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Abstract

Pre-trained neural masked language models
are often used for predicting a replacement
token for a given sequence position, in a
cloze-like task. However, this usage is re-
stricted to predicting a single token, from a
relatively small pre-trained vocabulary. Recent
Sequence2Sequence pre-trained LMs like T5
do allow predicting multi-token completions,
but are more expensive to train and run. We
show that pre-trained masked language models
can be adapted to produce multi-token com-
pletions, with only a modest addition to their
parameter count. We propose two simple adap-
tation approaches, trading parameter counts for
accuracy. The first method generates multi-
token completions from a conditioned RNN. It
has a very low parameter count and achieves
competitive results. The second method is
even simpler: it adds items corresponding to
multi-token units to the output prediction ma-
trix. While being higher in parameter count
than the RNN method, it also surpasses current
state-of-the-art multi-token completion mod-
els, including T5-3B, while being significantly
more parameter efficient. We demonstrate that
our approach is flexible to different vocabular-
ies and domains and can effectively leverage ex-
isting pre-trained models available in different
domains. Finally, a human evaluation further
validates our results and shows that our solution
regularly provides valid completions, as well
as reasonable correctness for factual-sentence
completions.

1 Introduction

Multi-Token-Completion (MTC) is the task of fill-
ing masked sentences with a sequence of tokens
such that the completed sentence is probable and
coherent. e.g., for the masked sentence "The 46th
president of the US, [MASK], was elected in 2020"

*Authors contributed equally.

a good completion would be any of "Biden", "Joe
Biden", "president Biden" and more.

While Masked Language Models (MLMs) such
as BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019) successfully deal with a simpler vari-
ation of this task (single-token completion) these
models were pre-trained on a limited vocabulary,
not containing multi-word phrases. It is technically
possible to complete numerous tokens simultane-
ously with MLMs by introducing a sequence of
[MASK] tokens, but there are no clear methods of
conditioning the tokens on each other, and, more
importantly, the length of the completion needs
to be pre-determined. Expanding MLMs’ effec-
tive completion vocabulary – the actual vocabulary
they are capable of completing well – will help a
recent line of work using MLMs to extract knowl-
edge/information from corpora (Jiang et al., 2020;
Petroni et al., 2019; Kushilevitz et al., 2020).

Most existing works using MLMs to complete
sentences either avoid the problem by limiting the
completions to single tokens or use sub-optimal
heuristics for MTC (e.g. presetting the length of
the sequence and filling one token at a time). A triv-
ial solution is to increase the number of tokens used
in the pre-processing tokenization step, and also
include multi-word phrases as tokens. However,
apart from the longer tokenization time1, the main
problem with this approach is that changing the in-
put level of the model requires adapting the weights
of the full MLM to the new input.2 A recent family
of seq2seq pre-trained LMs, the prevalent of which
is T5 (Raffel et al., 2020), are trained directly on
the MTC task, and indeed perform quite well on it,
especially with larger model sizes. However, the
seq2seq objective, coupled with very high param-
eter counts, make such models expensive to train

1Expanding BERT’s tokenizer vocabulary from 30K to
100K phrases leads to a degradation of ×30 in tokenization
time. Further details are in Appendix A.

2This requires either full pre-training of the MLM or long,
end-to-end fine-tuning using a considerable amount of data.
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and to run inference on, compared to MLMs.
In this work, we demonstrate how pre-trained

MLMs can be adapted to produce multi-token com-
pletions from (large) fixed vocabularies, using a
self-supervised training objective and only a mod-
est parameter count. Specifically, we demonstrate
an effective adaptation of pre-trained MLMs to
predict, on top of their pre-trained vocabularies,
additional ∼ 100K noun-phrases (NP-chunks) and
entities ranging in length from 1 to 10 tokens. The
only requirement is a textual corpus in which each
of the desired phrases appears over k times (we
used k = 50 in this work). The adapted model
surpasses the accuracy of T5-3B predictions, while
using a fraction of the parameter count and be-
ing significantly more efficient to run. Apart from
evaluating with automatic measures, we also use
human-annotators to explore different aspects of
the proposed completions.

After experimenting on the prediction of general-
purpose phrases, we also show our methods can be
used to predict phrases in a specific domain. This
is a significant benefit of the adaptation approach
since the completion vocabularies can be tailored
to a specific project’s needs, using domain-specific
pre-trained MLMs, even in domains where huge
T5-like models are not available3.

We use any pre-trained MLM for MTC by ex-
tracting the informative representations the MLM
uses for completing a single token, and feeding
them into a small and simple model that chooses
appropriate multi-token completions. We offer two
different completion models. Depending on the sce-
nario, both are useful; the first solution, which ex-
pands the MLM’s decoder matrix, achieves SOTA
accuracy. The second solution, using a small it-
erative generation model, is well suited for large
completion-vocabularies while achieving competi-
tive results.

The core reason for the success of our methods,
despite being trained on less data and for less time
than other solutions, is the fact that the MLM’s
pre-training is well suited for the MTC task. We
provide two types of evidence to support this claim:
In section 2 we present an experiment suggest-
ing that MLMs incorporate information regarding

3For example, an e-commerce company could adapt a
pre-trained general purpose MLM to complete multi-token
product names, while a biomedical researcher could adapt a
pre-trained biomedical MLM such as SciBERT (Beltagy et al.,
2019) or BioBERT (Lee et al., 2019) to complete multi-token
drug or disease names.

multi token phrases. In section 6, we show that
pre-training on in-domain data helps our methods
perform better. Both of these signals indicate that,
as expected, the MLM pre-training captures infor-
mation required for MTC. Therefore, what is left
for our MTC adaptation models is only to extract
this information from the MLM, an easier task that
does not require a long training with a vast amount
of data.

