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Abstract

In this paper, we explore how much syntactic
supervision is “good enough” to make language
models (LMs) more human-like. Specifically,
we propose the new method called syntactic ab-
lation, where syntactic LMs, namely Recurrent
Neural Network Grammars (RNNGs), are grad-
ually ablated from full syntactic supervision
to zero syntactic supervision (≈ unidirectional
LSTM) by preserving NP, VP, PP, SBAR non-
terminal symbols and the combinations thereof.
The 17 ablated grammars are then evaluated via
targeted syntactic evaluation on the SyntaxGym
benchmark. The results of our syntactic abla-
tion demonstrated that (i) the RNNG with zero
syntactic supervision underperformed the RN-
NGs with some syntactic supervision, (ii) the
RNNG with full syntactic supervision underper-
formed the RNNGs with less syntactic super-
vision, and (iii) the RNNG with mild syntactic
supervision achieved the best performance com-
parable to the state-of-the-art GPT-2-XL. Those
results may suggest that the “good enough” ap-
proach to language processing seems to make
LMs more human-like.

1 Introduction

In the literature on targeted syntactic evaluation
(Linzen et al., 2016; Marvin and Linzen, 2018),
recurrent neural networks (RNNs) such as LSTMs
have been demonstrated to implicitly learn syntac-
tic structures of natural language (e.g., subject-verb
agreement), despite the lack of explicit syntactic
supervision (cf. Hewitt and Manning, 2019). More-
over, those RNNs also turned out to benefit from
explicit syntactic supervision. RNNs integrated
with explicit syntactic supervision, namely Recur-
rent Neural Network Grammars (RNNGs; Dyer
et al. 2016), have received considerable attention
for their cognitive plausibility and outperformed

†Currently affiliated with LeapMind Inc.:
noji@leapmind.io.

*Denotes equal contribution.

RNNs in not only targeted syntactic evaluation
(Kuncoro et al., 2018; Wilcox et al., 2019) but also
psychometric predictive power (Hale et al., 2018;
Wilcox et al., 2020; Yoshida et al., 2021).

However, despite the previous debate over the
dichotomy between the presence and absence of
syntactic supervision, how much syntactic super-
vision is necessary and sufficient remains to be
investigated. Especially, there are two potential
reasons to believe that full syntactic supervision
is suboptimal. Theoretically, full syntactic super-
vision may override lexical heuristics implicitly
learned with RNNs, where information on terminal
symbols vanishes via recursive composition opera-
tions (cf. Kuncoro et al., 2017). Empirically, full
syntactic supervision seems to destroy the perfor-
mance of long-distance dependencies, especially
(pseudo-)cleft constructions, where both acceptable
(e.g., What he did was prepare the meal.) and unac-
ceptable (e.g., *What he ate was prepare the meal.)
sentences share the exactly same syntactic structure
(Figure 1) and should be distinguished via lexical
heuristics alone (cf. Noji and Oseki, 2021). There-
fore, it is reasonable to hypothesize that optimal
syntactic supervision lies somewhere between full
and zero syntactic supervision in order to balance
syntactic structures and lexical heuristics. Intu-
itively speaking, if we teach too much syntax to
language models, those models will forget lexicon.

In this paper, we explore how much syntactic
supervision is “good enough” to make language
models more human-like. Specifically, we propose
the new method called syntactic ablation, where
RNNGs are gradually ablated from full syntactic
supervision to zero syntactic supervision (≈ unidi-
rectional LSTM) by preserving NP, VP, PP, SBAR
nonterminal symbols and the combinations thereof.
The 17 ablated grammars are then evaluated via
targeted syntactic evaluation on the SyntaxGym
benchmark (Gauthier et al., 2020). The results
demonstrate that the RNNG with mild syntactic
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(a) Full grammar (b) NPSb grammar (c) Zero grammar (≒ LSTM)
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Figure 1: Our proposed method of syntactic ablation. RNNGs are gradually ablated from (a) full syntactic
supervision, through (b) mild syntactic supervision, to (c) zero syntactic supervision (≈ unidirectional LSTM) by
preserving NP, VP, PP, SBAR nonterminal symbols and the combinations thereof, hence the 17 ablated grammars.

supervision achieved the best performance compa-
rable to the state-of-the-art GPT-2-XL, which are
then discussed in the broader context of the compu-
tational psycholinguistic literature (Ferreira et al.,
2002; Ferreira and Patson, 2007).

2 Methods

2.1 Recurrent Neural Network Grammars

Recurrent Neural Network Grammars (RNNGs;
Dyer et al. 2016) are deep generative models of
sentences and structures. RNNGs employ the stack
LSTM (Dyer et al., 2015) to compute probability
distributions over 3 parsing actions below:

• NT: Open nonterminal symbols.

• GEN: Generate terminal symbols.

• REDUCE: Close nonterminal symbols.

