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Abstract

Feature attribution methods are popular for ex-
plaining neural network predictions, and they
are often evaluated on metrics such as compre-
hensiveness and sufficiency. In this paper, we
highlight an intriguing property of these met-
rics: their solvability. Concretely, we can de-
fine the problem of optimizing an explanation
for a metric, which can be solved by beam
search. This observation leads to the obvi-
ous yet unaddressed question: why do we use
explainers (e.g., LIME) not based on solving
the target metric, if the metric value repre-
sents explanation quality? We present a series
of investigations showing strong performance
of this beam search explainer and discuss its
broader implication: a definition-evaluation
duality of interpretability concepts. We im-
plement the explainer and release the Python
solvex package for models of text, image
and tabular domains.

1 Introduction
For neural network models deployed in high

stakes domains, the explanations for predictions are
often as important as the predictions themselves.
For example, a skin cancer detection model may
work by detecting surgery markers (Winkler et al.,
2019) and an explanation that reveals this spurious
correlation is highly valuable. However, evaluating
the correctness (or faithfulness) of explanations is
fundamentally ill-posed: because the explanations
are used to help people understand the reasoning of
the model, we cannot check it against the ground
truth reasoning, as the latter is not available.

As a result, correctness evaluations typically em-
ploy certain alternative metrics. For feature attribu-
tion explanations, they work under a shared prin-
ciple: changing an important feature should have
a large impact on the model prediction. Thus, the
quality of the explanation is defined by different for-
mulations of the model prediction change, resulting
in various metrics such as comprehensiveness and
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Figure 1: Left: the current process of developing new
explainers. Right: the natural implication following
our observation that evaluation metrics are solvable.

sufficiency (DeYoung et al., 2020). To develop new
explanation methods (Fig. 1, left), people gener-
ally identify a specific notion of feature importance
(e.g., local sensitivity), propose the correspond-
ing explainer (e.g., gradient saliency (Simonyan
et al., 2013)), evaluate it on one or more metrics,
and claim its superiority based on favorable results
vs. baseline explainers. We call these explainers
heuristic as they are motivated by pre-defined no-
tions of feature importance.

In this paper, we show that all these metrics are
solvable, in that we can define an explanation as
the one that optimizes a metric value and search
for it. The obvious question is then: if we take a
specific target metric to represent correctness, why
don’t we just search for the metric-optimal expla-
nation (Fig. 1, right) but take the more convoluted
route of developing heuristic explanations and then
evaluating them (Fig. 1, left)?

There are several possible reasons. First, the
optimization problem may be so hard that we can-
not find an explanation better than the heuristic
ones. The bigger concern, however, is that of Good-
hart’s Law. In other words, as soon as a metric is
used in explicit optimization, it ceases to be a good
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Figure 2: A definition-evaluation spectrum for various interpretability concepts currently as perceived by the com-
munity (see App. B for some justification). The proposed solvability property can move evaluational concepts
towards the definitional side, for which we explore two in the paper (solid arrows). The more general definition-
evaluation duality opens up new opportunities to move other concepts around (dashed arrows).

metric. Concretely, the explanation may overfit to
the particular metric and perform much worse on
closely related ones (Chan et al., 2022), or overfit
to the model and effectively adversarially attack
the model when assigning word importance (Feng
et al., 2018). It may also perform poorly on evalu-
ations not based on such metrics, such as ground
truth alignment (Zhou et al., 2022a).

We assess these concerns, taking the widely used
comprehensiveness and sufficiency metrics (DeY-
oung et al., 2020) as the optimization target. Our
findings, however, largely dispel every concern. A
standard beam search produces explanations that
greatly outperform existing one such as LIME and
SHAP on the target metric. On several other met-
rics, the search-based explainer also performs fa-
vorably on average. There is no strong evidence
of it adversarially exploiting the model either, and
it achieves competitive performances on a suite of
ground truth-based evaluations.

Thus, we advocate for wider adoptions of the
explainer, which is domain-general and compatible
with models on image and tabular data as well. As
an engineering contribution, we release the Python
solvex package (solvability-based explanation)
and demonstrate its versatility in App.A.

More broadly, the solvability phenomenon is one
facet of the definition-evaluation duality, which as-
serts an equivalence between definitions and eval-
uations. Solvability recognizes that for each eval-
uation metric, we can define explainer that per-
forms optimally on this metric. Conversely, for
each explainer, we can also come up with an eval-
uation metric that ranks this explainer on top – a
straightforward one would be the negative distance
between the explanation under evaluation and the
“reference explanation” generated by the explainer.

While the community has mostly agreed on a
spectrum on which various interpretability con-
cepts (Fig. 2) are located, duality allows every con-
cept to be moved freely on the scale. We explored

two particular movements as represented by the
solid arrows, but the more general investigation of
this operation could be of both theoretical and prac-
tical interest. In addition, given that definitions and
evaluations are really two sides of the same coin,
we need to reflect how to best evaluate explana-
tions. Sec. 6 argues to measure their demonstrable
utilities in downstream tasks, and present potential
ways and ideas to better align the interpretability
research with such goals.

2 Background and Related Work
In this section, we give a concise but unified in-

troduction to the popular feature attribution explain-
ers and evaluation metrics studied in this paper.

2.1 Feature Attribution Explainers
We focus on feature attribution explanations,

which explains an input x = (x1, ..., xL) by a vec-
tor e = (e1, ..., eL) where el represents the “con-
tribution” of xl to the prediction. Many different
definitions for contribution have been proposed and
we consider the following five.
• Vanilla gradient (Grad) (Simonyan et al., 2013;

Li et al., 2016a) is the L2 norm of gradient of the
prediction (in logit, following standard practice)
with respect to the token embedding.

• Integrated gradient (IntG) (Sundararajan et al.,
2017) is the path integral of the embedding gra-
dient along the line segment from the zero em-
bedding value to the actual value.

