
Findings of the Association for Computational Linguistics: EACL 2023, pages 2501–2515
May 2-6, 2023 ©2023 Association for Computational Linguistics

Program Synthesis for Complex QA on Charts via Probabilistic Grammar
Based Filtered Iterative Back-Translation

Shabbirhussain Bhaisaheb, Shubham Paliwal, Rajaswa Patil,
Manasi Patwardhan, Lovekesh Vig, Gautam Shroff

TCS Research, India
{shabbirhussain.b, shubham.p3, patil.rajaswa,

manasi.patwardhan, lovekesh.vig, gautam.shroff}@tcs.com

Abstract

Answering complex reasoning questions from
chart images is a challenging problem requir-
ing a combination of natural language under-
standing, fine-grained perception, and analyt-
ical reasoning. Current chart based Question
Answering (QA) approaches largely address
structural, visual or simple data retrieval type
questions with fixed-vocabulary answers and
perform poorly on reasoning queries. We fo-
cus on answering realistic, complex, reasoning-
based questions where the answer needs to be
computed and not selected from a fixed set of
choices. Our approach employs a neural seman-
tic parser to transform Natural Language (NL)
questions into SQL programs and execute them
on a standardized schema populated from the
extracted chart contents. In the absence of pro-
gram annotations, i.e., in a weak supervision
setting, we obtain initial SQL predictions from
a pre-trained CodeT5 semantic parser and em-
ploy Filtered Iterative Back-Translation (FIBT)
for iteratively augmenting our NL-SQL train-
ing set. The forward (neural semantic parser)
and backward (language model) models are
initially trained with an external NL-SQL boot-
strapping data. We iteratively move towards
the required NL query distribution by gener-
ating NL questions from the synthesized SQL
programs using a Probabilistic Context-Free
Grammar (PCFG) where the production rule
probabilities are induced to be inversely propor-
tional to the probabilities in the training data.
We filter out the generated NL queries with mis-
matched structure and compositions. Our FIBT
approach achieves State-of-the-Art (SOTA) re-
sults on reasoning-based queries in the PlotQA
dataset yielding a test accuracy of 60.44%, su-
perseding the previous baselines by a large mar-
gin.

1 Introduction

Charts and plots are compact visualization tech-
niques capturing illustrated facts that are frequently
used in scientific and financial documents for sum-

(a) Dot Chart (b) Horizontal Bar Chart

(c) Vertical Bar Chart (d) Line Chart

Figure 1: PlotQA Chart Types

marizing observations and drawing conclusions
about the underlying data. Inferring relevant con-
clusions from charts entails answering complex
reasoning style queries, a task which has so far
proved challenging to automate. Most existing ap-
proaches and datasets for automatic QA over charts
specifically focus on structural, visual, relational or
simple data retrieval type queries (Chaudhry et al.,
2020; Siegel et al., 2016; Kim et al., 2020). Also,
as depicted in Table 1 many approaches assume ei-
ther binary answers or assume the answer belongs
to a fixed vocabulary.

On the other hand, for real world applications,
more complex reasoning based questions have to
be answered which involves a combination of per-
ception, language understanding, and reasoning.
For example, to answer the question depicted in
Table 1, for the chart (d) in Figure 1, the following
steps have to be followed: (i) Refer to the legend to
infer that the ‘percentage of firms offering quality
certification’ are depicted by the solid sky blue line,
(ii) For each year value on the X-axis, retrieve the
corresponding Y-values depicted by the solid sky
blue line, (iii) If the value of corresponding year
y is V (y), then find if ∀yi and yj , where i ̸= j,

2501

if yi > yj then V (yi) >= V (yj), to determine if
the values are monotonically increasing. In this
work, we address such complex reasoning style
questions on charts. These questions may also
involve nested arithmetic and aggregation opera-
tions over the chart data and thus the answer is
not necessarily derived from a fixed vocabulary,
or extracted from the chart text. We evaluate our
approach against the reasoning questions provided
in the PlotQA V2 dataset (Methani et al., 2020).

We define a common schema for the data across
all chart types and employ a state-of-the-art chart
visual extractor to populate the schema with chart
data. The PlotQA dataset does not provide any
SQL program annotations for the Natural Language
(NL) questions (only answers). We automatically
generate SQL programs for these NL questions by
using a Filtered Iterative Back-Translation (FIBT)
approach (Hoang et al., 2018) and execute these
programs on the extracted schema to compute the
answers. We use the SPIDER (NL to SQL) dataset
to train both the forward and backward models for
FIBT. The NL query distribution of this dataset
is different from the required PlotQA query dis-
tribution, in terms of query composition, schema
(database) structure and chart domains. We build
on the observations of (Guo et al., 2020), who em-
pirically show that Iterative Back Translation (IBT)
improves the performance of compositional gen-
eralization while generating logical forms from
NL questions by correcting errors in the pseudo-
parallel data at each iteration.