For the REDUCE action, RNNGs adopt the bidirec-
tional LSTM to encode terminal and nontermi-
nal symbols both left-to-right and right-to-left into
phrasal representations. For inference, RNNGs uti-
lize word-synchronous beam search (Stern et al.,
2017) implemented in Noji and Oseki (2021).1

2.2 Syntactic ablation

Our proposed method of syntactic ablation is sum-
marized in Figure 1. RNNGs are gradually ablated
from full syntactic supervision to zero syntactic
supervision by preserving NP, VP, PP, SBAR non-
terminal symbols and the combinations thereof,
hence 17 ablated grammars below:

• Zero: Zero grammar.

• N: NP nonterminal symbol only.
1https://github.com/aistairc/rnng-pytorch

• V: VP nonterminal symbol only.

• P: PP nonterminal symbol only.

• Sb: SBAR nonterminal symbol only.

• NV: NP and VP nonterminal symbols.

• NP: NP and PP nonterminal symbols.

• NSb: NP and SBAR nonterminal symbols.

• VP: VP and PP nonterminal symbols.

• VSb: VP and SBAR nonterminal symbols.

• PSb: PP and SBAR nonterminal symbols.

• NVP: NP, VP, and PP nonterminals.

• NVSb: NP, VP, and SBAR nonterminals.

• NPSb: NP, PP, and SBAR nonterminals.

• VPSb: VP, PP, and SBAR nonterminals.

• NVPSb: NP, VP, PP, and SBAR nonterminals.

• Full: Full grammar.

RNNGs are trained on the parsed sentences. We
created the training data for each grammar, which
only provides designated nonterminal symbols.
Our original dataset is the same as the XL dataset
of Hu et al. (2020), which is about 42M tokens
from BLLIP corpus (Charniak et al., 2000) and
re-parsed by Berkeley neural parser (Kitaev et al.,
2019), from which we only kept the ablated non-
terminals to create the dataset. For each grammar,
we trained an RNNG with three different random
seeds. For the other training settings, we follow
Noji and Oseki (2021)’s 100M token experiment.

2.3 Targeted syntactic evaluation
Those ablated grammars were then evaluated via
targeted syntactic evaluation on the SyntaxGym
benchmark (Gauthier et al., 2020) which includes 6
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syntactic circuits: Agreement, Garden-Path Effects,
Licensing, Center Embedding, Gross-Syntactic
State, and Long-Distance Dependencies.

We adopted the “perfect match” evaluation met-
ric proposed in Hu et al. (2020), not the “partial
match” evaluation metric utilized in the Syntax-
Gym leaderboard, which seems to overestimate the
accuracies of syntactic generalization.

3 Results

3.1 Overall accuracies

Overall accuracies of our syntactic ablation ex-
periments are summarized in Figure 2. Accura-
cies of SyntaxGym (the vertical axis) are plotted
against grammars with different amounts of syn-
tactic supervision (the horizontal axis), together
with the accuracies of RNNG and GPT-2-XL re-
ported in Hu et al. (2020). Zero (leftmost) and
Full (rightmost, except RNNG and GPT-2-XL)
represent zero and full grammars, respectively, the
former of which is equivalent to the unidirectional
LSTM.2 N, V, P, and Sb indicate grammars with NP,
VP, PP, and SBAR nonterminal symbols preserved,
respectively. Therefore, NP represents the grammar
with NP and PP nonterminal symbols preserved,
not to be confused with the grammar with the NP
nonterminal symbol preserved.

2They are practically equivalent because the REDUCE action
does not occur except the end of the sentence, where the only
difference affecting each word probability is the existence of
“(ROOT” symbol at the beginning of the sentence.

There are three key observations here. First, the
Zero grammar, which is equivalent to the unidi-
rectional LSTM, underperformed the grammars
with some syntactic supervision, suggesting that
syntactic supervision plays an important role for
human-like syntactic generalization. Second, the
Full grammar also underperformed the grammars
with less syntactic supervision and GPT-2-XL in
Hu et al. (2020), meaning that full syntactic su-
pervision does not always make LMs human-like.
Finally, and most importantly, the NPSb grammar
achieved the best performance (84.585417) com-
parable to (or even numerically larger than) the
state-of-the-art GPT-2-XL (84.241459).

3.2 Circuit accuracies

Circuit accuracies of our syntactic ablation exper-
iments are summarized in Figure 3. Accuracies
of 6 circuits on SyntaxGym (the vertical axis) are
plotted against 4 grammars with different amounts
of syntactic supervision (the horizontal axis).

Interestingly, the NPSb grammar outperformed
the Full grammar for 5 among 6 syntactic cir-
cuits (Agreement, Center Embedding, Garden-Path
Effects, Licensing, Long-Distance Dependencies).
Notice that the performance advantage of the NPSb
grammar is significantly larger in Long-Distance
Dependencies, especially (pseudo-)cleft construc-
tions, corroborating the hypothesis that optimal
syntactic supervision lies somewhere between full
and zero syntactic supervision in order to balance
syntactic structures and lexical heuristics.