Our main contributions are MTC datasets (gen-
eral purpose, PubMed-based, and a 3K dataset
with human labeling), demonstrating that MLMs
learn the meaning of Multi Token phrases, and two
methods for adapting any pre-trained MLMs for
MTC. We publish4 our datasets, models and code5.

2 MLMs Learn Multi-Token Phrases

Our work relies on the assumption that MLMs are
capable of holding information about multi-token
phrases. Despite being a common belief and an
essential property for the MLMs to have in order
to be as successful as they are, to the best of our
knowledge this was not shown explicitly. How do
we show that a token-completion MLM is encoding
the semantics of multi-token phrases? Looking at
completions will fail, because we cannot directly
probe for MTC. Instead, we came up with the fol-
lowing experimental design, which measures the
encoding of multi-token phrases indirectly by look-
ing at masked positions influenced by them.

We use multi-token phrases that have single to-
ken synonyms. We construct a dataset containing
quadruples, each quadruple consisting of a multi-
token phrase (e.g. "New York city"), a single-token
synonym (e.g. "NYC"), a phrase similar in meaning
to the synonyms (e.g. "Chicago") and a random
phrase (e.g. "Dog"). We collect sentences contain-
ing the multi-token phrases, and in each sentence
mask out an NP-chunk different from the multi-
token phrase (e.g. "[MASK] is in New York city").
Next, we replace each multi-token phrase with each
of its other corresponding quadruple phrases, form-
ing four similar masked sentences, each containing
a different quadruple phrase (e.g. "[MASK] is in
NYC").

Finally, we ask an MLM to complete the missing
token in each masked sentence, and compare the
suggested completions. If the MLM is aware that

4https://registry.opendata.aws/multi-token-completion/
5https://github.com/amzn/amazon-multi-token-

completion/
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the multi-token phrase is semantically similar to
the single-token synonym, we expect it to suggest
similar completions regardless of which of the two
it sees in the sentence. Indeed, the model treats
the multi-token phrase similar to the single-token
synonym; We use a similarity measure comparing
the MLM’s suggested completions for the multi-
token phrase sentences and each of the other types
of sentences. We find that the average similarity
between multi-token phrase sentences and single-
token synonym sentences is 0.76, while for similar-
phrase sentences it is 0.71 and for random-phrase
sentences it is 0.63. Our main conclusion from
this experiment is that, as expected, MLMs learn
semantic meaning of multi-token phrases. Full ex-
periment details (including the similarity measure
used) are in Appendix B.

3 Masked Language Modeling Data

In absence of a known dataset for the MTC task,
we curate one. We follow (Devlin et al., 2018) and
use data from two sources: Wikipedia articles and
the Books corpus (Zhu et al., 2015).

Completion Vocabulary. We start by building
a vocabulary of phrases. As we aim for general-
purpose MTC, and following (Trask et al., 2015)
by considering phrases as NP-chunks or entities,
we simply focus on phrases that appear frequently
in the corpus. We use spacy (Honnibal and Mon-
tani, 2017) to extract 64M unique NP-chunks and
entities. We keep phrases appearing 500 times
or more in the corpus, leaving us with ∼ 93K
phrases. Only 10.2% are single tokens using
BERT’s cased tokenizer, indicating the importance
of MTC. 52.9% of the phrases consist of 2 tokens,
36.9% consist of 3 or more. 53% of the phrases
are single-words, 47% span two words or more.
Further statistics regarding the number of words
and the number of tokens assembling the phrases
selected are reported in Table 1.

Masked sentences. We split the corpus using
spacy’s sentencer. We sample 50 unique sentences
containing each vocabulary-phrase. We eliminate
recurring sentences and mask out the vocabulary
phrase to form masked sentences, using the masked
span as the label. We randomly split the data into
train (90%), validation (5%) and test (5%) sets.

4 Adapting MLMs for MTC

We propose two simple yet effective solutions, ca-
pable of integrating with any pretrained MLM and

#Tokens %Phrases #Words %Phrases
1 ∼ 10.2% 1 ∼ 53.3%
2 ∼ 52.9% 2 ∼ 38.3%
3 ∼ 23% 3 ∼ 5.4%
4 ∼ 9.5% 4 ∼ 2.1%
5 ∼ 2.8% 5 ∼ 0.5%

> 5 ∼ 1.6% > 5 ∼ 0.4%

Table 1: Expanded completion vocabulary. Number
of tokens and words assembling the phrases collected.

extending its completion vocabulary to perform
MTC. Both solutions utilize the MLM by using the
contextual embedding vector of the masked place,
which was originally pre-trained to be relevant for
completion tasks. Instead of using it to choose
the appropriate single token replacement (see Fig-
ure 1 (1)) like the MLM, we use it as an input to
extension models tuned for completing out of an
expanded vocabulary. We train only the relatively
small extensions and use the pre-trained MLMs as
is, allowing short and effective training.

4.1 Extended-Matrix (EMAT) decoder

Our first extension model is based on extending
the decoder matrix of the MLM to include the new
multi-token phrases in the completion vocabulary.
We assign each new multi-token phrase to an em-
bedding vector, which is added only to the out-
put token-prediction matrix. This is in contrast
with simply adding it to the base-model’s vocabu-
lary, which results in longer training due to the full
model being affected and in increased tokenization
time (see Appendix A for tokenization time eval-
uation). An illustration of the architecture can be
found in Figure 1 (2), where we use the MLM to
compute the contextual embedding of the masked
token and feed it to the extended-matrix decoder.
Even though each multi-token phrase is assigned
with its own embedding vector, this solution al-
lows us to adapt MLMs trained with a smaller
vocabulary (with all mentioned advantages this
comes with) to complete phrases that are multi-
token phrases in their original vocabulary.

