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Abstract

Recent advances in the area of long docu-
ment matching have primarily focused on us-
ing transformer-based models for long docu-
ment encoding and matching. There are two
primary challenges associated with these mod-
els. Firstly, the performance gain provided by
transformer-based models comes at a steep cost
– both in terms of the required training time
and the resource (memory and energy) con-
sumption. The second major limitation is their
inability to handle more than a pre-defined in-
put token length at a time. In this work, we
empirically demonstrate the effectiveness of
simple neural models (such as feed-forward net-
works, and CNNs) and simple embeddings (like
GloVe, and Paragraph Vector) over transformer-
based models on the task of document match-
ing. We show that simple models outperform
the more complex BERT-based models while
taking significantly less training time, energy,
and memory. The simple models are also more
robust to variations in document length and text
perturbations.

1 Introduction

Matching long documents (e.g.: research papers,
Wikipedia articles, patents, etc.) is an important
task that can help understand the (dis)similarity be-
tween documents for downstream tasks like long
document search. The first step towards better doc-
ument matching is obtaining meaningful long docu-
ment representations. Recent advances in this area
have primarily focused on using transformer-based
models for long document encoding and match-
ing (Beltagy et al., 2020; Jha et al., 2022; Yang
et al., 2020b; Zaheer et al., 2020). We use the term
transformers to mean pre-trained transformers. De-
spite promising results, there are two primary chal-
lenges associated with such models. First, the per-
formance gain provided by the huge transformer-
based language models (LMs), like BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), and

Longformer (Beltagy et al., 2020) come at a steep
cost – both in terms of the required training time,
and the resource (memory and energy) consump-
tion. For example, the smaller BERTBASE model
has 110 million parameters, whereas the bigger
BERTLARGE model has a total of 340 million
parameters and fine-tuning a single BERTBASE

model on GPU can take hours. The second ma-
jor limitation of transformer-based models is their
inability to handle more than a pre-defined input
token length at a time (512 tokens for BERT, and
4096 tokens for Longformer). This is a big draw-
back as they cannot handle long documents like
research papers, patents, long articles, etc., with-
out using aggregation techniques (Reimers and
Gurevych, 2019).

In this work, we empirically demonstrate that
embeddings obtained from GloVe (Pennington et al.,
2014), and Paragraph Vectors (Le and Mikolov,
2014) along with simple neural models, such as
feed-forward networks, and CNNs, outperform sev-
eral transformer-based models for the document
matching task. We define these models as simple
as they take significantly less time to train and con-
sume less memory and energy overall when com-
pared to complex transformer-based models. Our
long document matching setting is fundamentally
different from long-form question answering and
sentence similarity tasks. For the latter tasks the
query is ‘short’, unlike the long document match-
ing task where both the query and the target text are
‘long’. We experiment with three different kinds of
semi-structured long document datasets in English:
(i) ACL Anthology research papers, (ii) English
Wikipedia articles, and (iii) Patents from US Patent
and Trademark Office (USPTO). Our primary con-
tributions are summarized as follows:

• We provide insights into the challenges of us-
ing transformer-based models for the task of
long document matching. For this task, sim-
ple neural models are as effective and take a
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fraction of the training time and resources to
outperform transformer-based models.

• We provide insights into the best input em-
beddings for the simpler models in this task.

• We demonstrate that simple models are also
more robust to changes in document length
and text perturbation.

• We create benchmark long document datasets
(by pre-processing ACL Anthology 2014 pa-
pers and Wikipedia articles) that will be made
publicly available.