Zero N V P Sb NV NP NSb VP VSb PSb NVP NVSb NPSb VPSb NVPSb Full RNNG GPT-2-XL
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Figure 2: Overall accuracies of our syntactic ablation experiments. Accuracies averaged over 6 circuits on
SyntaxGym and random seeds (the vertical axis) are plotted against grammars with different amounts of syntactic
supervision (the horizontal axis), together with the accuracies of RNNG and GPT-2-XL reported in Hu et al. (2020).
Error bars denote bootstrapped 95% confidence intervals. Zero (leftmost) and Full (rightmost, besides RNNG and
GPT-2-XL) represent zero and full grammars, respectively. N, V, P, and Sb indicate the grammars with NP, VP, PP,
and SBAR nonterminal symbols preserved, respectively. Therefore, NP represents the grammar with NP and PP
nonterminal symbols preserved, not to be confused with the grammar with the NP nonterminal symbol preserved.
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Figure 3: Circuit accuracies of our syntactic ablation experiments. Accuracies of 6 circuits on SyntaxGym (the
vertical axis) are plotted against 4 grammars with different amounts of syntactic supervision (the horizontal axis).

4 Discussion

In summary, we performed the syntactic ablation
experiments where RNNGs were gradually ablated
from full syntactic supervision to zero syntactic
supervision (≈ unidirectional LSTM), and then
evaluated via targeted syntactic evaluation on the
SyntaxGym benchmark. In this section, the results
of our syntactic ablation experiments will be dis-
cussed in the broader context of the computational
psycholinguistic literature.

4.1 The “good enough” language processing

The overall accuracies reported in Section 3.1
demonstrated that the RNNG with mild syntactic
supervision, especially the NPSb grammar, outper-
formed the RNNGs with zero and full syntactic su-
pervision, as well as GPT-2 XL in Hu et al. (2020).
Those results are consistent with the “good enough”
approach to language processing (Ferreira et al.,
2002; Ferreira and Patson, 2007), where human
language processing does not always generate deep
syntactic structures, but rather employs shallow
syntactic structures and frugal lexical heuristics.
Here, we suggest that the RNNG with mild syn-
tactic supervision serves as the mechanistic model
of the “good enough” approach to language pro-
cessing, in that neither deep/hierarchical syntax
is necessary nor shallow/flat syntax is sufficient;
rather, some syntax in between is “good enough”.

4.2 Long-Distance Dependencies

The circuit accuracies reported in Section 3.2 re-
vealed that the NPSb grammar outperformed the
Full grammar for 5 syntactic circuits such as
Agreement, Center Embedding, Garden-Path Ef-
fects, Licensing, Long-Distance Dependencies.

Upon closer inspection (cf. Hu et al., 2020), those
5 syntactic circuits share the isomorphic syntactic
structure with long-distance dependencies between
dependents inside and outside “heavy” subjects
(where the dependents are italicized):3

• Agreement: [NP The farmer [PP near the
clerks]] knows many people.

• Center Embedding: [NP The painting [SBAR
that the artist painted]] deteriorated.

• Garden-Path Effects: [NP The child [SBAR
kicked in the chaos]] found her way back
home.

• Licensing: [NP No managers [SBAR that re-
spected the guard]] have had any luck.

• Long-Distance Dependencies: [SBAR What
he did] was prepare the meal.

Importantly, NP, PP, and SBAR representations
effectively make linearly distant dependents hier-
archically close, while VP representations have
no designated raison d’être and, moreover, may
override lexical heuristics of verbs (e.g., knows, de-
teriorated) via recursive composition operations
(cf. Kuncoro et al., 2017; Noji and Oseki, 2021).
Thus, at least for those 5 syntactic circuits, the NPSb
grammar is the optimal syntactic supervision that
balances syntactic structures and lexical heuristics.

3While those 5 syntactic circuits are not named long-
distance dependencies (except the Long-Distance Dependen-
cies circuit which includes filler-gap dependencies and cleft
constructions), they all involve long-distance dependencies.
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5 Conclusion

In this paper, we explored how much syntactic su-
pervision is “good enough” to make language mod-
els more human-like. Specifically, we performed
the syntactic ablation experiments where RNNGs
were gradually ablated from full syntactic supervi-
sion to zero syntactic supervision (≈ unidirectional
LSTM), and then evaluated via targeted syntactic
evaluation on the SyntaxGym benchmark. The
results demonstrated that the RNNG with mild syn-
tactic supervision achieved the best performance
comparable to the state-of-the-art GPT-2-XL. We
hope that the “good enough” approach to language
processing (Ferreira et al., 2002; Ferreira and Pat-
son, 2007) provides the promising direction for
future research.

Limitations

There are several limitations with this paper. First,
the evaluated models are limited; the syntactic ab-
lation was applied to only one model (i.e. RNNG)
and remains to be generalized to other models
(cf. Sartran et al., 2022). Second, the evaluation
datasets are also limited; our ablated RNNGs were
evaluated against only one dataset (i.e. Syntax-
Gym) and remain to be extended to other datasets
(cf. Warstadt et al., 2020). In addition, from engi-
neering perspectives, our ablated RNNGs, though
lightweight, still require some syntactic supervi-
sion, which may induce the scalability bottleneck.
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