• LIME (Ribeiro et al., 2016) is the coefficient of
a linear regression in the local neighborhood.

• SHAP (Lundberg and Lee, 2017) computes the
Shapley value (Roth, 1988) for each word.

• Occlusion (Occl) (Li et al., 2016b) is the change
in prediction when a word is removed from the
input while all other words remain.

2.2 Feature Attribution Evaluations
Naturally, different definitions result in differ-

ent explanation values. As findings (e.g., Adebayo
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et al., 2018; Nie et al., 2018) suggest that some ex-
planations are not correct (i.e., faithfully reflecting
the model’s reasoning process), many evaluations
are proposed to quantify the correctness of differ-
ent explanations. Not having access to the ground
truth model working mechanism (which is what
explanations seek to reveal in the first place), they
are instead guided by one principle: changing an
important feature (as judged by the explanation)
should have a large impact on the prediction, and
the magnitude of the impact is taken as explanation
quality. However, there are different ways to quan-
tify the impact, leading to different evaluations, and
we consider six in this paper.

Let f : X → R be a function that we want
to explain, such as the probability of the target
class. For an input x = (x1, ..., xL) of L words,
according to an explanation e = (e1, ..., eL), we
can create a sequence of L + 1 input deletions
x̃
(0)
e , x̃

(1)
e , ..., x̃

(L)
e where x̃(l)e is the the input but

with l most important features removed. Thus, we
have x̃(0)e = x and x̃(L)e being the empty string.1

The comprehensiveness κ (DeYoung et al., 2020)
is defined as

κ(x, e) =
1

L+ 1

L∑

l=0

f(x)− f(x̃(l)e ). (1)

It measures the deviation from the original model
prediction when important features (according to
e) are successively removed, and therefore a larger
value is desirable. It was also proposed for com-
puter vision models as the area over perturbation
curve (AoPC) by Samek et al. (2016).

Analogously, we can define the sequence of in-
put insertions x̂(0)e , x̂

(1)
e , ..., x̂

(L)
e , where x̂(l)e is the

input with the l most important features present.
Thus, x̂(0)e is the empty string and x̂(L)e = x, but
otherwise the sequences of input insertions and
deletions do not mirror each other. The sufficiency
σ (DeYoung et al., 2020) is defined as

σ(x, e) =
1

L+ 1

L∑

l=0

f(x)− f(x̂(l)e ). (2)

1We define feature removal as the literal deletion of the
word from the sentence, which is a popular practice. Other
methods replace the token with [UNK], [MASK] or zero em-
bedding, are more sophisticated such as performing BERT
mask filling (Kim et al., 2020). While our current approach
could lead to out-of-distribution instances, we adopt it due to
its popularity. A thorough investigation for the best strategy is
orthogonal to our paper and beyond its scope.

It measures the gap to the original model predic-
tion that remains (i.e., convergence to the model
prediction) when features are successively inserted
from the most important to the least. Therefore, a
smaller value is desirable.

Another interpretation of prediction change just
considers decision flips. Let g : X → {0, ...,K}
be the function that outputs the most likely class
of an input. The decision flip by removing the
most important token (Chrysostomou and Ale-
tras, 2021) is defined as

DFMIT(x, e) = 1
g(x̃

(1)
e ) 6=g(x)

, (3)

which measures whether removing the most impor-
tant token changes the decision. Across a dataset,
its average value gives the overall decision flip rate,
and a higher value is desirable.

The fraction of token removals for decision
flip (Serrano and Smith, 2019) is defined as

DFFrac(x, e) =
arg minl g(x̃

(l)
e ) 6= g(x)

L
, (4)

and we define DFFrac = 1 if no value of l leads
to the decision flip. This metric represents the
fraction of feature removals that is needed to flip
the decision, and hence a lower value is desirable.

Last, two metrics evaluate correlations between
model prediction and feature importance. For x
and e, we define the sequence of marginal feature
deletions x(1)−,e, ..., x

(L)
−,e such that x(l)−,e is original

input with only the l-th important feature removed.
The deletion rank correlation (Alvarez-Melis and
Jaakkola, 2018b) is defined as

δf = [f(x)− f(x
(1)
−,e), ..., f(x)− f(x

(L)
−,e)], (5)

RankDel(x, e) = ρ(δf , e), (6)

where ρ(·, ·) is the Spearman rank correlation coef-
ficient between the two input vectors. Intuitively,
this metric asserts that suppressing a more impor-
tant feature should have a larger impact to the
model prediction. A higher correlation is desirable.

The insertion rank correlation (Luss et al.,
2021) is defined as

v = [f(x̃(L)), ..., f(x̃(0))], (7)

RankIns(x, e) = ρ(v, [0, ..., L]), (8)

and recall that x̃(L)e , ..., x̃
(0)
e is the sequence of in-

puts with increasingly more important features in-
serted, starting from the empty string x̃(L) to the
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full input x̃(0). This metric asserts that the model
prediction on this sequence should increase mono-
tonically to the original prediction. Also a higher
correlation is desirable.

Related to our proposed notion of solvability
is the phenomenon that some metric values seem
to favor some explainers (Pham et al., 2022; Ju
et al., 2022). While it is often used to argue against
the use of certain evaluations, we take this idea to
the extreme, which culminates in the solvability
property, and find that metric-solving (Def. 3.1) ex-
planations from some metrics can be high-quality.

3 The Solvability of Evaluation Metrics
Now we establish the central observation of this

paper: the solvability of these evaluation metrics.
Observe that each evaluation metric, e.g., compre-
hensiveness κ, is defined on the input x and the
explanation e, and its computation only uses the
model prediction function f (or g derived from f
for the two decision flip metrics). In addition, the
form of feature attribution explanation constrains e
to be a vector of the same length as x, or e ∈ RL.