2 Related Work

Early work on long document matching focused
on clustering techniques (Friburger et al., 2002;
Huang et al., 2008; Strehl et al., 2000). Recently,
Guo et al. (2016) proposed a deep learning based
architecture for ad-hoc retrieval when comparing
documents. Some works have also used convolu-
tional networks (Hu et al., 2014; Pang et al., 2016;
Yu et al., 2018), with weighting mechanism (Yang
et al., 2016a) to generate a final query-document
score. Mitra et al. (2017) propose a combination
model that uses weighted sum representation-based
and interaction-based results. Yang et al. (2016b)
propose HAN, a hierarchical attention network for
document matching. Jiang et al. (2019) propose
SMASH, a multi-depth attention based hierarchi-
cal recurrent neural network for long-document
matching. However, Yang et al. (2020b) pre-train
SMITH, a transformer based hierarchical model
for text matching that outperforms SMASH across
multiple datasets. Jha et al. (2022) use supervised
contrative learning for interpretable long document
matching. We compare several of these models on
the required training time and resources.

A growing body of literature has used trans-
former based model for long document encoding
(Child et al., 2019; Ho et al., 2019; Kitaev et al.,
2019; Liu and Lapata, 2019; Qiu et al., 2020; Yang
et al., 2020a). Longformer (Beltagy et al., 2020)
adapts transformers to use an attention mechanism
that scales linearly with sequence length. Big bird
(Zaheer et al., 2020) uses a sparse attention mecha-
nism that reduces BERT’s quadratic dependency on
the sequence length to linear. CogLTX (Ding et al.,
2020) uses text blocks for rehearsal and decay over
key sentences to overcome the insufficient long-
range attentions in BERT. Transformer-XL (Dai
et al., 2019) and Compressive Tranformers (Rae

Figure 1: A schematic siamese comparison model

et al., 2019) compress the transformers to use atten-
tive sequence over long text. Although promising,
we demonstrate that transformer-based models are
not considerably better than simple neural models
on the task of long document matching.

3 Empirical Evaluation

Here we provide details of the simple and the
transformer-based models and present an empirical
comparison between them based on their overall
performance, training time, resource consumption,
and robustness on the document matching task.

Task Formulation We define the task of docu-
ment matching as follows. Given a source docu-
ment s, and a set of target documents DT , the goal
is to estimate the semantic match ŷ = sim(s, t),
where t ∈ DT for every document pair (s, t). Sim-
ilar target documents will have a higher similar-
ity score. The document matching problem can
be seen as a binary classification task, where the
model predicts 1 for similar documents, and 0 for
dissimilar documents. We use the term “matching"
in the broad sense of document relevance (see Ap-
pendix A.2). The models take as input a pair of
documents (source and target), and compute the
cosine similarity between the encoded document
representations. If the cosine similarity is greater
than a similarity threshold θ, they are considered
similar; otherwise they are considered dissimilar.

Models We pick a representative set of mod-
els from different categories and compare them
by building their siamese versions (shown in Fig-
ure 1). The siamese network has three primary
components: (i) Input (Source and Target Docu-
ment), (ii) Document Encoder, and (iii) Loss Func-
tion. The source and target document encoder net-
works share weights. We experiment with three
simple neural models: (i) DSSM: A simple feed-
forward network (Huang et al., 2013), (ii) ARC-
I: A CNN-based model (Hu et al., 2014) , and
(iii) HAN: An RNN-based Hierarchical Attention
Network (Yang et al., 2016b) designed for long
documents. Their performance is compared with
three state-of-the-art transformer-based models: (i)
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AAN WIKI PAT
Model P R F1 Acc P R F1 Acc P R F1 Acc
HAN-G 0.504 0.881 0.641 0.607 0.566 0.584 0.575 0.775 0.609 0.848 0.709 0.522
DSSM-T 0.768 0.809 0.787 0.780 0.823 0.939 0.877 0.869 0.869 0.957 0.911 0.905
DSSM-G 0.550 0.541 0.545 0.549 0.966 0.986 0.975 0.975 0.992 0.998 0.995 0.995
DSSM-D 0.852 0.763 0.805 0.815 0.933 0.984 0.958 0.957 0.841 0.959 0.896 0.949
ARC-I-G 0.643 0.873 0.734 0.743 0.992 0.983 0.987 0.987 0.905 0.963 0.933 0.939
ARC-I-D 0.841 0.763 0.800 0.809 0.987 0.985 0.986 0.986 0.967 0.958 0.962 0.983
BERT 0.760 0.914 0.793 0.761 0.980 0.950 0.960 0.960 1.0 0.988 0.994 0.994
LONG 0.681 0.833 0.749 0.773 0.974 0.960 0.967 0.967 1.0 0.984 0.992 0.992
SMITH 0.726 0.565 0.635 0.676 0.949 0.982 0.965 0.963 0.892 0.939 0.865 0.939

