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Abstract
Effectively scaling large Transformer models
is a main driver of recent advances in natu-
ral language processing. Dynamic neural net-
works, as an emerging research direction, are
capable of scaling up neural networks with
sub-linear increases in computation and time
by dynamically adjusting their computational
path based on the input. Dynamic neural net-
works could be a promising solution to the
growing parameter numbers of pretrained lan-
guage models, allowing both model pretrain-
ing with trillions of parameters and faster in-
ference on mobile devices. In this survey,
we summarize the progress of three types of
dynamic neural networks in NLP: skimming,
mixture of experts, and early exit. We also
highlight current challenges in dynamic neural
networks and directions for future research.

1 Introduction

Scaling up model capacity is an obvious yet ef-
fective approach for better performance in natu-
ral language processing (NLP) tasks (Brown et al.,
2020; Kaplan et al., 2020; Ghorbani et al., 2021;
Zhou et al., 2020b). However, the resulting in-
crease in computational complexity and memory
consumption becomes a bottleneck for scaling,
making these models hard to train and use. On the
other hand, it is not necessary to allocate the same
amount of computation to all instances. For ex-
ample, categorizing “I love you” as a positive sen-
tence does not require a model containing dozens
of Transformer layers. To resolve the aforemen-
tioned problems, dynamic neural networks have
been a significant thrust of recent research in NLP.
Dynamic networks can adjust their computational
path based on the input for better efficiency, mak-
ing it possible to train models with trillions of pa-
rameters and accelerate models in a low-resource
setting.

In this survey, we review the latest state of re-
search on three types of dynamic neural networks
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Figure 1: The three types of dynamic neural networks
summarized in this paper. They dynamically adjust
computation timewise, widthwise and depthwise, re-
spectively.

that have been adopted in NLP: skimming, mix-
tures of experts (MoE), and early exit, as illus-
trated in Figure 1. These three types of techniques
share a common idea of dynamically adjusting
computation with respect to input, to save com-
putation through bypassing unnecessary modules
in a large neural network. However, they imple-
ment the goal via different approaches. Skimming
was well-researched in the era of recurrent neural
networks (RNN). Skimming models save compu-
tation timewise by dynamically allocating compu-
tation to different time steps, based on the input
tokens. Since RNN models process the input se-
quence recurrently, it allows skimming models to
achieve a substantial acceleration, especially when
the sequence is long (Li et al., 2019). Different
from RNN, recent works on Transformers skip to-
kens between layers instead of time steps.

For Transformer models (Vaswani et al., 2017;
Devlin et al., 2019; Lan et al., 2020; Brown et al.,
2020), the input tokens are fed into the model
in parallel, while models have dozens of Trans-
former layers. This motivates the development of
MoE and early exit. MoE horizontally extends a
feedforward neural network (FFNN) with multiple
sub-networks. During inference, only one or a few
of these sub-networks will be activated for com-
putation, thus can save widthwise computation.
Early exit, on the other hand, terminates inference
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Figure 2: Taxonomy of dynamic neural networks for
NLP.

at an early layer, without exhausting full compu-
tational capacity, thus saves depthwise computa-
tion. Early exit techniques often insert a series of
lightweight classifiers which help decide when to
exit, based on an exit strategy.

Note that this stream of works is distinct from
static model acceleration, which is often referred
to as model compression, including knowledge
distillation, weight sharing, pruning and quantiza-
tion (Sanh et al., 2019; Xu et al., 2020; Lan et al.,
2020; Zafrir et al., 2019; Xu et al., 2021) (etc.,
see another survey (Xu and McAuley, 2022)). The
major difference is that the computational path in a
statically compressed model does not condition on
the input and is invariable for all examples in infer-
ence. These two streams of research are in fact or-
thogonal and recent works Schwartz et al. (2020),
Liu et al. (2020) and Zhu (2021) have shown that
static and dynamic approaches can be combined
for even faster inference and better performance.

To summarize, our contribution is two-fold:
(1) We review the latest studies on the topic of
dynamic neural networks for NLP by providing
a comprehensive comparison and organize them
with a new taxonomy, as shown in Figure 1. (2)
We analyze current challenges in dynamic neural
networks and point out directions for future re-
search.

