presents the results of

JobXMLC and leading deep extreme classifiers like
BERT, ROBERTa which shows that JobXMLC is
18X faster than BERT+XMLC+CAB for myca-
reersfuture.sg dataset.
Analysis on Implicit and Explicit skills: Table 6
shows the Explicit and Implicit Metrics for the skill
prediction task. We are interested in the relevance

and implicitness of the retrieved implicit skills and
false positives. We find the explicit and implicit
skills underline the noisy nature of the skill labels.
For example, ‘machine learning’ and ‘python’ are
clear required (explicit) skills and ‘communication’
comes across as a vast skill. In terms of false pos-
itives, we note that the job description explicitly
mentions ‘good knowledge of python’ as a required
skill (for Data Scientist job). Most relevant skills
are not very distinctive to the job role, causing the
model to mispredict the skill.

7 Ablation Study

Initial embeddings: JobXMLC shortlisting
criteria offered much better recall if we use the
initial fastText embeddings to create shortlists.
We observe that fastText worked best for our
recruitment domain dataset in comparison to
other recent pre-trained language representation
models (See Appendix B) including BERT (Devlin
et al., 2019), DistilBERT (Sanh et al., 2019), and
Paraphrase-mini-LM-L6 (Reimers and Gurevych,
2019). For example, on the mycareersfu-
ture.sg dataset, the recall for the top 100 labels
shortlisted using the initial fastText and BERT
embeddings are around 85.20% and 56.90%,
respectively. Based on an average of 20.61 skills
per job, about 4 skills were derived within the
top 5 and 19 within the top 100 of derived skills.
Warm and Cold Start Scenarios: Table 7 reports
the results in warm-start and cold-start settings
separately. JobXMLC is initialized with fine-tuned
fastText embeddings which achieve P@k, R@k,
and MRR of 72.86, 18.26, and 0.89 respectively in
cold-start scenario. JobXMLC is initialized with

2187

Datasets → mycareersfuture.sg StackOverflow Jobs
Models ↓ TT PT TT PT

BERT+XMLC 5.50 1200 1.63 350
RoBERTa+ XMLC 4.72 1200 1.24 350

BERT+XMLC+CAB 9.20 1200 4.86 350
JobXMLC 0.51 1.89 0.31 1.71

Table 5: Comparison of JobXMLC with stronger baselines. JobXMLC is faster to train than leading Deep Extreme
Classifiers like BERT at training and prediction time. Here TT= Train Time (in hours), PT= Prediction Time (in ms).

Metrics EIM RIIM REIM
BERT+XMLC
+CAB

115.89 64.60 25.73

JobXMLC 121.09 66.36 33.04

Table 6: Comparison of EIM, RIIM, and REIM metrics
on JobXMLC on mycareersfuture.sg dataset.

fine-tuned fastText embeddings which achieve
P@k, R@k, and MRR of 75.76, 22.09, and
0.91 respectively in warm-start scenario. In both
scenarios, the value of k=5. These results show
that partially reveal achieved comparable precision
and relatively higher recall than cold-start settings.

Model P@5 R@5 MRR
JobXMLC
(cold-start)

72.86 18.26 0.89

JobXMLC
(warm-start)

75.76 22.09 0.91

Table 7: Effectiveness of JobXMLC in warm-start and
cold-start scenarios on mycareersfuture.sg dataset.

Qualitative Analysis: We compared the
JobXMLC and analyzed the skills predicted
correctly and incorrectly as shown in Figure 3.
JobXMLC captures the structural relationships
between jobs and skills effectively. JobXMLC pre-
dicts ‘Java’, ‘Software Development’, ‘XML’,

‘JavaScript’, ‘jQuery’, etc. as required skills
whereas BERT-XMLC with CAB predicts ‘Java’,
‘C++’, ‘Linux’, ‘Python’ as skills where more
relevant skills such as ‘JavaScript’ and ‘Web
Applications’ are missed.

8 Discussion

We compare with existing graph-based methods
such as GalaXC (Saini et al., 2021), which are
more well-suited to handle short text inputs for
product queries. JobXMLC leverages word-level

components, including syntactic roles (POS tags)
such as nouns and verbs present in each job and
word importance (TF-IDF), which explains the
long document from the perspective of text rele-
vancy and structure. We believe that JobXMLC is
generalizable across many other applications. Our
raw dataset is relatively preprocessed, simple and
misses predicate-argument structure dependencies.
Therefore, we hypothesize that non-contextual
embeddings such as fastText (having 98.69% of
words from our dataset present in vocabulary)
outperformed BERT as it understands word-level
information. Similar observations are made
by (Arora et al., 2020) for classic embeddings with
competitive (or even slightly better) performance
than contextual embeddings.

9 Conclusion

In this work, we propose a JobXMLC frame-
work, which uses a graph neural network to in-
corporate neighborhood information with the help
of a collaborative graph over jobs and skills.
JobXMLC leverages skill attention mechanism for
more effective extreme classifiers and attends to
multi-resolution representations of jobs and skills.
JobXMLC outperforms leading deep extreme clas-
sifiers on precision and recall metrics by 6% and
3%. JobXMLC also operate in warm and cold-start
scenarios effectively. JobXMLC is 18X faster on
training and 634X faster on predicting than deep
extreme classifiers and can be scaled efficiently to
real-world datasets with thousands of labels. We
believe that JobXMLC can be deployed on large-
scale recruitment platforms for predicting missing
skills using job descriptions.