Table 1: Performance on the document matching task up to the model’s maximum allowed input token length (512
for BERT; 4096 for Longformer, > 8000 for all other models). We experiment with Trigrams (T), GloVe (G), and
Doc2Vec (D) Embeddings as input for the simple neural models. The best performance is highlighted in bold.

BERT (Devlin et al., 2019), (ii) LONG: Long-
former (Beltagy et al., 2020), and (iii) SMITH:
Siamese Multi-depth Transformer based Hierar-
chical Encoder (Yang et al., 2020b). We report
the mean precision, recall, F1, and accuracy over
5 folds for the best performing hyper-parameters.
The code can be found here: https://github.com/

AkshitaJha/SimpleModelsforLongDocumentMatching.

Datasets We follow the previous literature (Yang
et al., 2016b; Jiang et al., 2019; Yang et al., 2020b)
and experiment with the following three stan-
dard long document datasets: (i) ACL Anthol-
ogy Network Corpus (AAN)1, (ii) Wikipedia Ar-
ticles (WIKI)2, and (iii) USPTO Patents (PAT)3.
Each dataset consists of balanced 15,000 pairs
of documents with 50% of them being similar
pairs, and the remaining being dissimilar. The
PAT dataset is an industry gold standard but we
will publicly release the pre-processed AAN and
the WIKI datasets (see Appendix A.2 for details).
The dataset can be found here: https://github.com/

AkshitaJha/SimpleModelsforLongDocumentMatching

Performance on Document Matching Task We
experiment with three input representations for sim-
ple neural models: (i) char-Trigram Hashing (T)
(Huang et al., 2013), (ii) GloVe Embeddings (G)
(Pennington et al., 2014), and (iii) Paragraph Vec-
tor/Doc2Vec Embeddings (D) (Le and Mikolov,
2014) (See Appendix 4). Unlike most transformer-
based models that take as input tokens up to a
pre-defined length (512 for BERT, and 4096 for
Longformer), simple models and SMITH have the
ability to take the entire long document (> 8000
tokens) as input. Table 1 demonstrates the per-
formance of different models on the task of docu-

1
https://aan.how/download/#aanNetworkCorpus

2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

3
https://github.com/google/patents-public-data

ment matching up to their maximum allowed input
document length (see Appendix A.8 for different
document lengths.) We observe that despite be-
ing relatively simple and not taking into account
contextual embeddings, DSSM and ARC-I outper-
form the transformer based models using GloVe
and Doc2Vec Embeddings on the AAN, WIKI, and
the PAT dataset.

Training Time Figure 2a shows the training time
taken to reach the best performance for every model
for their maximum allowed input token lengths. We
only report the fine-tuning time after downloading
the pre-trained models. All experiments were done
on a 16GiB Tesla V100. The simple models like
DSSM, ARC-I, and HAN take 1/12 to 1/15 of the
training time taken by the transformer-based mod-
els to outperform them on all three datasets (see
Appendix A.4 for the training time for different
document lengths on all datasets.)

