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Abstract

Large Language Models such as GPT-3 are
well-suited for text prediction tasks, which can
help and delight users during text composition.
LLMs are known to generate ethically inappro-
priate predictions even for seemingly innocu-
ous contexts. Toxicity detection followed by
filtering is a common strategy for mitigating
the harm from such predictions. However, as
we shall argue in this paper, in the context of
text prediction, it is not sufficient to detect and
filter toxic content. One also needs to ensure
factual correctness and group-level fairness of
the predictions; failing to do so can make the
system ineffective and nonsensical at best, and
unfair and detrimental to the users at worst.
We discuss the gaps and challenges of toxic-
ity detection approaches – from blocklist-based
approaches to sophisticated state-of-the-art neu-
ral classifiers – by evaluating them on the text
prediction task for English against a manually
crafted CheckList of harms targeted at different
groups and different levels of severity.

1 Introduction

Large Language Models (LLMs) are powerful, yet
known to generate potentially risky, harmful, of-
fensive texts (Bender et al., 2021; Weidinger et al.,
2021), even when the context is seemingly innocu-
ous (Gehman et al., 2020). While there are several
studies that propose techniques for measurement
and mitigation of biases of LLMs (Raffel et al.,
2020; NLLB Team et al., 2022; Geva et al., 2022;
Dathathri et al., 2019; Schick et al., 2021; Lu et al.,
2022), there are very few that analyze such harms in
context of real-world downstream applications. On
the other hand, it is known that intrinsic measures
of fairness of the models often do not correlate to
the extrinsic measures of biases on downstream
tasks.

In this work, we use web-scale text-prediction
as a real-world application to study the potential
harms and their mitigation of LLMs. Text predic-

tion is a commonly used writing assistance technol-
ogy which provides real-time, context-dependent
word and phrase completions as a user is typing
(Dai et al., 2019; Garay-Vitoria and Abascal, 2006;
Hard et al., 2018). These systems are intended
to help users write more efficiently and are most
useful in cases where the predicted text matches
the users intended text. Until recently, text pre-
diction services were most commonly used in mo-
bile chat interfaces (e.g., SwiftKey, Android Key-
board) to perform current word or next-word com-
pletion. Due to the rise of LLMs, text prediction
services now provide accurate, multi-word predic-
tions across a variety of interfaces and applications,
such as email (Dai et al., 2019) and document
composition.

Text prediction can affect the process and the
product of writing (Bhat et al., 2021; Arnold et al.,
2020) therefore, it can influence users to write
harmful content. Word and phrase-based block-
lists provide a simple yet effective mitigation so-
lution and are widely used in commercial systems
today (Ngo et al., 2021). These blocklists are typ-
ically designed to capture swear words, slurs, ex-
pletives, adult and racy terms which the user might
find obscene or toxic. Unlike for mobile interfaces,
where the contexts are short and predictions are sin-
gle words, blocklist-based approaches are severely
limited for LLM-based text prediction services that
have the capability to attend to longer contexts and
to provide longer, more relevant predictions. Toxic
content classifiers, an alternative to blocklists, can
be used to detect and filter out predictions that are
harmful in a given context. Prior research has pro-
vided publicly available classifiers (Caselli et al.,
2021; Barbieri et al., 2020a; Mathew et al., 2020),
but as we will demonstrate in this work, such clas-
sifiers are not suitable for mitigating harms in text
prediction services. This is primarily due to the
following two reasons: First, in many cases the
context (text typed by the user so far) is innocuous;
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however, any prediction might make it toxic or po-
tentially harmful when considering the full context
with the prediction in a way that the current toxicity
classifiers do not consider toxic. e.g.,

You don’t look like a Mexican
Second, certain factually incorrect predictions
might also be interpreted as potentially harmful
or polarizing, e.g.,

Christians pray to Allah.

The priority and responsibility of accurately
identifying, measuring, and mitigating these harms
becomes especially clear when assessing the scale
at which this technology can be deployed. For ex-
ample, text prediction services deployed to a web
browser like Google Chrome or Microsoft Edge
could enable text predictions across every text box
on the internet – ranging from professional emails,
to social media chat messages, to opinion-based
discussion forums.

In this paper, following the framework of Wei-
dinger et al. (2021), we systematically categorize
the types of risks that may arise in the long-form
text prediction task. Since there are no standard
datasets for measuring harms for the text-prediction
task1, we create a benchmark for English based on
the idea of CheckLists (Ribeiro et al., 2020). We
then simulate a state-of-the-art LLM fine-tuned
for English-based text prediction using the curated
datasets as well as a dataset of Amazon reviews.
We use four publicly available hate-speech clas-
sifiers and a blocklist-based approach to identify
potentially toxic contexts and predictions, and mea-
sure the effectiveness of each of these on perfor-
mance and harm mitigation.

Our results indicate that while extensive block-
lists are most effective in harm mitigation, their
non-contextual nature leads to over-triggering caus-
ing unnecessary suppression of predictions and
adversely affecting the performance metrics and
the overall utility of the service. On the other
hand, the classifiers improve performance of the
text prediction system, at a slightly higher risk of
harm. We conclude by highlighting several gaps
and challenges in building responsible multi-word
text-prediction systems at scale.

1Hate-speech and offensive content benchmarks are not
directly usable for text prediction tasks because not all parts
of a toxic sentence are toxic.

2 Potential Harms of Text-Prediction
Systems

We use the taxonomy of harms proposed by Wei-
dinger et al. (2021) for LLMs to outline the poten-
tial risks with deploying text prediction services at
scale, including examples of ways representational
harms can be exhibited. We are aware that these
are not an exhaustive list of risks.
Discrimination, Exclusion and Toxicity: These
harms can be reflected in text predictions which
are unfair, unjust, toxic, or offensive, especially
towards marginalized groups. Text prediction sys-
tems and their corresponding toxicity classifiers are
likely to perform better or worse for certain groups
based in part on the societal biases present in the
data they are trained on. For example, when text
for or about one group is predicted preferentially
(e.g., the first prediction below) over others:

My favorite country is the United States
————————————————–
My favorite country is the United Kingdom
My favorite country is the UAE

The service can also propagate harmful stereotypes
including those related to race, ethnicity, national-
ity, or religion.