10 Limitations

We perform experiments on jobs sampled from a
popular Singaporean government job portal and
StackOverflow, which is limited to the English lan-

2188

Job description

Required skills

(Ground truth)

minimum 5 7 years experience information technology software development must 3 4 yeras experience dot
net development experience asp.net c, .net xml experience, language query update etc knowledge pc
networking require dot net developer mnc client singapore typre position long term contract initial degree
information technology require minimum 5 7 years experience information technology software development
must 3 4 years experience dot net development experience asp.net c net xml etcknowledge pc networking
good communication skills

Software
development Javascript.NETjava jQuery XML

BERT-XMLC+CAB

JOBXMLC

Web applications

Software
development

Software
development

java

java .NET Javascript

.NET jQuery

jQuery

XML

XML Web applications

PHP Python C Linux Software engineering

ASP.NET SDLC

ASP.NET SDLC integration

Figure 3: Shows the skills predicted by BERT–XMLC+CAB and JobXMLC where input is job description. Purple
shows correct skill predictions by JobXMLC as compared with required skills (ground truth). Green shows the extra
skills predicted by JobXMLC. Red skills are missed by BERT+XMLC+CAB model as compared with ground truth.

guage. Our approach can handle missing skills
which are part of our skill vocabulary, but it cannot
infer new emerging skills from job descriptions,
i.e., out-of-vocabulary. We will consider domain
knowledge and the popularity of job skills to gen-
eralize our approach for job-candidate mapping
applications for future work. We wish to expand
our work to other recruitment domain applications
with resumes and candidate profiles.

11 Ethical Considerations

The paper investigates the missing skills problem
with the help of a graph-based framework by in-
corporating word-based embeddings that can be
insightful for other researchers in academia and in-
dustry. Any biases present in the dataset or embed-
ding model can creep into the proposed approach.

Acknowledgements

The authors acknowledge the support of the PreCog
Research Group and the Machine Learning Lab at
IIIT-H, the Infosys Center for Artificial Intelligence
(CAI) and the KRaCR Lab at IIIT-Delhi. We also
thank anonymous reviewers and the area chairs for
their detailed and helpful feedback. Special thanks
to Prashant, Saurabh, Anmol Goel, Shivangi, Am-
rit, Dr. Kajal Kansal, and Dr. Siddharth Asthana for
critically reviewing the manuscript and stimulating
discussions.

References
Simran Arora, Avner May, Jian Zhang, and Christo-

pher Ré. 2020. Contextual embeddings: When are
they worth it? In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-

guistics, pages 2650–2663, Online. Association for
Computational Linguistics.

Akshay Bhola, Kishaloy Halder, Animesh Prasad, and
Min-Yen Kan. 2020. Retrieving skills from job de-
scriptions: A language model based extreme multi-
label classification framework. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5832–5842.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming
Yang, and Inderjit Dhillon. 2019. X-bert: extreme
multi-label text classification with using bidirectional
encoder representations from transformers. arXiv
preprint arXiv:1905.02331.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Akshay Gugnani and Hemant Misra. 2020. Implicit
skills extraction using document embedding and its
use in job recommendation. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 13286–13293.

Kishaloy Halder, Lahari Poddar, and Min-Yen Kan.
2018. Cold start thread recommendation as extreme
multi-label classification. In Companion Proceed-
ings of the The Web Conference 2018, pages 1911–
1918.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Himanshu Jain, Venkatesh Balasubramanian, Bhanu
Chunduri, and Manik Varma. 2019. Slice: Scal-
able linear extreme classifiers trained on 100 mil-
lion labels for related searches. In Proceedings of
the Twelfth ACM International Conference on Web
Search and Data Mining, pages 528–536.

2189

https://doi.org/10.18653/v1/2020.acl-main.236
https://doi.org/10.18653/v1/2020.acl-main.236

Kameni Florentin Flambeau Jiechieu and Norbert
Tsopze. 2021. Skills prediction based on multi-label
resume classification using cnn with model predic-
tions explanation. Neural Computing and Applica-
tions, 33:5069–5087.

Sujay Khandagale, Han Xiao, and Rohit Babbar. 2020.
Bonsai: diverse and shallow trees for extreme multi-
label classification. Machine Learning, 109:2099–
2119.

Imane Khaouja, Ismail Kassou, and Mounir Ghogho.
2021. A survey on skill identification from online
job ads. IEEE Access, 9:118134–118153.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Linguis-
tics.

Ilkka Kivimäki, Alexander Panchenko, Adrien Dessy,
Dries Verdegem, Pascal Francq, Hugues Bersini,
and Marco Saerens. 2013. A graph-based approach
to skill extraction from text. In Proceedings of
TextGraphs-8 graph-based methods for natural lan-
guage processing, pages 79–87.