Memory and Energy consumption Memory
consumption on a 16GiB Tesla V100, for a batch
size of 1, for different models can be seen in Fig-
ure 2b. Compared to transformer-based models
simple neural models consume significantly less
memory for the same document length (12 GiB for
Longformer vs. a maximum of 8 GiB for DSSM for
4000 tokens). We also compute the overall energy
required for training the models to achieve their
best performance (Figure 2c) by measuring the
power consumption of the GPU over their training
lifetime. Longformer consumes > 6MJ of energy
for fine-tuning on documents with 4096 tokens,
BERT consumes ≈ 500kJ of energy for fine-tuning
on documents with just 512 tokens, and the SMITH
model consumes ≈ 200kJ of energy for fine-tuning
on longer documents; whereas the simple mod-
els consume < 100kJ of energy for training from
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(a) Training time on the log scale (b) Memory consumption (c) Energy Consumption on log scale

Figure 2: Comparison of simple neural models with transformer-based models based on (a) Training Time, (b)
Memory Consumption, and (c) Energy Consumption.

(a) Comparison with BERT [512 tokens] (b) Comparison with LONG [4096 tokens] (c) Original vs. Shuffled Documents

Figure 3: Comparison between the robustness of simple neural models and transformer-based models w.r.t. document
length and text perturbation on the AAN dataset.

scratch for documents with > 8000 tokens.

Robustness to Document Length We limit the
maximum number of tokens in each document dur-
ing training and testing, and observe the final test
accuracy on the document matching task. It should
be noted that documents of different lengths are ac-
tually ‘truncated long documents’ without the com-
plete contextual information needed to compute
the actual similarity between two long documents.
Figure 3 compares the model accuracy of simple
models (with their default input embeddings) with
transformer-based models upto their maximum al-
lowed token lengths for the AAN dataset – 512
tokens for BERT (Figure 3a), and 4096 tokens for
Longformer (Figure 3b). DSSM outperforms the
baseline models for all documents lengths. BERT
and Longformer have a consistent performance
on AAN for different input lengths, unlike HAN
and SMITH that are not as robust to the variations
in document length, although they were designed
specifically for long documents. We found sim-
ilar results for WIKI and PAT dataset (see Ap-
pendix A.5). We also experiment with documents
of length > 512 tokens for BERT, and > 4096
tokens for Longformer by aggregating the chunk
representations upto their maximum allowed token
length. We used the SUM and AVG aggregation
techniques and observed an overall performance
drop (see Table 5).

Robustness to Text Perturbation For text pertur-
bation, we split documents into paragraphs of 512
tokens and randomly shuffle the order of these para-
graphs before training different models to check
for learned positional bias. We measure their test
accuracy on the original document matching task.
Figure 3c shows the model performance for all
the baseline methods on AAN dataset. We ob-
serve a significant drop in the model performance
for transformer-based models (BERT, Longformer,
and SMITH). There is no significant change in the
accuracy for the simple models – DSSM, ARC-I,
and HAN. The transformer based models are more
sensitive to text perturbation. The simple models,
on the other hand, use non-contextual embeddings,
such as GloVE, and Doc2Vec and are more robust
to text perturbation (see Appendix A.6).

4 Conclusion
We empirically demonstrate the trade-off of using
transformer-based models for semi-structured long
English documents like research papers, Wikipedia
articles, and patents. Transformer-based models
have an overall strong performance and smaller
variability across datasets. However, we observe
that for the task of long document matching, using
contextual embeddings do not provide any added
advantage. A simple feed-forward network or
a CNN-based model using GloVe or Doc2Vec
embedding outperforms several state-of-the-art
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pre-trained transformer-based models at a frac-
tion of their overall training time and resources
(memory and energy). These simple neural mod-
els are also more robust to changes in document
length and text-perturbation.

5 Limitations

One of the limitations of our work is that we ex-
perimented only with long documents in English.
Comparing simple neural models and transformer-
based models in different languages would be an
interesting study but is outside the scope of this
short paper. We would also like to highlight that
we use classification metrics instead of information-
retrieval metrics due to the limitations of the dataset
which has very few positive samples (2-3) for every
document.
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A Appendix

A.1 Model Description

The encoder networks and their default inputs have
been described below:

A.1.1 Simple Models
• DSSM (Huang et al., 2013): A simple three-

layered feed forward network that takes as
input the vectorized representation of a docu-
ment.