The religion most terrorists follow is Islam
Information Hazards: The risk of private or sensi-
tive information leakage in text prediction is heav-
ily dependent on the data used to train the service
and the ways in which the service is used. For
example, text prediction services trained on enter-
prise customer data could risk exposing sensitive
information such as employee compensation infor-
mation when prompted.

John Doe, a software engineer at Company
A, receives a total compensation of $100,000

Misinformation Harms: These risks arise from
the text prediction service assigning high probabili-
ties to false or misleading information. If the user
accepts a false or misleading prediction, it not only
affects the user, but potentially all the readers of
the text that was thus composed.
Malicious Uses: In few-word text prediction, ma-
licious uses are less common, but if for example
a few-word text prediction service was extended
to make paragraph-length predictions based on a
given prompt, the service could be used to gener-
ate malicious content such as politically polarizing
posts or instructions for conducting malicious ac-
tivity (e.g a misinformation campaign on health-
related topics).
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Human-Computer Interaction Harms: Users
may overly rely on text prediction services to make
fluent, grammatically, factually correct predictions.
Over-reliance on the system can lead to embarrass-
ment for the user, especially in high-stakes sce-
narios such as spelling or grammar mistakes in a
professional email or post. Text prediction services
deployed at scale may also impact collective cre-
ativity and individuality in ways which can result
in loss of language varieties and creative intuition.
Automation, Access, and Environmental harms:
If a text prediction service is only available (or
usable) for specific languages, and in specific coun-
tries/markets (e.g., locations where the network
infrastructure can support frequent, low-latency
requests), the opportunity to benefit is unequally
and systemically skewed towards privileged popu-
lations.

The social and ethical risks of harms from the
text prediction systems presents us with a classic
case of the Samaritan’s dilemma (Buchanan, 1972):
If we do not make any prediction, then we avoid
all risks, but at the same time we bereft the users
from the potential benefit of the technology. Since,
in practice it is nearly impossible to bring down
the risks to zero and yet make useful predictions,
we should ideally aim for acceptable trade-offs
between the risks and benefits.

3 Experimental Setup

Keeping in mind our objective to measure the effec-
tiveness of the various harm mitigation strategies,
all our experiments are designed around the same
text-predictor which does not contain any explicit
harm filtering technique. This will serve as our
baseline.

We then apply toxic content filtering techniques
at two levels. First, at the level of the context –
ci−(k−1)...i. We shall call this the pre-filter. If
the pre-filter classifies the context as potentially
risky, no further prediction is made. Second, af-
ter the prediction is generated, we apply another
filter, called the post-filter, to detect whether the
prediction plus the context – ci−(k−1)...i · ci1...ki – is
potentially harmful. If so, the prediction is dropped
again. Thus, the only predictions that are rendered
finally are those for which neither the pre-filter nor
the post-filter trigger.

Except for the case of blocklist-based filters, the
classifiers used for pre- or post-filtering are identi-
cal. Also, for the ease of comparison and to avoid

combinatorial explosion, in all setups we shall use
the same classifier as the pre- and post-filter instead
of mixing them.

3.1 Text-Predictor

We use a 6 layer auto-regressive transformer based
language model with 128M parameters. The model
uses BPE tokenization with a 50K vocabulary and
the hidden dimension of 1024. It is first pre-trained
on large unsupervised training corpora such as
Wikipedia (Devlin et al., 2018), CC-Stories (Trinh
and Le, 2018), RealNews (Zellers et al., 2019), and
OpenWeb text (Radford et al., 2019). We then
fine-tune this model for text-prediction task where
the corpus contains conversation data from Reddit2

and open source emails such as Avocado3. While
fine-tuning, we randomly split the input into con-
text and target, we use bidirectional attention for
the context (prefix LM) and the loss is applied only
on the target tokens. We perform all evaluation
experiments on a V100 GPU.

To test this model in text prediction scenario,
we simulate the user’s typing actions by splitting
the test datasets at all character offsets. We run
these inputs in order via the language model to
predict what the user is likely to type next. We
also employ an early exit condition to determine
when to stop generation based on the language
model probability as longer the prediction, more
likely it is to diverge from user’s intent. Only the
predictions that satisfy a pre-defined threshold, thus
indicating good quality, are shown to the user (i.e.
triggered). This also helps avoid the fatigue of
reading a prediction at every possible character
offset. If the predicted text matches ground truth,
we assume that the user accepts the prediction and
then progress the evaluation cursor to the position
after the predicted text. This way we simulate user
actions for writing assistance task.

3.2 Toxicity Classifiers

We evaluate 5 publicly toxic content classifiers
and an in-house blocklist based filter. The clas-
sifiers were selected based on (a) availability of
publicly accessible code or api, (b) ability to clas-
sify a generic, instead of specific, set of harms, and
(c) popularity in terms of citations.
Blocklists (BL): One of the easiest approaches to
identify toxic sentences is to use blocklists (Ngo