Without loss of generality, we assume that the
metrics are defined such that a higher value means
a better explanation (e.g., redefining the sufficiency
to be the negative of its original form). We formal-
ize the concept of solvability as follows:

Definition 3.1. For a metric m and an input x, an
explanation e∗ solves the metric m if m(x, e∗) ≥
m(x, e) for all e ∈ RL. We also call e∗ the m-
solving explanation.

Notably, there are already two explanation-
solving-metric cases among the ones in Sec. 2.

Theorem 1. The occlusion explainer solves the
DFMIT and RankDel metrics.

The proof follows from the definition of the ex-
plainer and the two metrics. Occlusion explainer
defines token importance as the prediction change
when each the token is individually removed, thus
the most important token is the one that induces
the largest change, which makes it most likely to
flip the decision under DFMIT. In addition, because
token importance is defined as the model predic-
tion change, its rank correlation with the latter (i.e.,
RankDel) is maximal at 1.0.

Thm. 1 highlights an important question: if we
take DFMIT or RankDel as the metric (i.e., indicator)
of explanation quality, why should we consider any
other explanation, when the occlusion explanation
provably achieves the optimum? A possible answer

is that the metrics themselves are problematic. For
example, one can argue that the DFMIT is too re-
strictive for overdetermined input: when redundant
features (e.g., synonyms) are present, removing any
individual one cannot change the prediction, such
as for the sentiment classification input of “This
movie is great, superb and beautiful.”

Nonetheless, the perceived quality of a metric
can be loosely inferred from its adoption by the
community, and the comprehensiveness and suffi-
ciency metrics (DeYoung et al., 2020) are by far
the most widely used. They overcome the issue of
DFMIT by also considering inputs with more than
one token removed. Since a metric is scalar-valued,
we combine comprehensiveness κ and sufficiency
σ into comp-suff difference ∆, defined as (recall
that a lower sufficiency value is better):

∆(x, e) = κ(x, e)− σ(x, e). (9)

Again, we face the same question: if ∆ is solv-
able, why should any heuristic explainers be used
instead of the ∆-solving e∗? In the next two sec-
tions, we seek to answer it by first proposing a
beam search algorithm to (approximately) find e∗

and then explore its various properties.

4 Solving Metrics with Beam Search
We first define two properties that are satisfied

by some metrics: value agnosticity and additivity.
Definition 4.1. For an input x = (x1, ..., xL) with
explanation e = (e1, ..., eL), we define the ranked
importance as r(xl) = |{ei : ei ≤ el, 1 ≤ i ≤ L}|.
In other word, the xl with r(xl) = L is the most
important, and that with r(xl) = 1 is the least. A
metric m is value-agnostic if for all e1 and e2 that
induce the same ranked importance, we have

m(x, e1) = m(x, e2). (10)

A value-agnostic metric has at most L! unique
values across all possible explanations for an input
of length L. Thus, in theory, an exhaustive search
over the L! permutations of the list [1, 2, ..., L] is
guaranteed to find the e∗ that solves the metric.
Definition 4.2. A metric m is additive if it can be
written in the form of

m(x, e) =
L∑

l=0

h(x, e(l)), (11)

for some function h, where e(l) reveals the attribu-
tion values of l most important features according
to e but keeps the rest inaccessible.

2402



Theorem 2. Comprehensiveness, sufficiency and
their difference are value-agnostic and additive.

The proof is straightforward, by observing that
both x̃(l) and x̂(l) can be created from x and the
ordering of e(l). In fact, all metrics in Sec. 2 are
value-agnostic (but only some are additive).

A metric satisfying these two properties admits
an efficient beam search algorithm to approxi-
mately solve it. As e(l) can be considered as a
partial explanation that only specifies the top-l im-
portant features, we start with e(0), and try each
feature as most important obtain e(1). With beam
size B, if there are more than B features, we keep
the top-B according to the partial sum. This ex-
tension procedure continues until all features are
added, and top extension is then e∗. Alg. 1 docu-
ments the procedure, where ext(e, v) extends e and
returns a set of explanations, in which each new
one has value v on one previously empty entry of e.
Finally, note that e∗ generated on Line 8 has entry
values in {1, ..., L}, but some features may con-
tribute against the prediction (e.g., “This movie is
truly innovative although slightly cursory.”). Thus,
we post-process e∗ by shifting all values by k such
that the new values (in {1− k, L− k}) maximally
satisfy the sign of marginal contribution of each
word (i.e., the sign of the occlusion saliency).

Algorithm 1: Beam search for finding e∗.

1 Input: beam size B, metric m, sentence x
of length L;

2 Let e(0) be an empty length-L explanation;
3 beams← {e(0)};
4 for l = 1, ..., L do
5 beams←

⋃

e∈beams
ext(e, L− l + 1);

6 beams← choose_best(beams, B);
7 end
8 e← choose_best(beams, 1);
9 e∗ ← shift(e);

10 return e∗;

Without the additive property, beam search is
not feasible due to the lack of partial metric values.
However, Zhou et al. (2021) presented a simulated
annealing algorithm (Kirkpatrick et al., 1983) to
search for the optimal data acquisition order in ac-
tive learning, and we can use a similar procedure to
search for the optimal feature importance order. If
the metric is value-sensitive, assuming differentia-
bility with respect to the explanation value, meth-

ods such as gradient descent can be used. Since
we focus on comprehensiveness and sufficiency in
this paper, the development and evaluation of these
approaches are left to future work.

5 Experiments

We investigate various properties of the beam
search explainer vs. existing heuristic explainers,
using the publicly available textattack/roberta-base-
SST-2 model on the SST dataset (Socher et al.,
2013) as a case study. The sentiment value for each
sentence is a number between 0 (very negative)
and 1 (very positive), which we binarize into two
classes of [0, 0.4] and [0.6, 1]. Sentences with sen-
timent values in middle are discarded. The average
sentence length is 19, making the exhaustive search
impossible. We use a beam size of 100 to search for
∆-solving explanation E∗. All reported statistics
are computed on the test set.