2 Skimming

Skimming techniques, as summarized in Table 1,
skip some time steps or allocate different com-
putation on them. Intuitively, skimming matches
how human beings efficiently read text and ex-
tract information from it (Li et al., 2019). By em-

phasizing the important information within a se-
quence and ignoring parts with little importance,
skimming helps the model achieve faster inference
speed and better capture long-term dependencies.
The three categories of skimming are skipping and
early stopping, computation reduction, and dy-
namic hierarchical RNN, corresponding with three
motivations: to skip unimportant input, to allocate
less computation to unimportant input, and to in-
crease computation to important input only.

Skipping and Early Stopping Skipping and
early stopping aim to improve efficiency for a long
sequence by skipping some tokens or stopping
reading early. LSTM-Jump (Yu et al., 2017) is a
skipping mechanism to ignore irrelevant informa-
tion for natural language understanding (NLU). At
each step, the current states are used to compute
a “jumping softmax”, which decides how many
steps to jump forward and whether to stop reading.
LSTM-Jump employs policy gradient to train the
model to make non-differentiable discrete jump-
ing decisions. The reward is a binary function
which rewards a correct prediction and penalizes
an incorrect prediction of the label. Compared to
a standard LSTM, LSTM-Jump achieves better ac-
curacy with up to 6× speed-up. Skip RNN (Cam-
pos et al., 2018) introduces a binary gate to learn
whether to skip a state update. If the gate decides
to skip a time step, the hidden states will be di-
rectly copied without any update.

To stop reading early as needed, Rea-
soNet (Shen et al., 2017) introduces a terminal
state which decides whether to terminate early for
machine reading comprehension on each time step
at the token level. Jumper (Liu et al., 2018) first
splits a paragraph to several sub-sentences and en-
codes them into sentence embeddings. They then
apply early stopping at a sentence when the policy
network decides to stop reading. Li et al. (2019)
use eye-tracking devices and confirm that skipping
and early stopping are common when humans read
text. They propose Reading Inspired Model to
mimic the behaviors of humans, which allows the
model to decide whether to skip a single time step
or stop reading early. Yu et al. (2018) add a re-
reading operation to LSTM-Jump (Yu et al., 2017)
which allows the model to stay on the current time
step, allocating more computation to important in-
formation.

The aforementioned techniques can only go for-
ward, which makes it impossible to regret if hav-
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Method Decision based on Operation options

LSTM-Jump (Yu et al., 2017) hidden states skip multiple steps; stop reading
Skip RNN (Campos et al., 2018) states of the update gate; hidden states skip a single step
ReasoNet (Shen et al., 2017) hidden states stop reading
Jumper (Liu et al., 2018) input sentence; hidden states stop reading
RIM (Li et al., 2019) input sentence; hidden states skip a single step; stop reading
Yu et al. (2018) hidden states skip multiple steps; stop reading; re-read
LSTM-Shuttle (Fu and Ma, 2018) hidden states skip multiple steps; jump back multiples steps
Struc. Jump-LSTM (Hansen et al., 2019) hidden states stop reading; jump to next (,;) or (.!?)

PoWER (Goyal et al., 2020) attention drop tokens
TR-BERT (Ye et al., 2021) hidden states forward tokens
LAT (Kim and Cho, 2021) attention forward tokens
LTP (Kim et al., 2022) attention drop tokens
Transkimmer (Guan et al., 2022) hidden states forward tokens

VCRNN (Jernite et al., 2017) input token; hidden states partial update with zero-masked weights
Skim-RNN (Seo et al., 2018) input token; hidden states partial update with a small RNN

HM-RNN (Chung et al., 2017) states of the gates skip a single step; “flush”
FHRNN (Ke et al., 2018) query; hidden states update the upper RNN layer

Table 1: A summary of skimming techniques.

ing jumped over important information. LSTM-
Shuttle (Fu and Ma, 2018) proposes a bidirec-
tional shuttling mechanism, which can jump mul-
tiple time steps both forward and backward, allow-
ing the model to ignore unimportant information
and recover lost information if needed.