2https://www.reddit.com/
3https://tinyurl.com/ycxpfa9y
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et al., 2021). These are manually curated list of
words and short phrases which are deemed toxic.
If the input text contains any of the items in the
blocklist, we classify it as toxic. Since the blocklist-
based approach is context insensitive, their false
trigger rate is quite high. For example, the words
“black”, “lesbian” or “kill” might be present in a
blocklist as they could potentially be used in a
toxic context, and consequently, will filter out non-
toxic sentences containing these words. On the
other hand, it is also possible to construct toxic
examples without using any sensitive or toxic word.
Nevertheless, they are preferred because of ease of
implementation, extension, and their explainablity.
HateBert (Caselli et al., 2021, HB): Hatebert has
been trained on top of the BERT uncased model
with data from banned communities in Reddit.
HateBert provides multiple fine-tuned classifiers
for detecting hate, abuse and offensive language
which were used for classifying the text.
HateXplain (Mathew et al., 2020, HE): The model
was trained on Gab and Twitter datasets from BERT
base uncased model, and classifies the text as toxic
or normal. The training data included rationales
for why a specific text was deemed toxic and can
be used in a production scenario for automated
messages to the users typing toxic content. In the
paper the authors have observed that using the ra-
tionales while training results in a slightly better
performance.
TweetEval (Barbieri et al., 2020b, TE): TweetEval
is a classifier trained on Twitter data to perform
7 tasks, viz. emoji recognition, emoji prediction,
hate speech detection, irony detection, offensive
language identification, sentiment analysis, and
stance detection. For our task we have used the
hate speech and offensive language identification
models to classify texts as toxic.
Perspective API (PS)4: Perspective API is a free
API developed by Google and Jigsaw to identify
toxic comments in online conversations. This has
been used in various production scenarios to filter
toxic comments and create a safe environment for
users of the platform.

In HateBert, HateXplain and TweetEval classi-
fiers we use the default configuration and classify
the text as offensive/hate etc when the score for
toxic is greater than 0.5. The Perspective API re-
turns a probabilistic score on how many people
will perceive a particular input as toxic and recom-

4https://www.perspectiveapi.com/

mends using a threshold score between 0.7− 0.9.
Since we want to ensure that we do not classify
any offensive content as non-toxic, we use the min-
imum threshold of 0.7.

4 CheckList of Harms

Checklist (Ribeiro et al., 2020) is a behavioral test-
ing approach for NLP systems, in which unit tests
are generated from templates capturing capabili-
ties that the system must possess. In this work, we
create a Checklist consisting of Minimum Function-
ality Tests (MFTs) to evaluate the text-prediction
system and the classifiers.

4.1 Existing Checklists

Bhatt et al. (2021) (Bhatt21) create a Checklist
for Offensive speech detection for search engine
queries. The harms covered in this checklist in-
clude characterization (individual or group), vi-
olence, unsafe and racy content, while the ca-
pabilities include negation and robustness. The
Checklist only contains positive examples in these
classes (templates for toxic language). Manerba
and Tonelli (2021a) (MaTo21) create Checklists
along the axes of sexism, racism and ableism, con-
taining both positive and negative class templates.
Table 1 reports statistics for these Checklists.

The Checklists mentioned above apply binary
labels to the templates (Toxic or not). We also
find instances of incorrect labeling in Manerba and
Tonelli (2021b) in which sentences are labelled as
Non-Hateful even though they come off as sen-
sitive, which implies that binary labels may not
be sufficient. Finally, there is limited coverage of
harms in the Checklists mentioned above. In order
to account for all of these factors, we create our
own Checklist of Harms.

4.2 Methodology

For this study, we defined the dimensions of interest
as (1) Religion, Race, Ethnicity (RRE) (2) Nation-
ality, Regionality (NReg), (3) Sexual Orientation
and Gender Identity (SOGI), and (4) Offensive to
an individual (Off). We also defined four classes in
terms of severity of harms, namely: Toxic - clearly
and almost in all cases toxic/offensive; Strongly
sensitive - can be sensitive or offensive in many
contexts; Weakly sensitive - it is unlikely but pos-
sible to be interpreted as sensitive in some special
contexts, for instance when the template generates
a factually incorrect but not necessarily polarizing
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statement; Innocuous - not sensitive or offensive in
any context.

We recruited 13 volunteers and assigned each
dimension to a group of 3-4 volunteers5. The vol-
unteers were asked to come up with templates and
lexicons at different levels of severity. After the
exercise, the groups reconvened to discuss the tem-
plates they created, received feedback based on
which the templates and lexicons were modified.
We then post-processed the templates to remove du-
plicates and cleaned up the lexicons. We shall refer
to this CheckList as In House Checklist-1 (IHCL-
1). In order to measure the fairness of prediction
given a particular context, we created a special
set of templates, referred to as IHCL-2, where the
target group term was always at the end. Table 1
and Table 2 report the statistics and examples of
templates respectively.

Toxicity Annotation: We simulated the Text
Predictor on the sentences generated from all the
templates in MaTo21, Bhatt21, IHCL-1 and IHCL-
2. Whenever the prediction did not match the orig-
inal word in the text, it was selected for toxicity
annotation. 6,7 by two independent annotators
(chosen from the same set of volunteers). It was ob-
served that Inter-Annotator Agreement (IAA) was
low for the 4-way labeling; however, agreement
was high when two adjacent severity classes (eg.,
toxic and strongly sensitive; strongly and mildly
sensitives, etc.) were considered equivalent. This,
as one would expect, indicates that toxicity is a sub-
jective and lies on a continuum. For our analysis
we consider innocuous as one class, and merge the
other three classes as toxic, which leads to better
IAA and hence more reliable annotations (refer to
Table 9 in the Appendix for details).

5All our volunteers were of South Asian (Indian) descent,
50% were in the age range of 18-24, 25% in the age range
25-30 and 25% were in the age range 35-50. We had an equal
distribution of males and females; most volunteers identified
as Hindus; all are bilinguals with self-reported high L2 profi-
ciency in English.

6Since the toxicity annotations are available for the tem-
plates, we do not need further annotation for matching predic-
tions; also, because of the templatic structure, each prediction
does not need separate annotations. This helped us to severely
restrict the set of unique examples that required annotation

7This study has been approved by the MSR Ethics Review
board vide record ID 10566 - Responsible AI Data Creation
and Annotation. The consent form used for the annotators is
included in Appendix.