Fig. 3 presents two explanations, with additional
ones in Fig. 11 of App. C. While we need more
quantitative analyses (carried out below) for defini-
tive conclusions on its various properties, E∗ ex-
planations at least looks reasonable and is likely to
help people understand the model by highlighting
the high importance of sentiment-laden words.

A worthy tribute to a great humanitarian and
her vibrant ‘ co-stars . ’

So stupid , so ill-conceived , so badly drawn ,
it created whole new levels of ugly .

Figure 3: Two E∗ explanations. The shade of back-
ground color represents feature importance.

5.1 Performance on the Target Metric

We compare E∗ to heuristic explainers on the
∆ metric, with results shown in Tab. 1 along with
the associated κ and σ. A random explanation
baseline is included for reference. We can see that
E∗ achieves the best ∆, often by a large margin. It
also tops the ranking separately for κ and σ, which
suggests that an explanation could be optimally
comprehensive and sufficient at the same time.

To visually understand how the model prediction
changes during feature removal and insertion, we
plot in Fig. 4 the values of f(x) − f(x̃

(l)
e ) and

f(x) − f(x̂
(l)
e ) (i.e., the summands in Eq. 1 and

2), as a function of l/L. The left panel shows the
curves averaged across all test set instances, and the
right panel shows those for a specific instance. κ
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Explainer Comp κ ↑ Suff σ ↓ Diff ∆ ↑
Grad 0.327 0.108 0.218
IntG 0.525 0.044 0.481

LIME 0.682 0.033 0.649
SHAP 0.612 0.034 0.578

Occl 0.509 0.040 0.469

E∗ 0.740 0.020 0.720
Random 0.218 0.212 0.006

Table 1: Comprehensiveness, sufficiency and their dif-
ference for various explainers.
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Figure 4: Comprehensiveness and sufficiency curves
for the beam search optimal explainer vs. others.

and σ are thus the areas under the solid and dashed
curves respectively. The curves for E∗ dominate
the rest, and, on individual inputs, are also much
smoother than those for other explanations.

One concern for beam search is its efficiency,
especially compared to those that only require a
single pass of the model such as the vanilla gradient.
However, we note that explanations, unlike model
predictions, are rarely used in real-time decision
making. Instead, they are mostly used for debug-
ging and auditing purposes, and incurring a longer
generation time to obtain a higher-quality explana-
tion is often beneficial. On a single RTX3080 GPU
card without any in-depth code optimization, the
metric values and time costs for various beam sizes
are presented in Tab. 2, with statistics for the best
explainer LIME also listed for comparison.

Expectedly, the metric values increase with in-
creasing beam size, but the improvement is meager
after 10 beams. More importantly, beam search is

B 1 5 10 20 50 100 LIME

κ 0.717 0.731 0.734 0.736 0.739 0.740 0.682
σ 0.020 0.020 0.020 0.020 0.020 0.020 0.033
∆ 0.697 0.711 0.714 0.716 0.719 0.720 0.649
T 0.38 0.77 1.15 1.72 2.85 4.37 4.75

Table 2: Effect of beam sizeB on κ, σ,∆ and computa-
tion time T (in seconds), compared against the statistics
of the best heuristic explainer LIME.

not slow – it is still faster than LIME even with 100
beams, and the single-beam version outperforms
LIME by a decent margin while being more than
10 times faster. Thus, these results establish that if
we take comprehensiveness and sufficiency as the
quality metrics, there is really no reason not to use
the beam search explainer directly.

5.2 Performance on Other Metrics
Sec. 2 lists many metrics that all operationalize

the same principle that changing important features
should have large impact on model prediction, but
in different ways. A potential argument against the
explicit beam search optimization is the fulfillment
of Goodhart’s Law: E∗ overfits to the metric by
exploiting its realization (i.e., Eq. 1 and 2) of this
principle and not truly reflecting its “spirit.”

To establish the legitimacy of this opposition, we
evaluate all the explainers on the remaining four
metrics in Sec. 2, and present the results in Tab. 3.

Explainer DFMIT↑ DFFrac↓ RankDel↑ RankIns↑
Grad 10.5% 54.5% 0.162 0.521
IntG 16.9% 39.6% 0.369 0.468

LIME 25.5% 28.1% 0.527 0.342
SHAP 23.0% 36.1% 0.369 0.458

Occl 26.4% 40.6% 1.000 0.396

E∗ 25.0% 25.2% 0.438 0.423
Random 3.4% 72.3% 0.004 0.599

Table 3: Performance on non-target metrics of the
beam search optimal explainer vs. others.

Since the occlusion explainer solves DFMIT and
RankDel (Thm. 1), it ranks the best on these two
metrics, as expected. Nonetheless, E∗ still ranks
competitively on these two metrics and comes out
ahead on DFFrac. The only exception is RankIns,
on which the random explanation surprisingly per-
forms the best. We carefully analyze it in App. D
and identify a fundamental flaw in this metric.

Last, note that we can also incorporate any of
these metrics into the objective function (which
already contains two metrics: κ and σ), and search
for E∗ that performs overall the best, if so desired.
We leave this investigation to future work.

5.3 Explainer “Attacking” the Model
Another concern is that the search procedure

may overfit to the model. Specifically, removing a
wordw in a partial sentence x̃(l)e drastically changes
the model prediction but does not have the same ef-
fect for most other x̃(l

′)
e . This makes E∗ assignw an
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Figure 5: Metric values for explanations under different
levels of perturbation represented by s on the x-axis.

overly high attribution, as w only happens to have a
high impact in one particular case. By contrast, ex-
plainers like LIME and SHAP automatically avoid
this issue by computing the average contribution of
w on many different partial sentences.

We test this concern by locally perturbing the
explanation. If E∗ uses many such “adversarial
attacks,” we should expect its metric values to
degrade sharply under perturbation, as the high-
importance words (according to E∗) will no longer
be influential in different partial sentence contexts.