Structural information that naturally exists in
sentences can also play a role in skimming. Struc-
tural Jump-LSTM (Hansen et al., 2019) can jump
to the next word, next sub-sentence separator (a
comma or colon), next sentence end symbols (a
period, exclamation mark or question mark), or to
the end of the text (i.e., stop reading).

In the era of Transformers, there have been
works attempting to reduce computation by either
skip tokens at higher layers or forward tokens to
higher layers. The PoWER-BERT model (Goyal
et al., 2020) reduces the number of tokens pro-
cessed by each Transformer layer based on their
attention scores. The number of tokens to be
dropped, referred to as the "schedule," is opti-
mized by combining the sparsity of a soft mask
layer with the original loss function. This results
in an improved balance between accuracy and pro-
cessing time. TR-BERT (Ye et al., 2021) uses
a dynamic approach to determine which tokens
to skip, using reinforcement learning to train the
model with a reward system that prioritizes clas-
sifier confidence while also penalizing the number
of tokens retained. In contrast to PoWER-BERT,
TR-BERT passes the skipped tokens to the final
layer rather than discarding them. The Length-
Adaptive Transformer (LAT, Kim and Cho, 2021)

utilizes LengthDrop to randomly skip tokens dur-
ing pretraining, aiming to close the gap between
pretraining and fine-tuning. The schedule for LAT
is found through an evolutionary search algorithm.
LTP (Kim et al., 2022) trains a threshold for each
Transformer layer, instead of following a predeter-
mined schedule. It simply drops tokens with atten-
tion scores lower than the learned threshold. Tran-
skimmer (Guan et al., 2022) incorporates a skim
predictor module, consisting of a small MLP and
Gumbel-Softmax reparameterization, before each
layer. This module outputs a mask to determine
whether a token should be dropped, and a skim
loss is used to optimize the ratio of skipped tokens
to total tokens, promoting sparsity.

Computation Reduction Different from skip-
ping, computation reduction applies a reduced
computational workload for some time steps in-
stead of skipping it completely. VCRNN (Jernite
et al., 2017) explores a scheduler to decide which
proportion of computation to use for each time
step. Upon making the decision, only the corre-
sponding proportion of the weight matrix will be
used to update the hidden states while the rest part
of the weight matrix will be masked out with zero.

Instead of using part of weights to update the
hidden states, Skim-RNN (Seo et al., 2018) has a
big RNN and a separate small RNN. At each time
step, the model decides whether to read or skim
based on hidden states from the last time step and
the input token. If the model decides to skim, the
small RNN will update only a fraction of the hid-
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den states. Otherwise, a regular full update will be
conducted by the big RNN.

Dynamic Hierarchical RNN Different from the
aforementioned two categories of skimming, dy-
namic hierarchical RNN can increase computa-
tion by calling the upper layer RNN when needed.
HM-RNN (Chung et al., 2017) automatically dis-
covers the hierarchical multi-scale structure in the
data for a hierarchical RNN architecture. In addi-
tion to the update and copy operations as in Skip
RNN (Campos et al., 2018), they add a flush oper-
ation which ejects the summarized representation
of the current time step to the upper layer and re-
initializes the states for the next time step.

In question answering, only a small portion of
tokens are relevant and can be used to answer the
question while the rest can be safely skimmed.
Based on this observation, Focused Hierarchical
RNN (Ke et al., 2018) aims to only pick up infor-
mation that is relevant to the query for question an-
swering. It applies a binary gate to control whether
to update the upper layer of the RNN, based on the
current hidden states of the lower-level RNN and
the question embedding.

3 Mixture of Experts

Increasing the number of parameters in a model
often leads to increased computation and mem-
ory consumption. To take the advantages of pa-
rameter scaling without a proportional increase in
computation, mixture of experts (MoE) (Jacobs
et al., 1991) is introduced to large language mod-
els, as summarized in Table 2. In these models,
a layer typically contains multiple sub-networks
(i.e., “experts”). During inference, only part of
these experts will be activated on a per-example
basis.