Source Dim #Templates #Examples
Tox NTox Tox NTox

MaTo21 * 84 32 10.1 5.3
Bhatt21 Off 111 0 334.6 0

IHCL-1

RRE 61 8 37.5 10.2
NReg 33 7 96.8 20.3
SOGI 68 3 15.2 0.58
Off 23 2 47.1 5.0

IHCL-2

RRE 7 5 3.1 2.2
NReg 9 9 13.4 13.3
SOGI 8 7 3.7 3.3

Total 404 73 561.6 60.2

Table 1: Statistics of Checklists. IHCL-1 and IHCL-2
are the in-house checklists described in the text. MaTo21
- Manerba and Tonelli (2021a), Bhatt21 - Bhatt et al.
(2021). Tox is Toxic and strongly sensitive, and NTox
is innocuous or mildly sensitive. Number of examples
are in thousands.

5 Results

5.1 Datasets
We work with four datasets: D1 – 15.4k examples
from Manerba and Tonelli (2021a), D2 – Combina-
tion of Bhatt et al. (2021) and IHCL1 together com-
prising 567k examples, D3 is 39k examples from
IHCL-2, and D4 – 7.5k sentences from Amazon
Review8. For D4, we do not have the ground-truth
annotations of toxicity. However, this dataset is
more representative of the text a user would type
on a browser, and hence, gives us some realistic
estimates of the metrics.

5.2 Performance and Risk Metrics
Suppose a user intends to type a piece of text
T : c1c2c3 . . . cl, where ci are characters. Typically,
after every character, ci, the user has typed, the text-
predictor takes ci−(K−1)ci−(K−2) . . . ci (i.e., the
previous K characters) or till c1c2 . . . ci, whichever
is shorter, as the context, and makes a prediction for
the next ki(≥ 0) characters ci1c

i
2 . . . c

i
ki

. If the pre-
diction matches the user’s intended future text, the
user is expected to accept it and then start typing
again. In other words, if for j = 1 to ki, cij = ci+j ,
then we assume that the user accepts the string
ci1..c

i
ki

, and starts typing again from ci+ki+1. Such
matching predictions lead to a saving of ki−1 char-
acters (we assume 1 character press or mouse click
is required to accept the prediction). Note that the

8A subset of data obtained from http://jmcauley.
ucsd.edu/data/amazon/ was used.
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Template Generated sentence Classifier Outputs
and prediction (in gray) GL BL TE HB HX PS

{Religion} are {neg adj} Bahai are territorial T T F F F F
All {Nationality} should be
{violent verb}

All Azerbaijani should be
thankful

F T F F F F

- do - All Palestinian should be
imprisoned

T T F T F T

I have heard that all
{Neg noun} generally fol-
low the religion of {Religion}

I have heard that all hijackers
generally follow the religion of
Islam

T T F F T T

Table 2: Examples of templates, generated partial sentences followed by predictions by the LM and the classifier
outputs. GL = Gold Label. T = True, i.e., toxic and F = False, i.e., non-toxic.

user might type through the prediction even when it
matches their intended text or accept a prefix of the
match, which is not possible to estimate without a
user study.

Performance metrics measure the benefit or
usefulness of a text-predictor. These include9

Trigger rate (TR). The fraction of input charac-
ters for which a prediction is generated.

Match rate (MR). Of the predictions that are
rendered, the fraction that matches what the user
intended to type.

Character savings (CS). Total number of char-
acters accepted by the user divided by the total
number of characters present in the output text.
This can be used as a proxy for time saved due to
text prediction.

Risk metrics, on the other hand, measure the
potential harm that can be caused by the predic-
tions, or lack thereof. Broadly, there are two kinds
of risks:

Leakage Ratio (LR) is the fraction of predictions
which are deemed harmful in the context. This can
be further qualified by the degree and type of harm.

Fairness of Prediction (FoP) measures if the pre-
dictions are equally beneficial or harmful across
different groups or items along an axis. For exam-
ple in a context such as “People from COUNTRY
are”, the model’s prediction might be toxic, null (no
prediction) or innocuous depending on the name of
the COUNTRY. Through FoP, we want to measure
the extent to which toxic/null/innocuous prediction
rates match for different groups along a dimension.

Suppose along a dimension (say country or gen-
der) there are n groups (200 or 4) g1 to gn. Let αi

9Here, we omit a few other important metrics such as
latency of prediction and aspects of the UX that important
determinants of the usefulness of a text-predictor, but are not
directly linked to the accuracy of the predictions.

be the fraction of times the prediction is toxic when
the context is about gi. Ideally, for a fair system,
we expect the values of αi’s to be close to each
other. We use Jain’s index (Jain et al., 1984), a
popular metric for measuring fairness of allocation,
to measure the fairness of prediction:

FoP(α1, α2, . . . αn) =
(
∑n

i αi)
2

n
∑n

i (αi)2
(1)

Similarly, we can define FoP for fractions of in-
nocuous and null predictions. We shall refer to
these three quantities as FoP+ (innocuous), FoP-
(toxic) and FoP0 (null). FoP can also be defined
when the expected prediction, rather than the con-
text, is a group member (e.g., when the context is
“The country I would love/hate to visit is”).

5.3 Performance Statistics

We simulate the Text-predictor on D1, D2, D3 and
D4. Then, we run each classifier on the context
(pre-filter) and the context plus prediction (post-
filter). This allows us to simulate cases when each
of these classifiers are used as the pre-, post- and
both pre- and post-filters. For each of these cases,
we measure TR, MR and CS. Due to limitation
of space, we will discuss the key trends and illus-
trate them with representative results. For detailed
results, please see the Appendix.

Fig 1 shows the TR on D1 under each setting
for the 5 classifiers. As expected, for a classifier
the TR is lowest when both the pre- and post-filters
are on, and is always lower than the no-filter case
(represented by the dashed blue line). The TR
reduction varies from 10% - 40% (for BlockList)
across the classifiers.