During training, we extract the contextual em-
bedding from the masked sentence and only train
the extended-matrix decoder yielding a quick train-
ing phase. We train the decoder over the train set
described in Section 3, expanding the completion
vocabulary to ∼ 93K phrases. When BERT-base
is the base MLM, this approach adds 138M param-
eters, considerably less than models comparable in
performance such as T5-3B (3B parameters).
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Figure 1: Architectures. The MLM body is shared across architectures. It outputs a contextual embedding for the
[MASK] token, used by all decoding solutions. The MLM (1) predicts a single token from its vocabulary. EMAT (2)
uses an extended decoder to predict a phrase from the extended vocabulary. The Generative extension (3) completes
tokens until reaching [EOS]. Some arrows and layers are deducted for readability.

4.2 RNN decoder

Our second model is based on an RNN decoder,
specifically a GRU (Cho et al., 2014). We use it to
replace the MLM’s matrix decoder.

To train our GRU decoder for MTC, similarly to
our first solution, we utilize the pretrained MLM
by extracting the embedding vector corresponding
with the masked token for each sentence. For the
GRU-based solution we use this vector as the first
hidden vector fed into the GRU. As the first input
to the GRU, we wish to provide the context of the
multi-token phrase to be generated and thus feed
the static embedding of the token preceding the
[MASK] token. For later steps, the input is the
previous token completed by the generative model.
The inputs to the GRU are depicted in Figure 1 (3),
where the contextual embedding of [MASK] is fed
as the first hidden state and the static embedding of
’love’ is the first input of the GRU.

Next, at each step we concatenate: a) the output
of the GRU; b) the previous vector embedding; and
c) the masked token contextual embedding vector
from the pretrained MLM, and feed them to a feed
forward (FF) layer in order to reduce the dimen-
sion. We find that providing these three contexts
to the decoder improves its accuracy. The output
of the FF is then fed as input to the MLM decoder
(For BERT, this is a FF layer followed by an em-
bedding layer and a SoftMax layer) to obtain the

token predicted for this step of the autoregressive
generation. We train the model to complete the
next token of the missing multi-token phrase using
a standard back propagation approach with Cross
Entropy loss. We utilize the dev set to tune the
batch size, number of GRU layers, teacher forc-
ing rate, and learning rate (used parameters can be
found in appendix C).

We find that initializing the GRU’s decoder em-
beddings with the same parameters used by the
MLM we are plugging into, improves the perfor-
mance. Also, it helps to pre-train the generative
model on a vanilla Language Modeling task be-
fore starting MTC training. The idea is to give the
fresh extension model some sense of the distribu-
tion of the language before the training on the MTC
task. An ablation study demonstrating the benefit
of these components is shown in Appendix C.

Our generative model consists of only 32M pa-
rameters when using BERT as a base model, which
are the only trained parameters used for our solu-
tion (i.e. the pretrained base MLM is not fine-
tuned) and independent of the vocabulary size.
During inference, we simply use the MLM to ex-
tract the embedding vector corresponding with the
masked token and feed it, along with the static
embedding of the preceding token, as input to the
trained GRU model. Next, we use beam-search to
generate sequences until reaching an EOS token.
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Model Coverage Size Data size a@1 a@3 a@5 a@10 a@50

BERT-cased 13.8% 110M 16G 13.5%/1.8% 21.8%/3.0% 25.9%/3.5% 31.2%/4.3% 43.1%/5.9%
RoBERTa 15.6% 110M 160G 19.3%/3.0% 30.6%/4.7% 36.1%/5.6% 43.2%/6.7% 59.4%/9.2%

Naive-MTC-BERT 66.1% 220M 16G 6.6%/4.3% 11.9%/7.8% 14.9%/9.8% 19.5%/12.8% 32.3%/21.3%

Table 2: MLMs performing limited completion. Coverage is the % of sentences from the test set that the model
is capable of completing. MLMs are limited to single token completions. For computational reasons, we allow
the Naive-MTC-BERT to generate only single tokens or two-token phrases. Accuracy is reported as x/y; x is the
accuracy out of the specific model’s limited coverage and y is the accuracy out of the full test set (coverage ∗ x).

5 Results

Setup. Measuring success in completion tasks is
not trivial since a masked-sentence can have many
suitable replacements. In many cases returning
the expected phrase in a top-k place, and not nec-
essarily first, is acceptable. Hence, we measure
accuracy@k (sklearn): the percentage of masked
sentences where the label is among the top-k pre-
dictions. To better ground our performance expec-
tation from MTC, we first evaluate the accuracy
of an easier completion task; Single Token Com-
pletion. We go on to evaluate Naive MTC using
MLMs. As expected, results are not sufficient. Fi-
nally, we evaluate our methods, adapting MLMs
for MTC.

5.1 Single Token Completion

Single Token Completion is an easier6 task than
MTC, and MLMs like BERT and RoBERTa are
trained directly to perform it. Therefore, results
of these MLMs on the single token completion
task can be considered as an upper limit for the
performance of solutions adapting these models for
MTC. We test BERT and RoBERTa on the single
token completion task, results of these models on
the test set are reported in Table 2.