The key element of MoE methods is the rout-
ing mechanism. The routing mechanism has to be
lightweight, not to significantly slower the speed
of the model. We categorize MoE methods into
two groups: learned routing and unlearnable rout-
ing. Learned routing often requires some load bal-
ancing mechanisms to ensure that all experts are
trained with enough examples thus are useful dur-
ing inference. Unlearnable routing usually slightly
underperforms learned routing but does not re-
quire complicated load balancing.

MoE Layers with Learned Routing A straight-
forward idea to implement MoE is to learn a router

to allocate inputs to experts. Sparsely-Gated MoE
layer (Shazeer et al., 2017) contains up to thou-
sands of feed-forward sub-networks with a train-
able gating network which determines a sparse
combination of these experts to use for each ex-
ample. There are two major challenges to ad-
dress: (1) Sparsity. The gating network pre-
dicts a softmax weight for the experts based on
the input. The gating network is trained by sim-
ple back-propagation, together with other parts
of the model. Then, only the top-k experts in
the layer will be activated based on the softmax
prediction of the gating network. They insert
one MoE layer between stacked LSTM layers and
achieve improvement on language modeling and
machine translation tasks. (2) Load balancing.
Shazeer et al. (2017) observe a self-reinforcing
phenomenon that the gating network tends to con-
verge to a state where it always produces large
weights for the same few experts. They resolve
the problem by defining the importance of an ex-
pert relative to a batch of training examples to be
batch-wise sum of the gate values for that expert.
Then, they introduce an additional loss, the square
of the coefficient of variation of the set of impor-
tance values, to encourage a more balanced update
during training. Besides encouraging a balanced
update, the authors also introduce a loss function
with a smooth estimator that estimate the number
of examples assigned to each expert for a batch
of inputs, to encourage experts to receive roughly
equal numbers of training examples.

GShard (Lepikhin et al., 2021) enables scal-
ing up multilingual neural machine translation
Transformer beyond 600 billion parameters. It
adapts Sparsely-Gated MoE (Shazeer et al., 2017)
to Transformer (Vaswani et al., 2017) by replac-
ing every other feed forward layer with an MoE
layer, which routes to top-2 experts. When scal-
ing to multiple devices, the MoE layer is sharded
across devices, i.e., each device has different al-
located experts, while all other layers are repli-
cated. To achieve workload balance, GShard em-
ploys a threshold, namely expert capacity, to limit
the maximum number of tokens processed by one
single expert. They also introduce a local group
dispatching mechanism, which partitions all to-
kens in a training batch evenly into groups to be
processed independently in parallel, to balance
the overall workload. Following (Shazeer et al.,
2017), they use an additional loss to enforce even
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Method Base Model Sparsity Load Balance

Sparsely (Shazeer et al., 2017) LSTM top-k auxiliary loss
GShard (Lepikhin et al., 2021) Transformer (NMT) top-2 expert capacity; local group dispatching; auxiliary loss; random routing
Switch (Fedus et al., 2021) Transformer (T5) top-1 expert capacity; auxiliary loss
BASE (Lewis et al., 2021) Transformer (GPT) top-1 linear assignment
M6-T (Yang et al., 2021) Transformer (M6) k top-1 expert capacity
DTS (Nie et al., 2021) Transformer (GPT) dynamic sparsity scheduler

Hash (Roller et al., 2021) Transformer hash deterministic hash
THOR (Zuo et al., 2022) Transformer (NMT) random random selection

Table 2: A summary of Mixture of Experts (MoE) methods.

allocation for experts. Additionally, they propose
a random routing mechanism, which only routes
to the second-best expert with probability propor-
tional to its weight, to simplify sparse training.

Switch Transformer (Fedus et al., 2021) aims to
simplify the Sparsely-Gated MoE (Shazeer et al.,
2017) for efficiency and performance. They pro-
pose a Switch Layer which only routes to one ex-
pert at a time, to reduce gating computation, batch
size and communication costs. Switch Trans-
former inherits expert capacity and an auxiliary
load balancing loss from GShard (Lepikhin et al.,
2021). Combined with low-precision training,
compared to T5-Base and T5-Large (Raffel et al.,
2020), Switch Transformer obtains up to 7× in-
creases in pretraining speed with the same com-
putational resources. They further scale Switch
Transformer to more than 1.5 trillion parameters
and achieve 4× speed-up over T5-XXL.