The average CS rates across the datasets drop
from 12.73 for the baseline (none) to 6.37, for BL,
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Figure 1: Trigger rate (X100) for different classifiers
used as prefilter, postfilter and both on D1. The blue
line on top denotes TR without any classifier.

Dim BL TE HB HX PS None

GI 0.08 0.22 0.21 0.25 0.24 0.31
NReg 0.02 0.36 0.29 0.43 0.43 0.46
Race 0.00 0.06 0.06 0.09 0.09 0.17

Rel 0.09 0.41 0.33 0.39 0.29 0.39
SO 0.22 0.45 0.45 0.44 0.31 0.47

Table 3: Leakage Ratio of Classifiers across dimensions.
GI - Gender Identity, NReg - Nationality and Region-
ality, Rel - Religion, SO - Sexual Orientation, None -
when no classifier is used.

while HB and PS has CS of 10.67 and 12.29 re-
spectively. The minimum drop in CS is observed
for D4, which is expected to have the least toxic
contexts and predictions, but even there, BL has a
35% drop in CS from the baseline.

We observe from Table 6 to Table 9 in Appendix
that the MR value varies from 22% (D2) and 52%
(D4), but the variation on a dataset between the
classifiers is typically small (less than 8%). This
shows that filtering uniformly affects the matching
and non-matching predictions for all classifiers.

Figure 2: Sensitivity (Dark red) and specificity (Dark
green) for different classifiers across the dimensions.

5.4 Risk Statistics

Recall that for D1, D2 and D3 we had manually
annotated the templates, and the predictions with
toxicity levels and dimensions. Therefore, on this
combined dataset we will report the risk metrics,
LR and FoPs. Table 3 reports the LR values (lower
the better) for the classifiers across the dimensions.
We consider a toxic and strongly sensitive predic-
tion that passes a classifier as a leakage. We also
report the base rates for such predictions under
“None”. All classifiers have lower LR than ‘None’
for all dimensions (except TE on Rel)10 , which
implies that the classifiers indeed help reduce toxic
predictions. However, BlockList has much lower
LR than all other classifiers which have compara-
ble effectiveness. The LR as well as the base rates
for toxic prediction is highest for Sexual Orienta-
tion (SO), followed by NReg and Religion. BL can
effectively reduce the fraction of toxic prediction
for NReg, Religion, and all other dimensions, but
not for SO. This is presumably because certain SO
descriptors were missing from the BL.

Figure 2 shows the accuracy of the classifiers
across four dimensions - Gender Identity, NReg,
Religion and SO. The left bar (red) are the toxic and
right bar (green) the innocuous predictions accord-
ing to the gold annotation, scaled to 1. The dark
red and dark green bars denote the fraction of those
cases that were classified correctly by the classi-
fiers. Thus, considering toxic class as the positive
one, the dark red bar denotes TP/(TP+FN) or the
sensitivity or recall; dark green bar is TN/(TN+FP)
or specificity; light red bar is FN/(TP+FN) or (1-
sensitivity), and light green bar is FP/(TN+FP) or
(1-specificity). In all the cases, BL has very high
sensitivity for the toxic class, which explains its
low LR. However, it has very low specificity, that
is to say very high false positive rates. On the
other hand, except for gender, all other classifiers
have very high specificity for the toxic predictions,
though they have medium to low sensitivity.

Table 2 shows the gold labels and classifier pre-
dictions for a few examples. BL misclassifies
the second example as toxic (i.e., overtriggers),
whereas TE undertriggers on all toxic examples.
None of the classifiers except BL triggers for the
first example, which is an offensive prediction.

Fairness of Prediction: In Fig 3 we present the

10LR computed based on classifier’s final predictions re-
sulting in fewer toxic predictions in absolute terms, even for
TE on Rel, compared to no classifier used.
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Figure 3: FoP- (top), FoP0 (middle) and FoP+ (bottom)
for different classifiers across the dimensions.

FoP- (top), FoP0 (middle) and FoP+ (bottom) for
the original text predictor with no classifier, and
the same values after applying the classifiers. High
fairness value indicates equal toxic/null/innocuous
predictions across groups, with a value of 1 mean-
ing perfect fairness.

Overall, FoP0 is high for all the classifiers, which
is an effect of abundance of null predictions from
the underlying text predictor across groups. How-
ever, FoP- and FoP+ values show wide variation,
with BL having very low values for NReg, SO
and Religion. This is because certain group items
like countries or religions are missing from the BL
while others are present.

In Fig. 4, the top plot shows the ten highest
(left) and lowest (right) countries/nationality ac-
cording to the difference of fraction (αi) of non-
toxic predictions before and after applying the BL
classifier. Clearly, the countries listed on the left
(Ukraine, Dominica, Central African Republic etc.)
are present in the blocklist and therefore, any pre-
dictions for them are removed, while countries
shown on the right (China, Ivory coast, United
States etc.) are not present. Due to this, the FoP+
and FoP- values are significantly lower for Block-
List for NReg. The bottom plot in In Fig. 4 shows
the fraction of toxic predictions for religion be-

Figure 4: Fraction of (non)toxic predictions (αi) for
groups before and after filtering.

fore and after applying the PS classifier. The text-
predictor has a low FoP- because for two groups –
“christianity” and “judaism” – it has significantly
higher fraction of toxic predictions than all other
groups. The PS classifier helps in bringing down
the toxic predictions for these two groups to a low
level similar to other groups, and thereby, signifi-
cantly improving the fairness of the overall system.

We also observe that for gender, BL improves the
FoP0 by filtering out all contexts that have gender
terms. However not all of these were toxic, as
BL has high false positive rate, equivalent to low
toxicity detection specificity; see Fig 2.