5.2 Naive MTC with MLMs

A naive way to utilize MLMs for MTC is using a
two-step method: given a masked sentence, first
predict the number of missing tokens and then du-
plicate the masked token to the predicted number
(e.g. "The US state [MASK]" becomes "The US
state [MASK] [MASK]") and complete them using
the MLM. We train a BERT-based classification
model predicting the number of missing tokens
by assigning a label to the data: for each masked
sentence, the label assigned is the number of to-
kens the masked span splits into using BERT’s

6For example, BERT’s search-space size is ∼ 30K while
some MTC solutions (e.g. our generation plugin and T5) have
an infinite search space.

tokenizer. Due to computational limits of the gen-
eration phase, we are only interested in 3 classes:
a single token missing, two tokens missing, and 3
or more tokens missing. The class distribution is
(10%, 53%, 37%), respectively. We use BERT’s
default hyper-parameters and train a classification
model. This is a task with ambiguous labeling7,
thus we do not expect high accuracy results. The
model reaches 64.7% accuracy on the test set.

During inference, we use the model’s predictions
with a SoftMax function to acquire a probability
for a single token mask-replacement and a double
token mask-replacement. We utilize these probabil-
ities as follows. For each specific single token, we
compute a replacement probability by simply multi-
plying the probability for any single token replace-
ment by the probability BERT assigns the specific
token to replace the mask in the masked sentence.
For a double token term we multiply the probabil-
ity of having a double token replacement by the
probability BERT predicts for the specific term, es-
timated with a standard generating heuristic. After
duplicating the mask, we complete the first missing
token using the MLM. Then, we replace the first
mask with each of the top-100 predicted tokens
and complete the second mask. Finally, the prob-
ability for each double token term is the product
of the probabilities the two tokens assembling it to
replace the two missing [MASK] tokens.

Results on the test set are reported in Table 2.
Even when considering only sentences where the
missing phrase consists of one or two tokens, re-
sults are not sufficient and call for a different way
to use MLMs for MTC. This is likely due to the
fact that the first token replacement is computed in
an unconditional manner to the second one.

5.3 Multi Token Completion
We use BERT, RoBERTa and SpanBERT as MLMs
adapted for MTC with our methods described in
section 4. MTC models are capable of completing

7e.g. for “The US state [MASK]” “New York” and “Texas”
are adequate replacements resulting in different labels.
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Model Size Data Size Inf-time a@1 a@3 a@5 a@10 a@50

ILM (GPT-2) 124M 1G/41G 120ms 1.3% 2.7% 3.7% 5.3% 10.8%
T5-base 220M 700G 224ms 5.2% 8.3% 9.7% 11.4% 15.6%
T5-3B 3B 700G 802ms 11.6% 18.5% 21.5% 25.4% NA
BERT-Adapted-RNN 32M/142M 1G/17G 44ms 9.24% 14.64% 17.39% 21.32% 31.28%
BERT-Adapted-EMAT 138M/248M 1G/17G 15ms 12.64% 20.48% 24.63% 30.65% 45.85%
ROBERTA-Adapted-RNN 48M/158M 1G/161G 59ms 8.14% 12.99% 15.51% 19.07% 28.40%
ROBERTA-Adapted-EMAT 161M/271M 160G/161G 16ms 11.59% 19.06% 23.18% 29.27% 45.79%

SPAN-BERT-Adapted-RNN 32M/142M 1G/17G 46ms 8.29% 12.82% 15.07% 18.34% 26.334%
SPAN-BERT-Adapted-EMAT 138M/248M 1G/17G 15ms 6.91% 11.6% 14.12% 17.93% 27.45%

Table 3: MTC results. Models are described in Section 5.3. Adapted models are trained with our solutions as
described in Section 4. Size is the number of parameters; Data size is the amount of data seen during training.
For adapted models we report both of these numbers excluding/including the base MLM. Inf-time is the average
inference time of a single sentence, measured using an Nvidia T4 GPU. T5-3B is too large for a beam of size > 10.

a phrase of any length hence have a coverage of
100% on the test set. Apart from our methods, we
also report on several baselines.

ILM (Donahue et al., 2020) is a GPT-2 based
framework for infilling, a task similar to MTC. The
LM is shown a sentence with missing places and
is trained to generate text probable of replacing the
missing parts. A crucial observation is that GPT-
2 is an LM and not an MLM. Therefore, ILM’s
pretraining seems less appropriate for completing
relatively short phrases (a task similar to the MLM
objective), and more appropriate for longer genera-
tion tasks (a task more similar to the LM objective).
We fine-tune ILM on our dataset for a single epoch,
taking ∼ 3.5 days using an Nvidia T4 GPU.

T5(Raffel et al., 2020) is a transformer model
pretrained on the MTC task. It is a strong baseline
reaching SOTA on many NLP tasks. We report on
two versions, T5-base and T5-3B, both trained on
a dataset 1-2 order of magnitudes larger than ours.

Results and Discussion. Results are reported
in Table 3. Our extended matrix (EMAT) solution
performs best, even when compared to the huge
T5-3B. The RNN plugin is slightly inferior, but still
performs better than existing solutions comparable
in size. Note that even though the size of the EMAT
plugin is ∼ ×4 of the size of the RNN plugin, in-
ference time for the tested vocabulary is shorter
because of GPU optimizations and the fact that the
RNN model may run several times (∼ 3 in average
on the test set) for each completion. However, in-
creasing the completion vocabulary size will not
affect the GRU size but will increase the size of the
matrix extension, making the RNN plugin a better
fit for large completion vocabularies8.

8For a completion vocabulary with 1M phrases and BERT
as the MLM, the size of the RNN plugin remains 32M , while
the size of the EMAT plugin grows to 769M .