• ARC-I (Hu et al., 2014): A CNN-based model
that takes as input a 2D-matrix representation
of a document where words in the sentences
are represented using GloVe embeddings (Pen-
nington et al., 2014). These are then passed
through convolutional and max-pooling lay-
ers to finally obtain a document representation
for both source and target documents, inde-
pendently. The document representations are
concatenated and passed through a multi-layer
perceptron to predict if the pair of documents
are similar or not.

• Hierarchical Attention Network (HAN)
(Yang et al., 2016b): A hierarchical GRU-
based model with attention mechanism that
aggregates GloVe embeddings at word level
into sentence representations to arrive at the
final document representation.

A.1.2 Transformer-Based Models
• BERT (Devlin et al., 2019): A siamese match-

ing model with BERT. For long document in-
puts, BERT only uses the first 512 tokens
of each document. We use a pre-trained
BERTBASE model which is fine-tuned dur-
ing training.

• Longformers (LONG) (Beltagy et al., 2020)
: A siamese model with transformer-based
Longformers for long sequences. It has an at-
tention mechanism that scales linearly with se-
quence length and takes as input a maximum
of 4096 tokens. We consider an attention win-
dow of size 256.

• Siamese Multi-depth Transformer based
Hierarchical Encoder (SMITH) (Yang et al.,
2020b): A transformer-based hierarchical en-
coder which is the current SOTA model for
long-form document matching task.

A.1.3 Implementation Details
For all the models presented in the paper, we use
the same architecture as the original papers. We
tune the hyperparamters and report the best results.
The DSSM, ARC-I, HAN, and SMITH models
were implemented in Tensorflow. BERT and Long-
former were implemented in PyTorch. DSSM has
hidden units of dimension 300 for its hidden layers
and an output dimension of 128. The learning rate
was 0.0075. ARC-I takes as input a 2D matrix of
the size [no. of sentences x sentence length]. This
is given as input to two 1D-convolutional (filter size
of 200, kernel size 3) and MaxPooling layers of
size 2, in order to get the final document represen-
tations. The representations of both the source and
the target documents are concatenated and passed
through a two-layer multi-layer perceptron. The
first hidden layer of the MLP has a dimension of
64 with ReLU activation. The second layer has 1
node and sigmoid activation which predicts if the
pair of documents are similar or not. The learning
rate was set to 0.00075. HAN uses a bi-Directional
GRU layer and applies attention mechanism to ar-
rive at final sentence representation for the source
and the target documents with a learning rate of
0.001. We use the pre-trained BERTBASE

4 and the
Longformer 5 models provided by the Huggingface
library. The SMITH code was publicly available.
The BERT, Longformer, and SMITH models are
fine-tuned during training. All other models are
trained from scratch. The learning rate is set to
5e-5 for the transformer based models. We use
an Adam optimizer for all models with a weight
decay of 0.01. We use binary cross entropy as
the loss function for the simple models, pairwise
loss for BERT and Longformer, and triplet loss for
SMITH. These loss functions resulted in the best
performance for the model. The three datasets are
split into 80-10-10 for train, validation, and test
sets, respectively. We use cosine similarity and the
similarity threshold θ is set to 0.5. We perform 5
fold cross-validation and use early stopping on the
validation set to prevent over-fitting. The models
were trained on one 16GB Tesla V100 GPU.

A.2 Dataset

• ACL Anthology Network Corpus (AAN)6:
The AAN corpus (Radev et al., 2013) consists

4https://huggingface.co/transformers/model_doc/bert.html
5https://huggingface.co/transformers/longformer.html
6https://aan.how/download/#aanNetworkCorpus
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of 23,766 papers written by 18,862 authors in
373 venues related to NLP and forms a cita-
tion network. Each paper is represented by a
node with directed edges connecting a paper
(the parent node) to all its cited papers (chil-
dren nodes). Papers that have been cited by
the parent paper are treated as similar samples
(Jiang et al., 2019). For every similar sample,
an irrelevant paper is randomly chosen to cre-
ate a balanced dataset. Sets of similar papers
are given the same labels. To prevent leak-
age of information and make the task more
difficult, the references and the abstract sec-
tions are removed. Papers without any content
are also removed. We then randomly sample
15,000 research paper pairs for our experi-
ment.