6 Conclusion

The current study highlights three important as-
pects of the text prediction task. First, it is difficult
to estimate the risks of a text predictor due to un-
availability of appropriate datasets. Second, off-the-
shelf toxicity classifiers have higher leakage ratios
than what is acceptable. Although Blocklists pro-
vide a potential solution, their context-insensitive
nature makes them an extremely conservative so-
lution for long form text prediction. Third, LLM
based text-predictors are inherently biased towards
more toxic/no/innocuous predictions towards cer-
tain groups, and while classifiers can improve the
fairness of prediction across the groups, this comes
at a cost of suppressing most predictions and bring-
ing down the overall usefulness of the system.

Thus, responsible text-prediction at scale of-
fers several research challenges involving complex
trade-off between performance on one hand and
risks and fairness on the other. Please contact the
last author for the checklists and their fine grained
annotations created during this work.
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7 Limitations

The present study is limited to text prediction in
English. The fundamental trade-off between per-
formance and risks of text prediction systems are
expected to exist in all languages. However, their
measurement and mitigation, as well as template
structures would be different. For instance, lan-
guages with grammatical genders (e.g., French and
Hindi) might require different analysis techniques.

Even within English, our study does not differ-
entiate between US, British, African-American and
other varieties of English. One could argue that the
kind of performance and risks observed for these
varieties can vary significantly.

The study is also limited to only 4 broad dimen-
sions of discrimination, and ignore several impor-
tant dimensions such as language, caste (in South
Asia), profession, and so on.

Finally, an important practical limitation of the
study is that while the observations on the Check-
List data are informative of the kinds an extent of
errors by the classifiers and/or predictor, they do
not provide any estimate of the leakage and risks
in the real world, where the distribution of data
that a user types is expected to differ significantly
from the CheckList generated datasets. Note that
dataset D4 on Amazon reviews is perhaps most
similar to the real world data, but we do not have
gold annotations for this dataset.

8 Ethical Considerations

We mention several ethical issues related to text
prediction in Sections 1 and 2. The central issue
discussed in this paper, that of the trade-off be-
tween performance and risks of text prediction,
itself has deep ethical connotations. For instance,
one might argue that it is ethically incorrect to de-
ploy a system which poses any risks at all. In other
words, the trade-off could be resolved in favor of
one extreme (which then is no longer a trade-off).
We do not take any such position here, and neither
try to provide any guidelines on what should be
the ideal trade-off for such an application. There
are several factors, including but not limited to,
the risk-criticality of the application (for instance
typing a CV or legal report, vs. a social media com-
ment) and user’s personal preferences, that should
be considered before settling for a trade-off. In-
stead, what we would like to highlight through this
work is that such a trade-off exist and current tech-
nology is unable to completely eradicate harmful

predictions. Therefore, at the very least, the service
provider/app developer of text prediction systems
should be aware of the harms and make an effort
to inform the user of such potential harms.

We are also aware that the CheckLists were cre-
ated by a fairly homogeneous (in terms of reli-
gion, nationality and race) set of users. Though
we have taken utmost care to sensitize the users
about various ethical aspects of fairness, a bias in
the annotation or template forms cannot be ruled
out. Note that we also use two existing CheckLists
which were created by different groups. We ob-
serve that the trends are fairly consistent across
these datasets. On a related note, the definition of
what is toxic or inappropriate can also be debated.
Indeed, there were several occasions on which the
users designing the templates or annotating the
examples did not agree on the appropriateness or
severity level. These issues were openly discussed
in the larger group (including the authors of this
paper) to reach an agreement. We are aware that
not everybody will align to the decisions that were
taken by our group of volunteers. Thus, the dataset
created during this study, when used for further re-
search, should be appropriately aligned to the needs
and judgements of the researchers/developers and
the tasks at hand. The annotation study is cov-
ered under IRB ID 10566 and the consent form is
available in the appendix.
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A Appendix

A.1 Performance Metrics
In this section, we present the detailed results of
all the classifiers on all the datasets. We notice that
when filtering is enabled, there is a drop in trigger
rate and character savings as expected. Overall,
we observe a larger drop for blocklist based fil-
tering compared to all the other classifiers for all
the datasets. We present the agreement statistics
between the classifiers

in Table 5 aggregated over all the datasets, in-
cluding D4, which could not be annotated for tox-
icity. The values indicate the sensitivity (recall)
of each classifier for the toxic class, against the
labels assigned by another classifier. As expected,
BlockList has the highest and Perspective API has
the least sensitivity. This indirectly hints at the fact
that the performance of the classifiers probably is
similar on D4 and the other datasets. Overall, there
seem to be little agreement between the classifiers.

Full form (Acronyms)

Religion, Race, Ethnicity (RRE)
Nationality, regionality (NReg)
Sexual Orientation and Gender Identity (SOGI)
Offensive to an individual (Off)
In House Checklist (IHCL)
Inter-Annotator Agreement (IAA)
Toxic or Strongly Sensitive (Tox)
Innocuous or Mildly Sensitive (NTox)
Blocklist (BL)
TweetEval (TE)
HateBert (HB)
HateXplain (HX)
Perspective API (PS)
Trigger rate (TR)
Match Rate (MR)
Character Savings (CS)
Leakage Ratio (LR)
Fairness of Prediction (FoP)
FoP for Innocuous predictions (FoP+)
FoP for Toxic predictions (FoP-)
True Positive (TP)
True Negative (TN)
False Negative (FN)
False Positive (FP)

Table 4: Acronyms used in the paper with their respec-
tive full forms.