We define a Probabilistic Context-Free Gram-
mar (PCFG), as a subset of the SQL grammar, to
sample SQL programs executable on the extracted
chart schema. Existing PCFG based data augmen-
tation approaches for semantic parsing (Wang et al.,
2021b), synthesize SQLs following similar com-
positions to that of a given query set by inducing
proportional grammar probabilities. Our approach
differs from these as we set the probabilities of our
PCFG to be inversely proportional to the set-of pro-
grams in the training data. This results in synthesis
of SQL programs that (i) were not present in the
current training data and (ii) follow the program
distribution of the SQL programs needed to com-
pute the answers for the PlotQA questions. We
iteratively augment the training data by generat-
ing NL questions from SQL programs. We further
use denotations and a novel compositional simi-
larity based filtration strategy for removing noisy

NL-SQL pairs. We observe that this data augmen-
tation and filtration strategy results in improvement
in the PlotQA execution accuracy for every iter-
ation of FIBT, finally achieving State-of-the-Art
performance on the reasoning-based queries for the
PlotQA dataset with a 60.44% test set accuracy, su-
perseding the previous baseline (14.82%) (Methani
et al., 2020) by a large marginand even surpassing
human performance. The ChartQA model(Masry
et al., 2022) showed that the T5 language model
offers the best overall performance for the ques-
tions in PlotQA. We demonstrate that our approach
surpasses T5 for complex reasoning type of ques-
tions in PlotQA with OOV answers. The main
contributions of this work are:

• To the best of our knowledge, ours is the first ap-
proach to effectively address reasoning style NL
questions over charts whose answers are com-
puted and not restricted to a fixed vocabulary.

• In absence of program annotations, we propose a
weakly supervised FIBT approach for SQL syn-
thesis with novel data augmentation and filtra-
tion strategies to adapt the Neural Parser to more
closely follow target NL-Question distribution.

• Our approach allows us to achieve State-of-the-
Art results on PlotQA reasoning-based questions
with a 60.44% test set accuracy, superseding the
previous baseline (14.82%) by a large marginand
even surpassing human performance (58.70%).

• As opposed to existing end-to-end approaches
(Singh and Shekhar, 2020; Kafle et al., 2020;
Chaudhry et al., 2020) , our approach is more
interpretable as we can track reasoning patterns
in the synthesized programs via the generated
programs.

2 Related Work

2.1 Datasets for Chart Q&A

Chart QA datasets such as DVQA (Kafle et al.,
2018) or FVQA (Kahou et al., 2017) are syntheti-
cally generated with limited variations, containing
simple binary or fixed-vocabulary questions. To
avoid these biases, Leaf-QA (Chaudhry et al., 2020)
and PlotQA (Methani et al., 2020) datasets are con-
structed from open real-world sources from World
Bank, Government, Global Terrorism Database,
etc.Questions in these datasets are in English and
are templatized but paraphrased to prevent models

2502

NL Questions (a) Dot Chart (b) Horizontal Bar (c) Vertical Bar (d) Line Chart

Structural Is the number of dotlines equal to
the number of legend labels? (Y/N)

How many groups of bars are
there? (Fixed)

Does the graph contain any
zero values? (Y/N)

Does the graph contain
grids? (Y/N)

Retrieval What is the amount collected as tax
on revenue in 2005? (Open)

What is the label of the 4th group
of bars from the top? (Chart)

What is the label or title of
the Y-axis? (Chart)

What is the title of the
graph? (Chart)

Reasoning

Is the difference between the amount
collected as tax on goods in 2003 and
2007 greater than the difference
between the amount collected as tax
on exports in 2003 and 2007? (Y/N)

What is the difference between
the highest and the second
highest percentage of amount
spent on other expenses? (Open)

Do a majority of the years
between 2008 and 2011
(inclusive) have cost of
communications and computer
greater than 10? (Y/N)

Does the percentage of firms
offering quality certification
monotonically increase over
the years? (Y/N)

Table 1: PlotQA Questions for Charts in Figure 1, Answer Types: Yes/No, Fixed, Chart or Open Vocabulary

Data Images Questions
Split Total R* Total Reasoning R*
Train 157,070 12,934 20,249,479 16,593,656 69,000
Valid 33,650 3,110 4,360,648 3,574,081 13,740
Test 33,657 - 4,342,514 3,559,392 -
Total 224,377 16,044 28,952,641 23,727,129 82,740

Table 2: PlotQA V2 Dataset Statistics. R*: Representa-
tive images (crep) and questions (qrep) used for FIBT

from memorizing the templates. Both datasets have
a significant proportion of analytical reasoning
queries, however the PlotQA dataset has 81.95%
complex value-based queries, requiring stronger
numerical and analytical reasoning capabilities
(Chaudhry et al., 2020). Also 80.84% PlotQA
queries have answers from an open vocabulary.
Moreover, ∼82% of questions in PlotQA are rea-
soning based, as opposed to the recently introduced
CharQA dataset (Masry et al., 2022), which has
only 43% (compositional) reasoning based ques-
tions. Since our main focus is on answering com-
plex questions requiring numerical and analytical
reasoning, we use the reasoning based questions in
the extended version (V2) of the publicly available
PlotQA dataset (Table 2) to evaluate our approach.