The Balanced Assignment of Sparse Experts
(BASE) layer (Lewis et al., 2021) formulates
token-to-expert allocation as a linear assignment
problem and solves it with the auction algo-
rithm (Bertsekas, 1992). This allows an optimal
assignment in which each expert receives an equal
number of tokens, improving efficiency and get-
ting rid of the expert capacity and auxiliary loss in
previous works. The experiments show that BASE
layers are more efficient for training compared to
Sparsely-Gated MoE layers (Shazeer et al., 2017)
and Switch Layers (Fedus et al., 2021), and can
successfully learn a good balanced routing with-
out any auxiliary balancing loss.

M6 (Lin et al., 2021) is a multi-modal mul-
titask Transformer, trained in the same way as
Switch Transformer (Fedus et al., 2021), scal-
ing up to 100B parameters. Following this, M6-
T (Yang et al., 2021) splits experts into k pro-
totypes (i.e., groups of experts). In each for-
ward pass, each token is sent to the k proto-
types, within which the top-1 routing is done lo-

cally. The experiments demonstrate this “k top-1”
strategy outperforms the top-1 routing in Switch
Transformer (Fedus et al., 2021) while being more
computation-efficient than “top-k” routing. They
also claim that the load balancing loss may be inef-
fective for improving the performance of an MoE
model, although it can indeed help balance the
workload. They subsequently train a 1 trillion pa-
rameter model with the finding.

Dense-to-Sparse gate (Nie et al., 2021) begins
as a dense gate that routes tokens to all experts
then gradually learns to become sparser and route
tokens to fewer experts, demonstrating higher
training efficiency in experiments. Their experi-
ments confirm the finding in Yang et al. (2021) that
an auxiliary load balancing loss does not improve
the model performance.

MoE Layer with Unlearnable Routing Al-
though learning-based routing has shown effec-
tiveness only with the help of complicated load
balancing mechanisms, recent studies have at-
tempted to get rid of those. Hash Layer (Roller
et al., 2021) simplifies routing by using a
parameter-free hashing function to route tokens
to specific experts. This design eliminates the
need for a load balancing loss and sophisticated
assignment algorithms. They also study the per-
formance of different hashing techniques, hash
sizes and input features, and conclude that bal-
anced and random hashes focused on the most lo-
cal features work best. The experiments show that
a Hash Layer achieves comparable performance
with a Switch Layer (Fedus et al., 2021) and BASE
Layer (Lewis et al., 2021).

THOR (Zuo et al., 2022) is a special form of
MoE layer, which completely discards the con-
ditional routing mechanism and instead optimizes
the consistency between a randomly selected pair
of experts. During inference, one expert will be
randomly selected to be activated.
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Applications and Analysis GLaM (Du et al.,
2021) trains a family of GPT-style language
models with up to 1.2 trillion parameters using
GShard (Lepikhin et al., 2021). CPM-2 (Zhang
et al., 2022b) trains a large Chinese language
model with 198 billion parameters with BASE lay-
ers (Lewis et al., 2021).

Artetxe et al. (2021) conduct a detailed empir-
ical study of how autoregressive MoE language
models scale compared to dense models. They
find MoEs to be substantially more efficient with
the exception of fine-tuning. MoE models can
match the performance of dense models with 25%
of computation in a low-resource setting. Al-
though the advantage fades at scale, their largest
MoE model with 1.1 trillion parameters can con-
sistently outperform its dense counterpart with the
same amount of computation. Clark et al. (2022)
examine the scaling law of BASE Layer (Lewis
et al., 2021), Hash Layer (Roller et al., 2021) and
earlier Reinforcement Learning-based routing al-
gorithms providing suggestions for best-practices
in training MoE models.