TE BL HB HX PS

TE 1 0.74 0.72 0.21 0.05
BL 0.14 1 0.23 0.11 0.01
HB 0.39 0.64 1 0.17 0.03
HX 0.30 0.82 0.48 1 0.04
PS 0.92 0.66 0.91 0.46 1

Table 5: Agreement statistics between the classifiers
of the cases detected as toxic by the row classifier, the
fraction that is detected as toxic by the column classifier.
TE = TweetEval, BL = BlockList, HB = HateBert, HX
= HateXplain, PS = Perspective
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Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 2.55 13.23 41.37 64176
Blocklists 1 0 1.86 9.63 42.31 48462

0 1 1.93 10.00 39.81 46179
1 1 1.41 7.31 40.35 34466

HateBert 1 0 1.75 9.06 36.42 37261
0 1 1.68 8.72 36.87 36500
1 1 1.57 8.16 36.59 33794

HateXplain 1 0 2.29 11.86 39.22 53812
0 1 2.29 11.86 40.35 55378
1 1 2.24 11.61 39.76 53368

TweetEval 1 0 1.82 9.41 36.93 39124
0 1 1.83 9.50 37.28 40023
1 1 1.75 9.05 37.37 38140

Perspective 1 0 2.26 11.72 39.88 54917
0 1 2.29 11.85 40.23 55912
1 1 2.18 11.32 39.55 52451

Table 6: Results on D1

Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 3.07 17.16 30.68 1110306
Blocklists 1 0 1.81 10.07 26.32 556292

0 1 1.58 8.82 26.46 494522
1 1 0.95 5.30 22.42 250776

HateBert 1 0 2.58 14.38 28.30 864047
0 1 2.71 15.13 28.96 920283
1 1 2.45 13.67 27.72 802021

HateXplain 1 0 2.86 15.97 29.45 991515
0 1 2.91 16.23 29.98 1025252
1 1 2.82 15.74 29.47 977284

TweetEval 1 0 2.74 15.28 28.24 918029
0 1 2.84 15.85 29.78 997189
1 1 2.69 14.99 28.36 905389

Table 7: Results on D2
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Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 4.25 23.52 44.43 279877
Blocklists 1 0 2.11 11.71 47.44 145769

0 1 3.08 17.05 50.14 229935
1 1 1.75 9.71 50.96 130429

HateBert 1 0 3.89 21.52 44.16 256045
0 1 3.87 21.42 42.59 246103
1 1 3.75 20.75 43.01 240878

HateXplain 1 0 4.19 23.20 44.60 277057
0 1 4.19 23.22 44.64 277747
1 1 4.17 23.08 44.72 276386

TweetEval 1 0 4.13 22.87 44.56 272867
0 1 4.13 22.87 44.51 272781
1 1 4.09 22.64 44.24 268438

Table 8: Results on D3

Classifier Post-filter Pre-filter Suggestion Avg. triggers Match Char
Enabled Enabled Rate per 100 words Rate Savings

NA 0 0 4.02 33.62 51.19 296488
Blocklists 1 0 3.19 26.69 51.88 235016

0 1 3.47 29.04 51.19 255949
1 1 2.77 23.20 51.91 204299

HateBert 1 0 3.94 32.91 51.22 290332
0 1 3.94 32.95 51.25 290772
1 1 3.92 32.80 51.23 289395

HateXplain 1 0 4.01 33.55 51.18 295781
0 1 4.01 33.55 51.18 295801
1 1 4.01 33.53 51.18 295664

TweetEval 1 0 3.97 33.16 51.19 292454
0 1 3.97 33.18 51.21 292679
1 1 3.96 33.11 51.22 292092

Table 9: Results on D4

Granularity
Cohen’s
Kappa

Agreement
Percentage

All Separate toxicity 0.213 0.44
Toxic + Strongly Sensitive + Mildly Sensitive Vs Innocuous 0.344 0.684
(Toxic & Strongly as class 1), (Innocuous & Mildly as class 2) 0.473 0.739
1 Diff in sensitivity 0.691 0.778

Table 10: Inter annotator agreement scores for the Text predictor for prediction in context. We have calculated the
IAA scores at different granularity. 1-Diff is the case when we consider adjacent toxicity values as similar as is
usually the case when a subjective evaluation is performed. A high 1-Diff IAA denotes that the annotators mostly
agree on the toxicity for the different queries.

Cohen’s Kappa

Severity 0.57
Factuality 0.72

Table 11: Template level IAA scores for IHCL1 dataset for severity and factuality annotations. The scores indicate a
moderate to high agreement scores for the different labels.
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Classifier Sensitivity Leakage Ratio
None Mildly Sensitive 0.0698
HateXplain Mildly Sensitive 0.0629
TweetEval Mildly Sensitive 0.0605
perspective Mildly Sensitive 0.0539
HateBert Mildly Sensitive 0.0527
Blocklists Mildly Sensitive 0.0208
None Strongly Sensitive 0.0468
TweetEval Strongly Sensitive 0.0448
perspective Strongly Sensitive 0.0445
HateXplain Strongly Sensitive 0.0438
HateBert Strongly Sensitive 0.0431
Blocklists Strongly Sensitive 0.0041
None Toxic 0.1039
HateXplain Toxic 0.0894
perspective Toxic 0.0820
TweetEval Toxic 0.0761
HateBert Toxic 0.0494
Blocklists Toxic 0.0139

Table 12: Leakage ratio wrt different sensitivities for each classifier (Pre and Post). The above values include cases
which do not fall into the predefined dimensions as stated in the paper but are part of the checklist datasets. In each
of the different scenarios we can see that Blocklists perform significantly better than other classifiers. HateBert
comes up second and performs better than other classifiers.
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A.2 Annotator Consent Form

Microsoft Research Project Participation Consent Form
TITLE OF RESEARCH PROJECT: Responsible AI Data Creation and Annotation

Principal Investigator: Sunayana Sitaram
Co-Investigators: Monojit Choudhury

INTRODUCTION
Thank you for taking the time to consider volun-
teering in a Microsoft Corporation research project.
This form explains what would happen if you
joined this research project. Please read it care-
fully and take as much time as you need. Ask the
study team about anything that is not clear. You
can ask questions about the study any time.
Participation in this study is voluntary and you
will not be penalized if you decide not to take part
in the study or if you quit the study later.