• Wikipedia (WIKI)7: We use the Wikipedia
dump, and adopt a similar methodology pro-
posed by Jiang et al. (Jiang et al., 2019) to
process this data. From the Wikipedia dump
containing 6 million articles, we randomly
sampled 250,000 articles along with the ar-
ticles present in their outlinks. We create a
dataset of similar Wikipedia articles by assum-
ing that similar articles have similar outgoing
links. The Jaccard similarity between the out-
going links of the source and the target articles
is calculated. If the Jaccard similarity > 0.5,
the documents are assumed to be similar, oth-
erwise they are considered dissimilar. Only
articles with two or more similar articles are
selected. We then randomly sample 15,000
research paper pairs for our experiment.

• Patent (PAT)8: The patent dataset is an in-
ternally curated industry gold-standard. This
dataset consists of patents sampled from the
publicly available USPTO patents belonging
to four different categories: video, wireless,
image compression, and network compression.
A patent document is extremely long and pri-
marily consists of (i) Abstract, (ii) Claims,
and (iii) Description sections. We only make
use of the Claims and the Description sec-
tions for our experiments to prevent leakage
of information from Abstracts. Three internal
human annotators, with expert domain knowl-

7https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-
pages-articles.xml.bz2

8https://github.com/google/patents-public-data

edge, were given pairs of documents and were
asked to label them as similar or dissimilar
based based on the technology presented in
the patents. They referred to the Abstract,
Claims, and CPC Codes9 of the patents to
measure the similarity. The final document
content similarity label was based on majority
vote.

The dataset statistics can be found in Table 2.
We would like to note that although considering
only the cited papers and outgoing links for AAN
and Wikipedia articles, respectively is not the most
optimal approach for creating similar document
pairs, we adopt it for the following two reasons: (i)
We do not have annotated fine-grained similarity
scores for AAN and WIKI datasets, and (ii) We
follow an approach similar to the previously pub-
lished work (Jiang et al., 2019; Yang et al., 2016b,
2020b). We use the term “document matching" or
“document similarity" in the broad sense of “cita-
tion matching" or “document relevance" – Given
a pair of documents, are the two documents rele-
vant to each other and should they be cited by each
other.

A.3 Performance on Document Matching
Task

Table 3 shows the average performance of simple
models when compared to transformer based mod-
els on the document matching task for AAN, WIKI,
and PAT datasets. ARC-I with Doc2Vec embed-
dings has the best average precision and accuracy.
The average F1 score is comparable to BERT which
re-emphasizes the benefits of using simple models
for document matching.

A.4 Training Time for Different Document
Lengths

The training time for different document lengths
for all three datasets can be seen in Figure 4. BERT
can only take up to 512 tokens. DSSM, ARC-1,
and HAN take considerably less time to train when
compared to transformer-based.

A.5 Robustness to Document Length

We check the robustness of simple models and
transformer-based models for different document
lengths on the task of document matching. From
Figure 5 and Figure 6, we observe that the simple

9
https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
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Dataset Avg #Tokens Max #Tokens Avg #Sentences Max #Sentences Vocabulary
AAN 5,381.1 54,556 215.7 2,183 515,422
WIKI 3,777.0 26,172 190.6 1,685 1,151,309
PAT 8,177.4 50,322 214.1 2,709 220,023

Table 2: Dataset statistics

Model P R F1 Acc
HAN-G 0.559 0.771 0.641 0.634
DSSM-T 0.820 0.901 0.858 0.851
DSSM-G 0.836 0.841 0.838 0.839
DSSM-D 0.875 0.902 0.886 0.907
ARC-I-G 0.846 0.939 0.884 0.889
ARC-I-D 0.931 0.902 0.916 0.926
BERT 0.913 0.950 0.915 0.905
LONG 0.885 0.925 0.902 0.910
SMITH 0.855 0.828 0.821 0.860

Table 3: Average performance across AAN, WIKI, and PAT datasets on the document matching task (shown in
Table 1). We experiment with Trigrams (T), GloVe (G), and Doc2Vec (D) Embeddings as input for the simple neural
models. The best performance is highlighted in bold.