Zhang et al. (2021) propose MoEfication to split
feedforward neural networks (FFNN) in a trained
large model to experts. They find that a T5-
Large (Raffel et al., 2020) model with 700 million
parameters only activates 5% neurons for 80% in-
puts on a downstream task, indicating high redun-
dancy within large pretrained language models. To
transform a pretrained language model to an MoE
model, they first construct a co-activation graph
for each FFNN and then divide the graph into sub-
graphs with strong internal connections with graph
partitioning algorithm. Each subgraph forms an
expert. They train a router with oracle best routing
for training data. Then, they further fine-tune the
resulted model for better performance.

4 Early Exit

Early exit techniques aim to terminate model in-
ference in early layers, to save computation and
sometimes improve performance by resolving the
overthinking problem (Kaya et al., 2019), i.e., pos-
sible performance degradation at a later layer. It
can be useful especially in the era of pretrained
language models (PLM), since increasing the size
of PLMs can often lead to better performance, al-
though a smaller model can already predict most
examples (i.e., “easy examples”) correctly.

The main idea of early exit is to exit inference

at an earlier layer, rather than the last layer. Early
exit often involves a series of internal classifiers
inserted into a large network, providing signals
for early exiting. The core of early exit methods
is the exit criterion. Based on their exit strate-
gies, we categorize the early exit methods into
three classes: confidence-based, ensemble-based
and learning-based, as listed in Table 3.

Despite better performance, speed and adversar-
ial robustness (Zhou et al., 2020a), an additional
benefit is that the speed-accuracy trade-off can be
adjusted as needed by tuning the exit threshold
(θ in Table 3), without the need of retraining the
model. A main drawback is that early exit is of-
ten applied on a per-instance basis, meaning that
to maximize the speed-up ratio, a small batch size
(often 1) has to be used.

Confidence-based Early Exit Early works for
early exit in computer vision (Park et al., 2015;
Teerapittayanon et al., 2016; Kaya et al., 2019)
often fall into this category. They define a met-
ric as the proxy for confidence of a model pre-
diction. The model exits early when the confi-
dence hits a predefined threshold. DeeBERT (Xin
et al., 2020b) applies BranchyNet (Teerapit-
tayanon et al., 2016) to BERT inference. The
training for DeeBERT is two-stage: they first
train BERT on downstream tasks following stan-
dard fine-tuning. Then, they freeze the parame-
ters of the Transformer and insert a linear classi-
fier (i.e., internal classifier) after each Transformer
layer. They train the classifiers by minimizing
the sum of their cross-entropy loss. For infer-
ence, the model exits early when an internal clas-
sifier outputs a prediction probability distribution
that has an entropy lower than a predefined thresh-
old. RightTool (Schwartz et al., 2020) jointly fine-
tunes BERT with internal classifiers. They use
the temperature-calibrated maximum class prob-
ability as confidence. FastBERT (Liu et al., 2020)
first trains the BERT backbone and the final clas-
sifier. Then, they distill the final classifier layer
to the internal classifiers (Hinton et al., 2015).
For inference, the model exits when the entropy
of a prediction is below the threshold. Rome-
BERT (Geng et al., 2021) provides a simple fix
for learning internal classifiers efficiently. Be-
sides self-distillation as in FastBERT, they pro-
pose gradient regularization (GR) to facilitate dis-
tillation. SkipBERT (Wang et al., 2022) caches
pre-computed representation of text chunks to re-
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Method Internal classifier training Exit criterion

DeeBERT (Xin et al., 2020b) two-stage; sum of CE loss entropy < θ
RightTool (Schwartz et al., 2020) joint; sum of CE loss calibrated max class probability > θ
FastBERT (Liu et al., 2020) two-stage; self-distillation entropy < θ
RomeBERT (Geng et al., 2021) joint; self-distillation + GR entropy < θ
SkipBERT (2022) joint; weighted sum of CE + KD max class probability > θ

PABEE (Zhou et al., 2020a) joint; weighted sum of CE loss patience (#consistent prediction > θ )
Voting (Sun et al., 2021) joint; sum of CE + diversity loss accumulated votes > θ
LeeBERT (Zhu, 2021) joint; auto-weighted sum of CE + KD loss patience (#consistent prediction > θ )
Past-Future (Liao et al., 2021) joint; weighted sum of CE + imitation learning entropy < θ
PCEE-BERT (2022a) joint; weighted sum of CE patience (#consistent IC confidence > θ)

BERxiT (Xin et al., 2021) alternate; sum of CE loss estimated confidence > θ
CAT (Schuster et al., 2021) joint; avg. of CE loss estimated conformity > θ

CascadeBERT (Li et al., 2021a) standard model FT with confidence calibration calibrated max class probability > θ

Table 3: A summary of early exit methods. θ is a predefined threshold for exiting. This table is extended from a
table in Xu and McAuley (2022).

place lower BERT layers and uses confidence-
based early exit for higher layers to achieve maxi-
mum acceleration.