To perturb the explanation, we first convert each
explanation e to its ranked importance version er
using r(·) in Def. 4.1, which does not affect any
metric as they are value-agnostic. Then we define
the perturbed rank by adding to each entry of er
an independent Gaussian noise: e′r = er + n with
n ∼ N (0, s2). Thus, two words xi and xj with
r(xi) > r(xj) have their ordering switched if r(xi)
− r(xj) < n(xj) − n(xi). A visualization of the
switching with different s is in Fig. 12 of App. E.

Fig. 5 plots the metrics under different s values
(RankIns not shown due to its intrinsic issue dis-
cussed in App. D). Everything degrades to various
extents. Although E∗ degrades slightly faster than
the rest on κ and DFFrac (and on par on others), it
still achieves best results even at s = 4, with many
order switches (Fig. 12), and a faster degradation is
reasonable anyway for metrics with better starting
values (c.f. occlusion on RankDel).

The evidence suggests that there is at most a
slight model overfitting phenomenon, as E∗ re-
mains comparable to other explainers under quite
severe perturbation. Furthermore, we can incor-
porate perturbation robustness into metric solving
to obtain an E∗ that degrade less, similar to adver-

sarial training (Madry et al., 2018). We leave the
exploration of this idea to future work.

App. F describes another assessment of model
overfitting, though with a mild assumption and re-
lying on word-level sentiment scores provided by
the SST dataset. Similar conclusions are reached.

5.4 Ground Truth Recovery

For a model trained on a natural dataset, its
ground truth working mechanism is rarely available
– in fact, arguably the very purpose of interpretabil-
ity methods is to uncover it. Thus, a series of work
(e.g., Zhou et al., 2022a) proposed methods to mod-
ify the dataset such that a model trained on the
new dataset has to follow a certain working mech-
anism to achieve high performance, which allows
for evaluations against the known mechanism.
Ground Truth Definitions We construct three
types of ground truths – short additions, long ad-
ditions and replacements. First, we randomize the
label to ŷ ∼ Unif{0, 1} so that the original input
features are not predictive (Zhou et al., 2022a).

For the two addition types, a word or a sentence
is inserted randomly to either the beginning or the
end of the input. The inserted text is randomly
chosen from the the sets in Tab. 4.

For the replacement type, each word in the input
is checked against the list of replacement word sets
in Tab. 5, and if the word belongs to one of the

Type ŷ = 0 ŷ = 1

Short
terrible, awful, disaster,
worst, never

excellent, great, fantas-
tic, brilliant, enjoyable

Long

A total waste of time.
Not worth the money!
Is it even a real film?
Overall it looks cheap.

I like this movie.
This is a great movie!
Such a beautiful work.
Surely recommend it!

Table 4: Set of insertions for the addition type accord-
ing to the new label ŷ. The words are comma-separated
for “short”, and each line is one piece of text for “long”.

Replacement word sets ŷ = 0 ŷ = 1

a, an, the a the
in, on, at in on
I, you I you
he, she he she
can, will, may can may
could, would, might could might
(all forms of be) is are
(all punctuation marks) (period) (comma)

Table 5: Replacement word sets and their target words.
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Short Addition Long Addition Replacement
Sym Asym Sym Asym Sym Asym

Explainer Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓ Pr ↑ NR ↓
Grad 0.91 0.06 0.51 0.08 0.70 0.37 0.77 0.30 0.50 0.75 0.51 0.74
IntG 0.82 0.10 0.60 0.21 0.60 0.76 0.70 0.55 0.49 0.74 0.48 0.74

LIME 1.00 0.06 1.00 0.06 0.72 0.60 0.84 0.32 0.63 0.65 0.54 0.71
SHAP 0.98 0.07 1.00 0.06 0.61 0.83 0.75 0.98 0.65 0.67 0.62 0.68

Occl 1.00 0.06 1.00 0.06 0.72 0.59 0.79 0.42 0.40 0.80 0.40 0.85

E∗ 1.00 0.06 1.00 0.06 0.67 0.64 0.92 0.38 0.60 0.66 0.54 0.73
Random 0.06 0.54 0.07 0.53 0.25 0.89 0.24 0.88 0.27 0.85 0.28 0.85

Table 6: Average values of precision and normalized rank of the ground truth correlated words for each explainer.

set, it is changed according to the new label ŷ. On
average, 27% of input words are replaced.

We call these modifications symmetric since in-
puts corresponding to both ŷ = 0 and ŷ = 1 are
modified. We also define the asymmetric modifi-
cation, where only inputs with ŷ = 1 are modified,
and those with ŷ = 0 are left unchanged.
Metrics We use the two metrics proposed by
Bastings et al. (2022): precision and normalized
rank. First, we define the ground truth correlated
words. For the two addition types, they are the
inserted words. In the asymmetric case, instances
with ŷ = 0 does not have any words added, so we
exclude them in metric value computation.2 For
the replacement type, they are the words that are in
the replacement set (but not necessarily replaced).

Let W be the set of ground truth correlated
words. Using ranked importance r(·) in Def. 4.1,
precision and normalized rank are defined as

Pr = |{w ∈W : r(w) > L− |W |}|/|W |,
NR = (L−min{r(w) : w ∈W}+ 1)/L.

Precision is the fraction of ground truth words
among the the top-|W | ranked words, and normal-
ized rank is the lowest rank among ground truth
words, normalized by the length L of the input.
Both values are in [0, 1], and higher precision val-
ues and lower normalized rank values are better.
Results Tab. 6 presents the test set Pr and NR val-
ues. Many explainers including E∗ score perfectly
on short additions, but all struggle on other types.
Nonetheless, E∗ still ranks comparably or favorably
to other methods. Its largest advantage shows on
the asymmetric long addition, because this setup
matches with the computation of κ and σ: E∗ finds
the most important words to remove/add to maxi-
mally change/preserve the original prediction, and

2This also highlights an intrinsic limitation of feature at-
tribution explanations: they cannot explain that the model
predicts a class because certain features are not present.

those words are exactly the ground truth inserted
ones. For replacement and symmetric addition, the
search procedure does not “reconstruct” inputs of
the other class, and E∗ fails to uncover the ground
truth. This finding suggests a mismatch between
metric computation and certain ground truth types.