(a) AAN (b) WIKI (c) PAT

Figure 4: Doc Length vs Training Time (in log scale) for different document lengths.

models DSSM and ARC-I, and the transformer-
based models BERT and Longformer, though not
specifically designed for long documents are robust
for different document lengths. BERT can only
handle up to 512 tokens at a time, and Longformer
can only handle up to 4096 input tokens. HAN and
SMITH, on the other hand, were specially designed
for long documents and have a high variance in
their performance on the document matching tasks
for different document lengths.

We also experimented with longer documents
(> 512 tokens for BERT, and > 4096 tokens for
Longformer). We obtained the final document rep-
resentation by dividing the document into chunks
of their maximum allowed token length. We then
aggregated these chunk representations. We exper-
imented with the SUM and AVG aggregation tech-
niques by taking the representations of the ‘[CLS]’
token and ‘the pooler output’ for these models. We

observed an overall performance drop because of
aggregation. The results were the same for both
SUM and AVG aggregation techniques (Table 5).

A.6 Robustness to Text Perturbation

We randomly shuffle the documents before training
different models and measure their test accuracy
on the original document matching task (Figure 7)
for all three datasets. The first few paragraphs in
Wikipedia articles, research papers, and patents are
highly informative. We wanted to verify if the mod-
els give too much importance to the position of the
initial text. In the context of long documents, just
re-ordering the paragraphs of a document spanning
pages should not have an effect on the downstream
tasks of document matching. (Note: We use the
term document matching broadly to refer to cita-
tion matching or document relevance. Given a
document pair, we would like to verify if the two
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(a) AAN (b) WIKI (c) PAT

Figure 5: Document Length vs Accuracy upto 512 tokens

(a) AAN (b) WIKI (c) PAT

Figure 6: Document Length vs Accuracy upto 4096 tokens

documents are relevant to each other.) In order to
verify this assumption, we shuffle the paragraphs to
distribute the important texts randomly and check
the performance of all models on this downstream
task. Although, we do observe a small drop af-
ter paragraph shuffling because the simple models
do take into account a shallow context of the in-
put text, the simple neural models overall prove
more robust to text perturbation when compared
to transformer-based models that take into account
deep contextual information.

A.7 Best Input Embeddings for Simple
Models

For simple models, we evaluate if the input vector
representations play a role in the final results. We
use the following input representations.

• Tri-Gram Hashing (T): Bag-of-
charTrigrams is a technique for word
hashing (Huang et al., 2013) where each
word is broken down into character trigrams
(charTrigrams). Since, the number of possible
charTrigarms are fixed and limited, this
is a scalable solution for long documents.
The charTrigrams are obtained for every
token in the input text after appending the
symbol ‘#’ before and after every token.
For example, the word ‘good’ [#good#]

is split into [#go, goo, ood, od#] and then
mapped to a 30,621 dimensional hash table.
This vector representation for the document
is then given as input to the models. For
DSSM, each document is represented as a
bag-of-charTrigrams and given as input to
the model. For ARC-I and HAN, we split
each document into n chunks which are
represented in the form of a trigram hash. We
construct a matrix of size n × trigram hash
for the entire document which is given input
to ARC-I and HAN.