Ensemble-based Early Exit One drawback in
confidence-based early exit is wasted computa-
tion. That is to say, if the confidence of an internal
classifier does not satisfy the exit criterion, it will
be disregarded. Ensemble-based early exit recy-
cles these predictions and considers output from
multiple internal classifiers to make better predic-
tions. Based on the similarity between overfitting
and overthinking, PABEE (Zhou et al., 2020a) bor-
rows early stopping from model training. They
first jointly train the internal classifiers with BERT
by a weighted sum of cross-entropy losses that as-
signs larger weights for upper classifiers. For in-
ference, the model exits when k consecutive in-
ternal classifiers make the same prediction. Other
than improvement on performance and efficiency,
they find that PABEE can improve adversarial ro-
bustness, which they attribute to the ensemble ef-
fect. Sun et al. (2021) further introduce a diver-
sity loss that encourages internal classifiers to have
a diverse predicted probability distribution. They
propose a voting mechanism to ensemble the in-
ternal classifiers by exiting early when a class has
accumulated more votes than the threshold. In-
terestingly, LeeBERT (Zhu, 2021) adopts the op-
posite strategy: they promote consistency across
internal classifiers by distilling them to each other.
However, they introduce a learnable weight for the
cross-entropy loss of each classifier and the distil-
lation loss between each pair. They optimize these
weights by a cross-level optimization algorithm.

They adopt PABEE’s patience-based strategy for
exiting. Liao et al. (2021) train linear transforma-
tion layers called “imitation learners”, to approx-
imate the hidden states of future layers based on
current hidden states. For inference, the predic-
tion after each layer is calculated by mixing the
past predictions and the future predictions of the
imitation learners. Entropy is used as the exit cri-
terion. PCEE-BERT (Zhang et al., 2022a) borrows
from both ensemble-based exit and confidence-
based methods. The inference is terminated when
multiple layers are confident.

Learning-based Early Exit Another stream of
research is to learn a criterion for early exiting.
BERxiT (Xin et al., 2021) alternates between joint
fine-tuning and two-stage fine-tuning by freezing
parameters of Transformer and the final classifier
for even-numbered iterations and unfreezing them
for odd-numbered iterations. They also train a
linear layer called a learning-to-exit (LTE) mod-
ule to predict whether the current internal clas-
sifier makes the correct prediction. It takes the
hidden states as input and outputs a confidence
score, which is used to decide whether to exit.
CAT (Schuster et al., 2021) introduces a “meta
consistency classifier” to predict whether the out-
put of an internal classifier conforms to the final
classifier and exits when the consistency classifier
predicts a certain level of conformity.

Cascading Cascading can be seen as a special
form of early exit, performed at the model level.
Li et al. (2021a) find that shallow features and in-
ternal classifiers in the first few layers of BERT
utilized by early exit methods like DeeBERT (Xin
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et al., 2020b) are not sufficient and reliable, un-
derperforming a fine-tuned BERT with the same
number of layers. Therefore, they propose to use
a suite of complete models with different num-
bers of layers for cascading. CascadeBERT ex-
ecutes models one by one, from the smallest to
the largest. It stops when a model outputs a confi-
dence score (calibrated maximum class probabil-
ity) that reaches the threshold.