Deepika Kumawat and Vinesh Jain. 2015. Pos tagging
approaches: A comparison. International Journal of
Computer Applications, 118(6).

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim-
ing Yang. 2017. Deep learning for extreme multi-
label text classification. In Proceedings of the 40th
international ACM SIGIR conference on research
and development in information retrieval, pages 115–
124.

Sameep Mehta, Rakesh Pimplikar, Amit Singh, Lav R
Varshney, and Karthik Visweswariah. 2013. Effi-
cient multifaceted screening of job applicants. In
Proceedings of the 16th International Conference on
Extending Database Technology, pages 661–671.

Yashoteja Prabhu and Manik Varma. 2014. Fastxml: A
fast, accurate and stable tree-classifier for extreme
multi-label learning. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 263–272.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Deepak Saini, Arnav Kumar Jain, Kushal Dave, Jian
Jiao, Amit Singh, Ruofei Zhang, and Manik Varma.
2021. Galaxc: Graph neural networks with labelwise
attention for extreme classification. In Proceedings
of the Web Conference 2021, pages 3733–3744.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Chengjie Sun, Yang Liu, Chang’e Jia, Bingquan Liu,
and Lei Lin. 2017. Recognizing text entailment via
bidirectional lstm model with inner-attention. In
International Conference on Intelligent Computing,
pages 448–457. Springer.

NINANDE VERMEER, VERA PROVATOROVA,
DAVID GRAUS, THILINA RAJAPAKSE, and SEPI-
DEH MESBAH. 2020. Using robbert and extreme
multi-label classification to extract implicit and ex-
plicit skills from dutch job descriptions. acm.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A com-
prehensive survey on graph neural networks. IEEE
transactions on neural networks and learning sys-
tems, 32(1):4–24.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2018a. How powerful are graph neural net-
works? arXiv preprint arXiv:1810.00826.

Tong Xu, Hengshu Zhu, Chen Zhu, Pan Li, and Hui
Xiong. 2018b. Measuring the popularity of job skills
in recruitment market: A multi-criteria approach. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. Advances in Neural Information Pro-
cessing Systems, 32.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ra-
jgopal Kannan, and Viktor Prasanna. 2020. Graph-
SAINT: Graph sampling based inductive learning
method. In International Conference on Learning
Representations.

2190

https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS

A Hyper-parameter Details

This section reports the set of hyperparameters used
for experiments conducted in the paper.
1. No. of Epochs: refers to number of epochs for
JobXMLC.
2. num_HN_epochs: number of hard negative
epochs for JobXMLC.
3. learning rate (lr): is the learning rate for
JobXMLC.
4. attention_lr: is the learning rate used by skill
attention.
5. dlr_factor: defines factor by which learning
rate is decayed.
6. batch_size: refers to batch size used during
training of JobXMLC.
7. num_HN_shortlist: refers to number of hard
negative labels to be selected by sampling from
other data points from the same batch.
8. num_shortlist: refers to number of skills sam-
pled by shortlister.
9. prediction_introduce_edges: refers to total
edges that should be introduced to graph at predic-
tion time.
10. fanouts: refers to number of neighbors to sam-
ple for layer k.

Hyperparameter Value
No. of epochs 20

num_HN_epochs 20

learning rate (lr) 0.0003

attention_lr 0.0003

dlr_factor 0.5

batch_size 256

fanouts 5, 5, 5

num_HN_shortlist 500

embedding_type fastText
num_shortlist 1500

prediction_introduce_edges 3

Table 8: Hyper-parameters for mycareersfu-
ture.sg dataset for JobXMLC. fastText refers to
300-dimensional embeddings obtained by fine-tuning
fastText model on job descriptions.

B Evaluation Metrics for different
initializations

This section reports the EIM, RIIM, REIM mea-
sures for Mini-LM (Reimers and Gurevych, 2019)
model initialization. We observe that Mini-LM is

Hyper-parameter Value
No. of epochs 30

num_HN_epochs 20

learning rate (lr) 0.0003

attention_lr 0.0003

dlr_factor 0.5

batch_size 256

fanouts 5, 5, 5

num_HN_shortlist 3

embedding_type fastText
num_shortlist 275

prediction_introduce_edges 3

Table 9: Hyper-parameters for StackOverflow
Jobs dataset for JobXMLC. As number of skill
labels corresponding to job description are less in
StackOverflow Jobs dataset, a lower fanout value gives
better results.

Table 10: EIM, RIIM, REIM measures for
JobXMLC and state-of-the-art approaches using
Mini-LM, BERT and RoBERTa embedding initializa-
tions.

Metrics EIM
(Explicit in-
ference mea-
sure)

RIIM (Relative
implicit infer-
ence measure)

REIM
(Relative ex-
plicit inference
measure)

BERT+XMLC+CAB 115.89 64.60 25.73
JobXMLC(with Mini-LM) 86.45 27.28 17.76
JobXMLC(with BERT) 84.07 25.77 15.59
JobXMLC(with RoBERTa) 86.45 24.12 15.02

a transformer-based model which captures context
well. However, JobXMLC is more benefitted with
global view rather than just local job description
text (context-based) embeddings.

2191