• GloVe Embeddings (G): GloVe (Pennington
et al., 2014) is an unsupervised learning algo-
rithm for obtaining vector representations for
words. We download the pre-trained GloVe
embeddings and get the vector representations
for words in a long document. These vector
representations are given as input to different
models. For DSSM, we divide the document
into chunks of a specified maximum length.
We then take GloVe embedding representation
of tokens for each chunk upto a maximum
length and average them to get a document
representation. For ARC-I and HAN, each
document is represented as a matrix of size
[embedding dimension × max length] in each
document.
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(a) AAN (b) WIKI (c) PAT

Figure 7: Original vs Shuffled Documents

AAN WIKI PAT
Model P R F1 Acc P R F1 Acc P R F1 Acc
DSSM-T 0.768 0.809 0.787 0.780 0.823 0.939 0.877 0.869 0.869 0.957 0.911 0.905
ARC-I-T 0.641 0.606 0.622 0.634 0.969 0.944 0.956 0.957 0.536 0.754 0.626 0.793
HAN-T 0.665 0.885 0.759 0.720 0.911 0.929 0.920 0.920 0.477 0.857 0.618 0.751
DSSM-G 0.550 0.541 0.545 0.549 0.966 0.986 0.975 0.975 0.992 0.998 0.995 0.995
ARC-I-G 0.643 0.872 0.734 0.676 0.992 0.983 0.987 0.987 0.905 0.963 0.933 0.929
HAN-G 0.504 0.881 0.641 0.507 0.935 0.984 0.959 0.958 0.609 0.848 0.709 0.522
DSSM-D 0.852 0.763 0.805 0.815 0.933 0.984 0.958 0.957 0.841 0.959 0.896 0.949
ARC-I-D 0.841 0.763 0.800 0.809 0.987 0.985 0.986 0.986 0.967 0.958 0.962 0.983
HAN-D 0.709 0.919 0.801 0.771 0.875 0.859 0.866 0.873 0.946 0.996 0.970 0.975

Table 4: Comparison of different input aggregation techniques: (i) charTrigrams (T), (ii) GloVe Embeddings (G),
and (iii) Doc2Vec embeddings (D), for simple models.

AAN WIKI PAT
Model P R F1 Acc P R F1 Acc P R F1 Acc
BERT-CLS 0.992 0.579 0.732 0.637 0.998 0.499 0.666 0.499 1 0.639 0.783 0.714
BERT-POOL 0.572 0.992 0.726 0.625 1 0.500 0.667 0.501 1 0.637 0.778 0.711
LONG-CLS 0.599 0.842 0.699 0.743 0.968 0.764 0.854 0.835 0.927 0.911 0.919 0.917
LONG-POOL 0.727 0.819 0.770 0.783 0.994 0.812 0.894 0.883 0.996 0.918 0.955 0.953

Table 5: Aggregation using the [CLS] token, and the pooler output [POOL] from BERT and Longformer for
documents > 512 and > 4096 tokens for BERT and Longformer, respectively. The results were the same for SUM
and AVG aggregation techniques.

• Doc2Vec Embeddings (D): Doc2Vec (Le and
Mikolov, 2014) embeddings can be used to
get vector representations for a document. We
train Doc2Vec models from scratch on differ-
ent datasets to get relevant document repre-
sentations. These document representations
are then given as input to different document
matching models.

Table 4 shows the model performance of the sim-
ple models for the above three input representations.
We observe that using GloVe (G) and Doc2Vec (D)
input embeddings improve the model performance
of the simple models overall.

A.8 Different Aggregation Techniques for
Transformer Based Models

We experiment with different aggregation tech-
niques (SUM and AVG) for > 512 tokens for
BERT, and > 4096 tokens for Longformer. We

chunk the documents and aggregate the represen-
tations from the ‘[CLS]’ token and ‘the pooler
output’. The results can be seen in Table 5 and
were the same for SUM and AVG aggregation tech-
niques. Aggregation resulted in an overall perfor-
mance drop when compared to just truncating the
documents up to 512 tokens and 4096 tokens for
BERT and Longformers, respectively for the docu-
ment matching.
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