Conversely, vanilla gradient performs decently
on ground truth types other than short addition, yet
ranks at the bottom on most quality metrics (Tab. 1
and 3), again likely due to the mismatch.

In fact, this evaluation is fundamentally different
from the rest in its non-solvability, specifically due
to its use of privileged information. To understand
this point, let us first compare the evaluation of
model prediction to that of model explanation, as
illustrated in Fig. 6. The former runs the model
on the input, receives the prediction, and compares
it with the ground truth label, which is emphati-
cally not available to the model under evaluation.
By contrast, no such privileged information exists
when computing interpretability metrics, allowing

𝑥 𝑓

𝑚exp(𝑥, 𝑒 𝑥, 𝑓 , 𝑓)𝑚pred(𝑓(𝑥), 𝑦)

𝑓(𝑥)

𝑥

𝑦

𝑒(𝑥, 𝑓)

𝑥: input, 𝑦: ground truth label, 𝑓:model, 𝑒: explainer,
𝑚pred: prediction metric,𝑚exp: explanation metric

Figure 6: The complete evaluation diagrams for model
predictions (left) and explanations (right). Green boxes
are the model and explainer under evaluation, which
have access to the information in yellow, and orange
boxes are the evaluators. Notably, prediction evalua-
tion (e.g., accuracy) uses the ground truth label y not
accessible to the model, but no such privileged infor-
mation is used by the interpretability evaluation.
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the explainer to directly solve them. In this ground
truth recovery evaluation, we employ similar privi-
leged information (i.e., induced ground truth model
working mechanism) by dataset modification and
model retraining. However, as discussed by Zhou
et al. (2022a), such evaluations are limited to the
range of ground truths that could be induced.

6 Discussion
Definition-Evaluation Duality Our investiga-
tion demonstrates that some evaluation metrics can
be used to find high-quality explanations, defined
as the optimizers of the metrics. Conversely, we
could also use any explanation definition d as an
evaluation metric m. A very simple one would
be m(x, e)

.
= −||e − d(x)||, where e is the ex-

planation under evaluation, d(x) is the “reference
explanation” and || · || is a suitably chosen distance
metric. It is obvious that d(x) itself achieves the
optimal evaluation metric value.

Therefore, in theory, there should not be a dif-
ference of using a concept as definition vs. evalu-
ation, but in practice, we almost always see some
used mainly as definitions and others as evaluations
(Fig. 2). A major reason of not considering to use
evaluations as definitions could be the presumed
intractability of the optimization, which is experi-
mentally refuted in this paper, as the beam search
demonstrates its efficacy and efficiency.

Conversely, why do we not see more definitions
(e.g., gradients and LIME) used as evaluations?
Such an attempt may sound trivial yet unjustifiable
at the same time: trivial because it is equivalent
to claiming that the corresponding explainer def-
inition is the best, which is in turn a seemingly
unjustifiable circular logic.

More importantly, we motivate a new research
direction opened up by the duality concept. Tra-
ditionally, definitions and evaluations have been
considered and developed separately, but duality
suggests that any interpretability concept can be
used as both. Thus, we propose that we should
focus on studying the intrinsic properties of these
concepts, independent of their usage as one or an-
other. For example, are some concepts inherently
superior for model explanations than others? How
can we measure the similarity between two con-
cepts? What does the space of these concepts look
like? None of them are currently answerable due
to a complete lack of formalization, but research
on it could lead to a much deeper understanding of
local explanations.

Demonstrable Utility Given the duality, how
should we evaluate explanations? Fundamentally,
local explanations are used for model understand-
ing (Zheng et al., 2022; Zhou et al., 2022b), and we
advocate for evaluating demonstrable utility: the
presence of an explanation compared to its absence,
or the newly proposed explanation compared to ex-
isting ones, should lead to a measurable difference
in some practically beneficial aspect.

For example, people use explanations to iden-
tify spurious correlation during development, audit
fairness before deployment, and assist human deci-
sion makers during deployment. However, recent
findings cast doubt on the feasibility of model ex-
planations to support any of these use cases (Bansal
et al., 2021; Jia et al., 2022; Zhou et al., 2022a).

Demonstrating such utilities would bypass dis-
cussions of solvability and directly assert their use-
fulness (Chen et al., 2022). The examples listed
here are by no means comprehensive, and a system-
atic taxonomy is valuable. Furthermore, it is likely
that no single explainer is a one-size-fit-all solu-
tion. More refined knowledge of the strengths and
weaknesses of each method in supporting different
aspects of model understanding is highly desirable.

7 Conclusion
We study the relationship between definitions

and evaluations of local explanations. We iden-
tify the solvability property of evaluation metrics,
such that for each evaluation metric, there is an ex-
plicit search procedure to find the explanation that
achieves the optimal metric value. In other words,
every evaluation admits a definition that solves it.

Compared to the current practice of defining a
explainer and then evaluating it on a metric, solv-
ability allows us to directly find the explanation
that optimizes the target metric and guarantee a
very favorable evaluation outcome. In this paper,
we investigate the feasibility of this process. First,
we propose to use beam search to find the explana-
tion E∗ that optimizes for comprehensiveness and
sufficiency (DeYoung et al., 2020). Then, in a suite
of evaluations, we find E∗ performing comparably
or favorably to existing explainers such as LIME.