6 Domain Specific MTC

We investigate MTC in a specific domain.
Datasets. We chose the Biology Domain, due to

the availability of data and models. Using PubMed
(pubmed) abstracts as a corpus, we extract two
MTC datasets. Similarly to section 3, we first con-
struct the completion vocabularies.

Key-phrase vocabulary: we use ∼ 20K MeSH
vocabulary9 phrases appearing frequently as key-
phrases in pubmed papers. This assures us phrases
from the Biology domain. We discard phrases ap-
pearing less than 50 times as NP-chunks or entities
in the corpus, leaving us with ∼ 12.5K phrases.

Frequent-phrases vocabulary: Similarly to sec-
tion 3, we extract a vocabulary of phrases appearing
more than 500 times as NP-chunks or entities in
the corpus (∼ 144K phrases). To make sure we
are considering mostly phrases from the Biology
domain, we discard phrases appearing in our gen-
eral purpose vocabulary (described in section 3),
leaving us with ∼ 118K phrases.

Finally, for both vocabularies we extract 50 sen-
tences containing each of the vocabulary phrases,
mask the phrase out in each sentence and split the
data into train, development and test sets.

Base Models. To evaluate the impact that the
domain-specific pre-training has on the perfor-
mance of our methods, we test our adaptation
methods on top of models pretrained on differ-
ent datasets. SciBERT (Beltagy et al., 2019) is a
BERT-like model trained on the Semantic Scholar
data - data from the scientific domain, closer to the
biology domain than the general purpose BERT.
BioBERT (Lee et al., 2019) is a BERT-like model
trained on PubMed abstracts.

9MeSH (Medical Subject Headings) is NLM’s controlled
vocabulary of biomedical terms used to describe the subject
of each journal article in MEDLINE.
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Model Dataset a@1 a@3 a@5 a@10 a@50

T5-base key-phrases 3.6% 5.2% 5.8% 6.7% 8.4%
T5-3B key-phrases 10.3% 15.1% 16.9% 19.5% NA
BERT-Adapted-EMAT key-phrases 12.9% 20.7% 24.9% 31.1% 48.8%
SciBERT-Adapted-EMAT key-phrases 13.4% 21.2% 25.2% 30.8% 44.9%
BioBERT-Adapted-EMAT key-phrases 16.3% 26.9% 32.1% 39.5% 57.2%
T5-base NP-chunks and Entities 3.9% 5.7% 6.6% 7.7% 10.5%
T5-3B NP-chunks and Entities 8.2% 12.8% 15.0% 18.1% NA
BERT-Adapted-EMAT NP-chunks and Entities 7.1% 11.8% 14.4% 18.5% 30.5%
SciBERT-Adapted-EMAT NP-chunks and Entities 8.2% 14.2% 17.5% 22.5% 35.4%
BioBERT-Adapted-EMAT NP-chunks and Entities 8.0% 13.5% 16.4% 20.7% 31.77%

Table 4: MTC on the pubmed test sets. T5-3B is too large for a beam of size > 10.

Results are reported in table 4. For brevity, we
compare our Extended Matrix method, tuned on
three base models (BERT, SciBERT, BioBERT), to
the two primary baselines: T5-base and T5-3B. We
report on the two PubMed datasets we curated.

Conclusions. First, our method outperforms the
strong T5-3B baseline in the domain-specific sce-
nario as well, showing MLMs can be effectively
adapted for domain-specific MTC. Second, the suc-
cess of BioBERT and SciBert suggests that the pre-
training of the MLM is in fact utilized by our meth-
ods (i.e. there is no catastrophic forgetting). Last,
the key-phrases dataset is easier than the frequent
NP-chunks and Entities one. This is likely due to
the key-phrases dataset mostly containing phrases
that are more frequent and significant.

7 Human Evaluation

Completion tasks are difficult to evaluate since a
sentence can have many different valid completion
options including, but not limited to, the original
masked span. We use accuracy@k to deal with this
issue, but in some use-cases only the first comple-
tion is important. Thus, we define a manual task to
more accurately evaluate sentence completions.

Human-annotators are presented with the
masked sentence, the original masked span and the
first completion suggested by each of the methods
we evaluate (full annotation task is in Appendix D).
Annotators were not aware which model provided
each completion, and the completions were pre-
sented in a random order for each sentence. The
sentences are divided between three expert English-
speaking annotators. Prior to performing the anno-
tations, the annotators met for a calibration session,
each annotating the same 50 sentences and dis-
cussing results until reaching high agreement. We
sample 750 sentences from the test set described in
section 3. Each expert annotator is assigned with

250 sentences and the completions of each of the
four methods, amounting to 1000 samples each.

First, we ask annotators whether the completions
are grammatically correct and make sense in the
context of the sentence, regardless of whether they
are factually correct (denoted as a "Valid" comple-
tions). For example, any year or location is a valid
completion for “Jules Verne was born in [MASK]”.

In some cases, valid completions can be general
and uninformative. For example, in the sentence

“On January 1, 1998, [MASK] was released pub-
licly online as SGI freeware.” the original span
is “Blender". While any SGI freeware name would
make sense, the word “it” (suggested by T5-3B)
is also a valid completion. This happens with gen-
eral words like “he”, “she”, or “person” but can
also occur with entities, e.g. in the sentence “Jules
Verne was born in [MASK]”, the original masked
span is “Nantes” and a suggested completion might
be “Europe”. We ask annotators to flag these cases,
where the suggested completion is more general
(less specific) than the original span.