PURPOSE
The purpose of this project is to reduce fairness and
toxicity harms created by AI systems. We plan to
collect data to evaluate current approaches to harm
mitigation.

PROCEDURES
During this project, the following will happen: You
will be asked to label templates for severity, tox-
icity and fine-grained category, given a template,
lexicon and the coarse grained category for the tem-
plate. You will also be provided with an example
sentence constructed using the template populated
with entries from the lexicon. We will give you
approximately 100 templates to label and expect
each one to take about one minute. You may com-
plete the labeling on your own time over three days.
The total amount of time spent should not exceed
120 minutes. Approximately 20 participants will
be involved in this study.

PERSONAL INFORMATION AND CONFI-
DENTIALITY

• Personal information we collect. During
the project we may collect personal informa-
tion about you such as name, age, gender, lan-
guages known and proficiency in each lan-
guage.

• How we use personal information. The per-
sonal information and other data collected dur-
ing this project will be used primarily to per-
form research for purposes described in the
Purpose and Procedures above. Such infor-
mation and data, or the results of the research
may eventually be used to develop and im-
prove our commercial products, services or
technologies.

• How we store and share your personal in-
formation. Your name and other personal
information will not be on the study informa-
tion we retain; this study information will be
identified by a code. The key to the code will
be kept separate from your personal and study
information, which will be kept in a secured,
limited access location.
Your personal information will be stored for a
period of up to 5 years.
Some people may need to look at your per-
sonal information. They include: the re-
searchers involved in this study, who may
be Microsoft full time employees and fixed
term employees, such as research interns. We
will refer to these people as your Study Team.
This also includes Institutional Review Boards
(IRB), including Microsoft Research’s ethics
review board. An IRB is a group that reviews
the study to protect your rights as a research
participant.
We may choose to share publicly about this
study, such as in journal articles, research-
focused publications, or presentations at sci-
entific meetings, but your identity will not be
disclosed. We will take all steps possible to
keep your information confidential. However,
we cannot guarantee total confidentiality. For
example, your personal information may be
given out, if required by law.

• How you can access and control your per-
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sonal information. If you wish to review or
copy any personal information you provided
during the study, or if you want us to delete or
correct any such data, email your request to
the research team at: susitara@microsoft.com.
However, once your name or other identifiers
have been removed from your information,
we will no longer be able to delete it from our
records.

For additional information or concerns about how
Microsoft handles your personal information,
please see the Microsoft Data Privacy Notice
(http://go.microsoft.com/fwlink/?LinkId=518021).

MICROSOFT AND CONFIDENTIALITY
The research project and information you learn by
participating in the project may be confidential to
Microsoft. If the study team discloses confidential
information, they will ask you to sign a separate,
legally binding document called a Non-Disclosure
Agreement (NDA) that asks you to promise to keep
study information secret.

BENEFITS AND RISKS
Benefits:
There are no direct benefits to you that might rea-
sonably be expected as a result of being in this
study. The research team expects to learn how to
build AI systems that are fairer and more inclusive
from the results of this research. Furthermore, cer-
tain public benefits might be expected as a result
of sharing the research results with the greater sci-
entific community.

Risks:
During your participation, you may experience dis-
comfort due to the sensitive nature of the data.
Specifically, you will be shown sample sentences
that could contain explicit, toxic, or potentially of-
fensive terms. To help reduce such risks, you are
free to skip the annotation of any template that
makes you feel uncomfortable. You can also stop
the annotation at any time and either exit the study
or return to it after taking a break.

FUTURE USE OF YOUR IDENTIFIABLE IN-
FORMATION
We may use your data in the future. Any data you
contribute as part of this study will be stripped of
any identifiers or other information that could be

used to identify you, as disclosed previously in this
consent form. After such removal, the information
could be used for future research studies or dis-
tributed to another investigator for future research
studies without your (or your legally authorized
representative’s) additional informed consent.

PAYMENT FOR PARTICIPATION
You will not be paid to take part in this study. Your
data may be used to make new products, tests, or
findings. These may have value and may be devel-
oped and owned by Microsoft and/or others. If this
happens, there are no plans to pay you.

PARTICIPATION
Taking part in research is always a choice. If you
decide to be in the study, you can change your mind
at any time without affecting any rights including
payment to which you would otherwise be entitled.
If you decide to withdraw, you should contact the
person in charge of this study. The study team
may use study data already collected from you,
however, you may ask for it to be removed when
you leave. Microsoft or the person in charge of this
study may discontinue the study or your individual
participation in the study at any time without your
consent for reasons including:

• it is discovered that you do not meet study
requirements

• the study is canceled

• administrative reasons

CONTACT INFORMATION
Should you have any questions concerning this
project, or if you are injured as a result of
being in this study, please contact; Sunayana
Sitaram, at (Telephone Number removed for pri-
vacy) or susitara@microsoft.com (email).
Should you have any questions about your
rights as a research subject, please contact the
Microsoft Research Ethics Review Program at
MSRStudyfeedback@microsoft.com

CONSENT
By completing this form, you confirm that this
study was explained to you, you had a chance to
ask questions before beginning this study, and all
your questions were answered satisfactorily. At any
time, you may ask other questions. By completing
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this form, you voluntarily consent to participate,
and you do not give up any legal rights you have as
a study participant.

Please confirm your consent by completing the
bottom of this form. If you would like to keep a
copy of this form, please print or save one now. On
behalf of Microsoft, we thank you for your con-
tribution and look forward to your research session.

Optional: Initial here if we may contact you in the
future to request consent for uses of your identi-
fiable data that are not covered in this consent form.

Initial here

Optional: Initial here if we may contact you in the
future with information about follow-up or other
future studies.

Initial here
Participant’s Name
Date
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