Applications Although early exit is originally
developed for classification, there have been
works extending it to more tasks and settings. Li
et al. (2021b) propose Token-Level Early-Exit that
targets early exiting for sequence labeling. They
use the maximum class probability as confidence
on a per-token basis. Once the confidence hits the
threshold, the hidden states of the corresponding
tokens will be frozen and directly copied to up-
per layers. These exited tokens will not attend
to other tokens at upper layers but can still be at-
tended by other tokens. The model completely ex-
its when every token exits. A similar idea is also
presented in Elbayad et al. (2020) and Liu et al.
(2021b) where hidden states of some positions can
be frozen and directly copied to upper layers, al-
though the former is focused on generation and
the latter is for classification. Xin et al. (2020a)
apply DeeBERT (Xin et al., 2020b) to document
ranking and set different thresholds to the negative
and positive classes for early exiting, to accommo-
date the imbalanced class distribution in document
ranking. ELUE (Liu et al., 2021a) is a benchmark
which evaluates the Pareto Front of early exit mod-
els on the FLOPs-performance plane. They pro-
vide a BERT-like baseline with jointly pretrained
internal classifiers, to mitigate the gap between
pretraining and fine-tuning.

5 Challenges and Future Directions

Evaluation Evaluating dynamic neural net-
works can be difficult since we cannot pre-define
a few break points to compare different methods
at the exact same amount of computation or time.
ELUE score (Liu et al., 2021a) may be a promising
solution to this problem by considering both com-
putation and performance, depicting the Pareto
Front. Besides, different works have different cal-
culation for speed-up ratio. For example, some
works use the ratio of layers involved in computa-
tion to estimate speed-up ratio (Zhou et al., 2020a;
Sun et al., 2021; Liao et al., 2021). This can

be misleading since internal classifiers introduce
extra computational costs, especially when more
complicated mechanism introduced, e.g., future-
layer imitation (Liao et al., 2021). Also, the re-
ported speed of MoE models, greatly differs on
different hardware and distribution settings, mak-
ing it hard to compare across papers.

Data Parallelism One drawback of dynamic
neural networks is their inefficiency on data paral-
lelism. To be specific, MoE methods introduce ex-
tra communication costs for dynamic routing and
could be a bottleneck for efficiency. Skimming
and early exit methods often employ an “online
inference” setting where the batch size is fixed to
1, to achieve maximum acceleration. However, for
batched inference, the efficiency of these methods
will drastically degrade, since the already-exited
instances will have to wait all instances to exit,
which causes a low parallelism and low utilization
of GPU.

Optimized Runtime Since dynamic neural net-
works are an emerging type of neural net-
works, most hardware and libraries are not well-
optimized for these models. For example, sparse
matrix multiplication in MoE needs specialized
hardware and software support to achieve its
theoretical efficiency. Also, current dynamic
neural networks are often implemented in ea-
ger execution, which prevents them from low-
level optimization of graph execution. There
have been works exploring optimized runtime for
MoE (Shazeer et al., 2018; Jia et al., 2020; He
et al., 2021; Rajbhandari et al., 2022) and early
exit (Paul et al., 2019) while more to be done in
the future.

Theoretical Analysis and Support While the
dynamic neural networks have demonstrated em-
pirical improvement over static counterparts, dy-
namic networks are not solidly backed by theoret-
ical analysis. For example, the theoretical analysis
in PABEE (Zhou et al., 2020a) is based on an as-
sumption that internal classifiers are independent
to each other, which is unrealistic. More research
should be done from the perspective of optimiza-
tion and effect of data distribution on dynamic
neural networks.

Explainability The decision-making process of
the dynamic neural networks can be important to
explain the model prediction and even understand

2377



more fundamental research questions in machine
learning, including scaling law and generalization.
Can we use skimming to explain sequence classi-
fication? Is it consistent with attention-based ex-
planation (Xu et al., 2015)? What does each ex-
pert in MoE learn and what makes them different?
Why does a lower internal classifier make different
prediction from an upper classifier despite equally
trained with the same objective? These questions
warrant further exploration, from both data and
model perspectives.

Limitations

A limitation of this survey is that we do not draw
a direct quantitative comparison for the meth-
ods surveyed in this paper since different meth-
ods have their own accuracy-speed curves, with
their own unique limitations (e.g., many early exit
methods can only handle a batch size of 1). Also,
we do not discuss some works in depth and in de-
tail due to space limit.
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