Factual Correctness of completions is also im-
portant, since some works use completion meth-
ods for knowledge extraction (Petroni et al., 2019;
Jiang et al., 2020). To evaluate this, we first ask
annotators to mark whether the masked span is
a part of a specific fact. For example, “MLK,
(born [MASK])” should be marked as a fact, while

“he died aged [MASK]” shouldn’t. We find that
50.93% of the masked sentences are part of a fact10.
For the factual sentences, we ask the annotators to
label whether the proposed completion is factu-
ally correct. If they do not know, annotators are
instructed to use the web to verify the correctness.

Results are reported in Table 5. As expected,
the actual valid-completion percentage of the

10Recall that the evaluation data originates from both
Wikipedia and books.
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Model Valid % Valid Specific% Correct % Correct Specific %
ILM 52.2% 47.8% 9.4% 7.5%
T5-base 66.0% 49.0% 29.8% 18.5%
T5-3B 81.8% 66.8% 40.8%* 30.1%

BERT-Adapted-EMAT 84.1% 80.4%* 32.9% 31.6%

Table 5: Human evaluation results. Valid completions are ones that are grammatically correct and make sense.
Specific completions are completions that where not annotated to being more general than the original masked span.
Correct is the percentage of sentences labeled as facts that are valid completions and are also factually correct. *
marks that the difference between best and second best is statistically significant.

first completions is much higher than the accu-
racy@1 measured. An important observation is
that while checking for valid completions using
human-evaluation is obviously a more accurate
measure than accuracy@k, the two are correlated.
Models that perform well in one measure, do so
also in the other. This means accuracy@k is a good
proxy for the actual valid-completion measure.
Specifically, our method performs impressively
when annotating for validness as well, slightly bet-
ter than the much larger T5-3B. Finally, it seems
general purpose models like T5 tend to complete
general phrases more than our method. This is
likely due to the fact that during our MTC training,
the model sees the same amount of examples for
each phrase. Other methods see more examples of
general phrases, since these are more common in
the language.

As for factual correctness; while T5-3B com-
pletes more facts correctly than our methods, when
eliminating cases where the completion is general11

our method performs better. This is important since
general completions are not as interesting and can
be more easily acquired. It can be especially cru-
cial for knowledge extraction methods using these
models. For example, a method trying to extract
presidents with the sentence “US presidents such
as [MASK]” would benefit from completions like

“Obama” or “Trump” and not “the president” or
“this person” which are correct, but uninformative.

8 Related Work

Transformer-based LMs and MLMs (Peters et al.,
2018; Devlin et al., 2018) have revolutionized NLP
in the past couple of years. While most of the
impact has been achieved using these pretrained

11For example, for “Garson accepted the role, winning
[MASK].” original span is “the Academy Award for Best
Actress”. T5 completes “an academy award”- factually correct,
but more general than the original span. Our method tries to
pinpoint a specific award - a harder task. It completes “the
Academy Award for Best Picture” which is factually wrong.

models as a source of meaningful contextual em-
beddings, recent works are using these models for
the task they were pretrained for: Masked Lan-
guage Modeling (Petroni et al., 2019; Kushilevitz
et al., 2020; Lazar et al., 2021; Shani et al., 2021;
Jiang et al., 2020).

While most MLMs are capable of completing
multiple missing tokens simultaneously, they do so
in an unconditional manner, yielding unsatisfying
results. Therefore, some works using MLMs for
Masked Language Modeling simply restrict them-
selves to single token completions (Petroni et al.,
2019) while others use heuristics in order to gen-
erate multi token completions (Lazar et al., 2021;
Jiang et al., 2020).

Some attempts towards making MLMs predict
multi token units better by changing the masking
technique during training include masking spans
instead of tokens (Joshi et al., 2020) and masking
whole words (Cui et al., 2019), but these methods
still complete in an unconditioned manner during
inference. XL-net (Yang et al., 2019) avoids inter-
dependence between masked tokens using a Permu-
tation Language Modeling pretraining objective.

Similarly to our solution, extending the decoder
matrix with n-gram vocabulary items is done also
by Xiao et al. (2020), but for a different purpose:
they use them as an auxiliary signal during training,
in order to improve BERT’s single-token pretrain-
ing. They mask n-grams, and predict a specific
n-gram assigned id together with the single tokens
assembling the n-gram, as to improve the single-
token embeddings. The BERT model is pretrained
end to end and the n-gram embeddings are dis-
carded after pretraining and are not part of their
final model used during fine-tuning and inference.
While we share their extension of the decoder ma-
trix, the MTC task adds additional requirements:
to allow for easy MTC vocabulary support, we aim
for a short MTC training and inference, building
on the preexisting pretrained MLMs and avoiding
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the need to pretrain from scratch. In addition, our
solution does not distinguish between multi-token
and single token-phrases during training since both
are part of the completion vocabulary.

In Donahue et al. (2020), the ILM framework
is introduced. This is a framework for infilling,
a task similar to MTC. ILM is a GPT-2 (Rad-
ford et al., 2018) based solution, meaning the pre-
trained model used is a LM and not an MLM,
requiring it to adapt to a different task. Finally,
T5 (Raffel et al., 2020) was pre-trained for the
MTC task using a vast amount of data. It performs
well but requires a lot of training data, time and
memory, does not utilize existing MLMs and is not
available in many domains and languages.