Therefore, for practitioners, we recommend
using the proposed explainer for computing lo-
cal model explanations and provide the Python
solvex package for easy adoption (App. A). For
researchers, we propose a definition-evaluation du-
ality inspired by solvability, which opens up many
new research directions.
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Limitations and Ethical Impact
The focus of our paper is to investigate the

search-based explanation that explicitly optimizes a
target quality metric. While the results suggest that
it is comparable or favorable to existing heuristic
explainers on various technical aspects, its soci-
etal properties have not been studied. For example,
Ghorbani et al. (2019) showed that many heuristic
explanations can be easily manipulated and Slack
et al. (2020) demonstrated that discriminative mod-
els can be carefully modified such that their dis-
crimination is hidden by heuristic explanations. It
is possible that same issues exist for the search-
based explanation, and thus we advise to carefully
study them before deployment.

Another limitation of this approach is that E∗

explainer only produces rankings of feature im-
portance, rather than numerical values of feature
importance. In other words, E∗ does not distinguish
whether one feature is only slightly or significantly
more important than another. By comparison, al-
most all heuristic explainers output numerical val-
ues (e.g., magnitude of gradient). Other than the
ease of search in the ranking space than the numer-
ical value space, we give three additional reasons.
First, the utility of actual values, beyond the in-
duced rankings, has not been well studied in the
literature. In addition, many popular explanation
toolkits (e.g., Wallace et al., 2019) even defaults to
top-k visualization. Last, popular evaluation met-
rics rarely consider values either, suggesting that
there currently lack guiding principles and desider-
ata for these values. Moreover, if and when such
value-aware metrics are widely adopted, we could
augment our optimizer with them or incorporate
them into a post-processing fix without affecting
the ranking, similar to the shift operation done on
Line 9 of Alg. 1.
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A The Python solvex Package
We release the Python solvex package implementing explainer in a model-agnostic manner. The

project website at https://yilunzhou.github.io/solvability/ contains detailed tutorials
and documentation. Here, we showcase three additional use cases of the explainer.

To explain long paragraphs, feature granularity at the level of sentences may be sufficient or even
desired. solvex can use spaCy3 to split a paragraph into sentences and compute the sentence-level
attribution explanation accordingly. As an explanation, Fig. 7 shows an explanation for the prediction on
a test instance in the Yelp dataset (Asghar, 2016) made by the albert-base-v2-yelp-polarity model.

Contrary to other reviews, I have zero complaints about the service or the prices. I have been getting
tire service here for the past 5 years now, and compared to my experience with places like Pep Boys,
these guys are experienced and know what they’re doing. Also, this is one place that I do not feel like
I am being taken advantage of, just because of my gender. Other auto mechanics have been notorious
for capitalizing on my ignorance of cars, and have sucked my bank account dry. But here, my service
and road coverage has all been well explained - and let up to me to decide. And they just renovated
the waiting room. It looks a lot better than it did in previous years.

Figure 7: A sentence-level explanation on a Yelp test instance. Red color indicates positive contribution.

This package can explain image predictions with superpixel features (similar to LIME (Ribeiro et al.,
2016)). Fig. 8 shows the explanation for the top prediction (Class 232: Border Collie, a dog breed) by the
ResNet-50 (He et al., 2016) trained on ImageNet (Deng et al., 2009).

Explained label: 232. Function value: 0.159

20

10

0

10

20

Figure 8: An explanation for the top prediction (Class 232: Border Collie, a dog breed) on an image made by a
ResNet-50 model trained on ImageNet. Red color indicates positive contribution.

Last, it can also explain models trained on tabular datasets with both categorical and numerical features.
For a random forest model trained on the Adult dataset (Kohavi and Becker, 1996), Fig. 9 shows the
attribution on each feature that contributes to the class 0 (i.e., income less than or equal to $50K). Note
that a more positive attribution value indicates that the feature (e.g. age or relationship) contributes more
to the low income prediction.

3https://spacy.io/
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Age = 27.0
Workclass = Private

Education = Some-college
Education-Num = 10.0

Marital-Status = Divorced
Occupation = Adm-clerical
Relationship = Unmarried

Race = White
Sex = Female

Capital-Gain = 0.0
Capital-Loss = 0.0

Hours-per-Week = 44.0
Native-Country = United-States

Explained label: 0. Function value: 0.980

Figure 9: An explanation for the low income prediction made by a random forest model on the Adult dataset.

B The Definition-Evaluation Spectrum and Its Various Concepts
We describe the reasoning of assigning each concept to its location on the definition-evaluation

spectrum (Fig. 2, reproduced as Fig. 10 below), as currently perceived by the community according to
our understanding. Note that the discussion is unavoidably qualitative, but we hope that it illustrates the
general idea of this spectrum.

SHAP Occlusion

“Definitional” “Evaluational”

Gradient ComprehensivenessRobustness SufficiencyLIME

Figure 10: A definition-evaluation spectrum for various interpretability concepts, reproduced from Fig. 2.

We start on the definition side, where the gradient saliency (Simonyan et al., 2013; Li et al., 2016a)
is a classic feature attribution definition but, to the best of our knowledge, has never been used in any
evaluation capacity. Moving towards the evaluation side, we have LIME (Ribeiro et al., 2016), which is
again used mainly to define explanations (as linear regression coefficients), but the notion of local fidelity
introduced by LIME has been occasionally used to evaluate other explainers as well (Plumb et al., 2018).
Similar to LIME, SHAP (Lundberg and Lee, 2017) defines explanations as those that (approximately)
satisfy the Shapley axioms (Roth, 1988), which can also be used to evaluate how well a certain explanation
performs with respect to these axioms (Zhang et al., 2019). Next up we have the occlusion concept,
which, as seen in Sec. 2, can be used as one explainer definition, Occl (Zeiler and Fergus, 2014; Li et al.,
2016b), and two (not so popular) evaluations, DFMIT (Chrysostomou and Aletras, 2021) and RankDel
(Alvarez-Melis and Jaakkola, 2018b).