9 Conclusions

We show MLMs can be adapted for multi token
completion even though they were trained for sin-
gle token completion. We presented two simple
but effective solutions that leverage the pretrained
MLMs and offer quick adaptations to new vocab-
ularies. The two solutions are trading-off perfor-
mance and size: 1) an extended matrix decoder
offering SOTA accuracy but size-dependent on the
completion vocabulary; 2) an RNN decoder with
slightly lower accuracy but size independent of the
vocabulary size. We also demonstrate the flexibility
of our approach to different vocabularies and do-
mains by evaluating it on the PubMed dataset and
showing that leveraging domain-pretrained MLMs
offers significant accuracy improvement. Finally,
we validate our results by conducting a human eval-
uation to account for valid completions that are not
measured using our automatic metric. It shows that
our extended matrix solution provides valid com-
pletions in 84% of the times, and can also correctly
handle facts in 30% of the times, comparatively to
the much larger T5-3B.

10 Limitations

The main limitation of our work is that it requires
a fixed and pre-determined completion vocabulary.
We acknowledge that this is a burden, and in some
cases such a vocabulary might not be available. We
believe a solution for adapting MLMs for MTC
without such a prerequisite is feasible, and this is a
goal for future work.

11 Ethical Considerations

Human Evaluation. In terms of fair-pay, the pay-
ment to the expert annotators was above the mini-
mum wage in the US. Consent was given from the
annotators to use their annotations and release them
as part of this research. The annotators were not
aware which solution generated each completion
and the completions were presented in a random or-
der as to avoid bias based on the order. To achieve
high quality results, the annotators had a calibra-
tion session as to better understand the guidelines
and requirements described in Appendix D.

Environmental. Compared to the massively
large language models such as T5-3B, our models
are lightweight and can be run on smaller more
energy efficient hardware such as a CPU. In addi-
tion, this becomes more apparent when consider-
ing the superior inference-latency of our solutions.
Since energy is composed of both time and power-
consumption, our lightweight models should waste
significantly less energy during inference.

Biases and Exclusion. The proposed models de-
pend on a fixed and pre-determined vocabulary of
potential multi-token completions, and the choice
of this set in itself may result in omissions, ex-
clusions under-representation of some groups or
concepts, and over-representation of others. Care
should be taken to select a set that alleviate such
biases to the extent possible. Also after the selec-
tion of the set, the algorithm does not guarantee
balanced, fair or unbiased selections of candidate
completions. Users should be aware of this when
designing algorithms whose predictions may influ-
ence certain groups.
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Multi Single Similar Random
new york city nyc chicago disco

fish tank aquarium zoo lena
every week weekly monthly fruit

extort blackmail scam cat
barman bartender waitress mckenzie

Table 6: Experiment data sample. Multi is the multi-
token phrase, Single is the single-token synonym, Simi-
lar is a term close in the sense2vec space and Random
is a random single-token word.

A Tokenizing an expanded vocabulary

We experiment to see how tokenizing time is af-
fected by larger vocabularies. We find that includ-
ing multi word phrases as tokens actually has a
worse effect then just adding more tokens, since
the tokenizer cannot assume a word is the maxi-
mal span for each token. We sample 10K random
sentences from Wikipedia and use huggingface’s12

implementation for BERT’s standard cased tok-
enizer. When using the original vocabulary (of
size ∼ 30K) the tokenization takes 4.23 seconds.
When expanding the vocabulary to our collected
vocabulary (of size ∼ 100K, including multi word
phrases) the tokenization time jumps to 119.26 sec-
onds using the same machine.

B MLMs Learn Multi-Token Phrases

In section 2, we report an experiment illustrating
that MLMs are capable of treating multi-token
phrases properly. The purpose and outline of the
experiment are described in 2, further details are
provided in this Appendix. BERT-base is the MLM
used.

B.1 Data collection

We curate a dataset of multi-token phrases that
have single-token synonyms. We start from Word-
net (Miller, 1995) synonyms, keep only synonyms
where one phrase is a single-token and the other is a
multi-token phrase using BERT’s tokenizer13, and
manually select synonyms which are interchange-
able. We collect 100 such synonyms. To each
pair of synonyms we add a similar phrase chosen
as the phrase closest to the single-token synonym

12https://huggingface.co/transformers/
model_doc/bert.html#berttokenizer. We used
the transformers package version 4.12.3.

13Multi-token phrases are not necessarily multi-word
phrases. Uncommon words are also split to multiple tokens.

in the sense2vec14 vector-space which is manu-
ally verified as not a synonym of the pair, and not
slang or an inappropriate phrase15. Finally, to each
triplet we add a random single-token word forming
a quadruple. A sample of the dataset is shown in
Table 6.

B.2 Experimental setup

For each quadruple in our dataset, we conduct the
following experiment: We collect k sentences con-
taining the multi-token phrase from Wikipedia. For
example, given the quadruple ("fish tank", "aquar-
ium", "zoo", "lena"), the multi-token phrase is "fish
tank" and one such sentence is "nemo is placed in
a fish tank in a dentist’s office.". We use each of the
collected sentences to compute a similarity score
between the phrases as follows.

Masked sentence per quadruple term. We first
form a masked sentence for the multi-token syn-
onym, by masking out a random NP-chunk which is
not the multi-token phrase (e.g. "[MASK] is placed
in a fish tank in a dentist’s office."). Then, we form
a masked sentence for each of the other quadru-
ple terms by replacing the multi-token phrase with
it (e.g. for the phrase "aquarium" we form the
sentence "[MASK] is placed in a aquarium in a
dentist’s office.")

Similarity between masked sentences. We use
the MLM to compute similarity between masked
sentences. Following (Kushilevitz et al., 2020),
for two masked sentences (mi,mj) we query the
MLM to complete the mask in each and compare
the predicted completions using the Sørenson-Dice
coefficient (Dice, 1945; Sørenson, 1948):

sim(mi,mj) =

|topq(MLM(mi)) ∩ topq(MLM(mj))|/q

Where MLM(m) is the list of tokens pro-
posed by the MLM to complete the mask in the
masked-sentence m, ranked by their probability.
topq(MLM(mi)) is the top q tokens in the list (q
being a parameter). An example for the similarity
measure process for a single sentence is shown in
Table 7.

14Sense2vec (Trask et al., 2015) is a twist on the word2vec
algorithm.

15Sense2vec is trained on data from Reddit, which yields
phrases that are slang or inappropriate. These will probably
not be significantly found in BERT’s training data (Wikipedia
and Books) and are therefore filtered out for this experiment.
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Phrase type Phrase Masked sentence MLM-suggestions Intersection Similarity

Multi-token
synonym

fish tank
"a glass fish tank
is sufficient for

keeping [MASK]."

1.’fish’, 2.’water’, 3.’ducks’,
4.’trout’,..., 8.’salmon’, ... ,
13.’eels’,..., 17.’turtles’,...

50 1

Single-token
synonym

aquarium
"a glass aquarium

is sufficient for
keeping [MASK]."

1.’animals’, 2.’fish’, 3.specimens’,
,..., 8.’turtles’, 9.’ducks’, ...,

15.’water’,..., 31.’eels’,...
33 0.66

Similar phrase zoo
"a glass zoo

is sufficient for
keeping [MASK]."

1.’animals’, 2.’birds’, 3.cats’,
,..., 8.’ducks’, 9.’pigeons’, ...,

30.’goats’,..., 37.’lions’,...
20 0.4

Random token lena
"a glass lena

is sufficient for
keeping [MASK]."

1.’warm’, 2.’dry’, 3.balance’,
4.’water’,..., 7.’it’, ...,

20.’safe’,..., 46.’records’,...
17 0.34

Table 7: Similarity measure example. Original sentence found in the corpus is "a glass fish tank is sufficient for
keeping tarantulas.". MLM-suggestions shown are a sample of the top 50 (we use q = 50) suggestions for mask
completions using BERT. The bold suggestions are ones that appear in the top-50 suggestions for the multi-token
synonym sentence. Intersection is the size of the intersection between the top-50 tokens suggested for the sentence
and the top 50 tokens suggested for the multi-token synonym sentence. Similarity is intersection/q.

hyperparameter RNN-based method EMAT method
Batch size 128 128
Learning rate 1e−3 1e−3

Epochs 10 2
GRU layers 2 -
Teacher forcing 0.5 -
Dropout 0.2 -

Table 8: Hyperparameters.

Similarity between terms. We define similarity
between two terms as the average similarity across
all pairs of masked sentences containing them.

B.3 Experiment results

For each quadruple, we compute the similarity be-
tween the multi-token phrase and the other quadru-
ple terms. We use k = 100 (number of sentences
for each quadruple) and q = 50 (number of top
tokens considered for the similarity measure). For
82 out of the 100 quadruples in the dataset, the
single-token synonym is the most similar to the
multi-token phrase. 15 times the most similar is the
similar phrase and only 3 times the most similar is
the random term, showing the effectiveness of the
similarity measure we use. The multi-token phrase
is most similar to the single-token synonym: the
average similarity measured between them is 0.766
while for the similar phrase it’s 0.715 and for the
random phrase it’s 0.632. Results show the MLM
treats multi-token phrases similarly to their single-
token synonyms. This corroborates the assumption
that the MLM is capable of storing information
about multi-token phrases.

Version a@1 a@5 a@50

lm_pretrain_unshared 7.79% 15.14% 28.10%
no_pretrain_shared 8.99% 16.67% 29.11%
lm_pretrain_shared 9.31% 17.15% 30.27%

Table 9: Ablation study. The results shown use BERT
as the Base MLM.

C Model Details

In Section 4, we briefly describe our adaptation
solutions. Herein, we describe the exact hyperpa-
rameters used and an ablation study of the RNN-
based method. Table 8 presents the hyperparam-
eters that were selected after tuning on the dev
set. The hyperparameters had a larger impact on
the RNN-based solution than the extended matrix
(extended-matrix) solution.

In addition, we test to check the effectiveness of
two components in our RNN-based solution. The
First is pre-training the GRU on a vanilla Language
Modeling task, we do this in order to give the model
some sense of understanding of the language dis-
tribution before training it on the MTC task. The
second component is sharing the embedding layers
between the original MLM and the added comple-
tion GRU. As seen in Table 9 both of these are
shown to help.

D Manual Annotation Instructions

In this task, you are given a sentence with a miss-
ing phrase (marked as ___), a correct completion
(which is not necessarily the only possible correct
completion) and a proposed completion. The com-
pleted sentence is the sentence that is formed by
planting the proposed completion in the location
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of the missing phrase. Please answer the following
questions:

1. Is the completed sentence grammatically cor-
rect and does it make sense? In this question,
ignore the factual correctness of the comple-
tion. For example, in the sentence "Barack
Obama was born in ___", any place or date is
a valid completion.

2. Is the proposed completion more general than
the given correct completion? For example,
the word "he" is more general than a spe-
cific name. The phrase "North America" is
more general than the phrase "New York". The
phrase "Los Angeles" is not more general than
the phrase "New York".

3. Is the missing phrase in the context of the
sentence a part of a specific fact (geographical,
physical, mathematical, etc.)? For example,
in the sentence "Barack Obama was born in
___" the missing phrase is a part of a fact. In
the sentence "He was born in ___" the missing
phrase is not a part of a specific fact because
"He" may refer to many different people.

4. If the answer to question 3 is yes, is the com-
pleted sentence factually correct? If you are
not sure, please use the web to verify.
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