Further on the evaluation side, we now encounter concepts that are more often used for evaluations
than definitions. Robustness (Ghorbani et al., 2019) evaluates the similarity between explanations among
similar inputs and a higher degree of similarity is often more desirable (Alvarez-Melis and Jaakkola,
2018a). However, this robustness desideratum is incorporated explicitly into some explainers, such
as via the noise aggregation in SmoothGrad (Smilkov et al., 2017). On the right-most end we have
sufficiency and comprehensiveness (DeYoung et al., 2020), which evaluates whether keeping a small
subset of features could lead to the original model prediction, or removing it could lead to a large drop in
model prediction. They are arguably the most popular among various evaluation metrics, and have been
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repeatedly proposed under different names such as the area over perturbation curve (AoPC) (Samek et al.,
2016) and insertion/deletion metrics (Petsiuk et al., 2018). Using such these two ideas for definitions are
relatively rare, with one notable exception of smallest sufficient/destroying regions (SSR/SDR) proposed
by (Dabkowski and Gal, 2017).

Overall, it is clear that the community considers certain concepts more for definitions and others
more for evaluations, which motivates the investigation for this paper and future work: can we swap the
definition/evaluation roles, and if so, what are the implications?

C Additional Qualitative Examples of the E∗ Explanation
Fig. 11 presents more visualizations of E∗ explanations. These examples suggest that E∗ mostly focus

on words that convey strong sentiments, which is a plausible working mechanism of a sentiment classifier.

A triumph , relentless and beautiful in its downbeat darkness .

Ranks among Willams ’ best screen work .

Zany , exuberantly irreverent animated space adventure .

Behind the snow games and lovable Siberian huskies ( plus one sheep dog ) , the picture hosts a
parka-wrapped dose of heart .

... a haunting vision , with images that seem more like disturbing hallucinations .

Suffocated at conception by its Munchausen-by-proxy mum .

It ’s an awfully derivative story .

A dreadful live-action movie .

Figure 11: More E∗ explanations. The shade of background color represents feature importance.

D An Analysis on the RankIns Metric
As introduced in App. 2, RankDel evaluates the monotonicity of the model prediction curve when more

important features are successively inserted into an empty input. While this expectation seems reasonable,
it suffers from a critical issue due to the convention in ranking features: if a feature contributes against
the prediction, such as a word of sentiment opposite to the prediction (e.g., a positive prediction on “Other
than the story plot being a bit boring, everything else is actually masterfully designed and executed.”), it
should have negative attribution and the convention is to put them lower in the rank (i.e., less important)
than those have zero contributions. This implementation leads to the correct interpretation of all other
metric values.

However, under this convention, the first few words added to the empty input should decrease the model
prediction and then increase it, leading to a U-shaped curve. In fact, it is the comprehensiveness curve
shown in Fig. 4, flipped both horizontally (because features are inserted rather than removed) and vertically
(because the plotted quantity is the model prediction rather than change in prediction). Thus, a deeper
U-shape should be preferred, but it is less monotonic. This also explains why the random attribution
baseline achieves such a high ranking correlation: as we randomly add features from the empty string
to the full input, on average the curve should be a more or less monotonic interpolation between model
predictions on empty and full inputs, which has better monotonicity rank correlation than the U-shape.

It is not clear how to fix the metric. Previous works that proposed (Luss et al., 2021) or used (Chan
et al., 2022) this metric often ignored the issue. One work (Arya et al., 2019) filtered out all features of
negative attribution values and evaluate the rank correlation only on the rest. This, however, is easily
manipulatable by an adversary. Specifically, an explainer could shift all attribution values down such that
only the most positive one has a non-negative value. This change results in a perfect correlation as long as
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removing most positive feature induces a decrease in model prediction – an especially low requirement to
satisfy. Empirically, we found that inserting features based on their (unsigned) magnitude barely affects
the result either. Thus, we argue that this metric is not a good measurement of explanation quality.

E Visualization of Perturbation Effects

Fig. 12 visually presents the random perturbation, with different standard deviation s of the Gaussian
noise. In each panel, the top row orders the features by their ranked importance, from least important on
the left to most on the right, and the bottom row orders the features with perturbed ranked importance,
with lines connecting to their original position. For example, in the top panel for s = 1, the perturbation
swaps the relative order of the two least important features on the left.
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s
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Figure 12: Visualization of rank perturbation under different values of s.

F Another Assessment on the Explainer-Attacking-Model Behavior

We describe another experiment to assess whether the explanations exploit the adversarial vulnerability
of the model. While it is possible that the model could use some shortcuts (Geirhos et al., 2020), we
would expect it to predominantly use sentiment-conveying words, as it achieves high accuracy and no such
shortcuts are known for the dataset. In this case, we should expect an explainer that does not adversarially
exploit the model to give attributions for words correlated with their sentiment values, while an explainer
that attacks the model would rate words that are “adversarial bugs” to be more important.
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Figure 13: Spearman rank correlation coefficient between intrinsic word polarity score and attribution value.
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Conveniently, the SST dataset provides human annotations of the polarity score between 0 and 1 for
each word, where 0 means very negative, 1 means very positive, and 0.5 means neutral. We compute the
alignment between the attribution values (for the positive class) and this score for each word. Given a
sentence x = (x1, ..., xL) with explanation e = (e1, ..., eL) and word polarity score s = (s1, ..., sL), the
alignment is defined as the Spearman rank correlation coefficient ρ(e, s). Since the vanilla gradient only
produces non-negative values, it is impossible to identify whether a word contributes to or against the
positive class, and we exclude it from the analysis.

Fig. 13 plots the distribution of rank correlations among the test set instances, with the average shown
as the bar and also annotated on the horizontal axis. Although no method achieves very high alignment,
E∗ is the second-highest, after LIME. Thus, giving out assumption that high-polarity words are the indeed
genuine signals used by the model for making predictions, we can conclude that E∗ does not adversarially
exploit the model for its vulnerability any more severely than the heuristic explainers.
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