2.2 Chart Q&A Approaches

Existing end-to-end approaches use deep models
to combine image and question features at various
levels of granularity (Kafle et al., 2020). A recent
approach(Chaudhry et al., 2020) fuses the chart
entities extracted using a Masked RCNN and the
NL question using spatial attention to predict the
answer. (Singh and Shekhar, 2020) use a structural
transformer-based learning that takes the question
encoding as input and uses the feature maps of the
chart’s visual elements, with its localization infor-
mation used as positional encodings. These ap-
proaches provide results on previously mentioned
FVQA, DVQA, and LeafQA datasets on relatively
simpler queries. Recently, (Masry et al., 2022;
Masry and Hoque, 2021) published benchmarks for
chart QA using several end-to-end approaches in-
cluding, VL-T5 (Cho et al., 2021), TAPAS (Herzig

et al., 2020) and VisionTaPas, which is an extension
of TAPAS (Masry et al., 2022) and T5 (Raffel et al.,
2019). TAPAS is able to address very simple ag-
gregation type queries and cannot handle complex
queries with nested aggregation and arithmetic op-
erations and thus provides poor results on PlotQA
(12.90%). T5 provides the best reported results for
PlotQA V2 (56.22% test accuracy for all queries).
Our proposed approach, designed for complex rea-
soning type of queries, surpasses their results. Un-
like prior end-to-end approaches, we adopt a two
staged approach, which not only provides us SOTA
results, but allows for more interpretability. Along
similar lines, (Methani et al., 2020; Kim et al.,
2020) propose a multi-stage solution, where the
chart extractions are stored in a semi-structured
form, and pre-defined rule-based semantic parsing
(Pasupat and Liang, 2015) converts the queries into
a logical form. However, these approaches do not
generalize to queries not expressible by the gram-
mar rules defined for other datasets, leading to very
low test accuracy especially for complex reasoning
type of queries (14.82% for PlotQA). An elaborate
listing of prior work on Table Q&A and Seman-
tic Parsing and the comparison with our approach
highlighting our novelty is in Appendix A.

3 Problem Definition

Our task is defined as follows: given a chart c and
a question q on the chart, output a value a that
answers the question according to the information
represented in the chart. The system has access to
a training set Dchart = (qchart, cchart, achart)

N
1 of

questions, charts, and answers. The charts and
corresponding questions in test data do not ap-
pear during training. We assume availability of
a bootstrapping dataset of Dtr = (str, qtr, ptr)

M
1 ,

where s are the database schema, q are the Natu-
ral Language (NL) queries posed on the schema
and p are the SQL programs corresponding to the
NL queries. The domain of the charts cchart can
be distinct from the domain of the schema str.

2503

Plot Type Detection

Text Region and
Role Detection

Axis and Legend
Analysis

OCR and Text
Extraction

Chart Element
Detection

Chart Information
Extraction

H
or

iz
on

ta
l B

ar
 C

ha
rt

Chart Title

Legend Labels

X-Axis LabelY-
Ax

is
 L

ab
el

Y-Axis Tick Labels

X-Axis Tick Labels

Chart Title: Split of expenses
(in %) of different economies in
2021
Y-Axis Label: Types of
Expenses
X-Axis Label: Expenses (% of
total expenses)
X-Tick Labels: {0, 10, 20, 30
,40, 50, 60}
Y-Tick Labels: {Other
Expenses, Studies and
Transfer, Goods and Services,
Compensation of Employee}
Legend Labels: {Belgium,
Estonia, Iceland, India}

X, Y Coordinates of Bar Top and Bottom

Le
ge

nd
 P

re
vi

ew

Y-
Ax

is

X-Axis

{ "chart_type": "horizontal_bar",
"chart_title": "Split of the expenses (in %) of
different economies in 2012",
"Legend": { "entries": {"L": {"title": "India",
 "color": "3501420107"},. ...}}
"origin": {"x": 214, "y": 54}
"Numerical-Axis": {
"title": "Expenses (% of total expenses)",
"number": { "n": {"vale": "0",
"tick": {"x": 211, "y": 54}}},....}
"Category-Axis": {
"title": "Types of expenses"
"Categories":
{"c": {"title": "Compensation of employees"},
"bars": {"bar": {"color": "3501420107", "tick": {"x":
221, "y": 154}, "bar-top" {"x": 306, "y": 154}}}.....}} }

Types_of_
expenses

series
Split_of_the_expenses_in_%_

of_different_economies_in_2021_
Expenses % of total expenses

Compensation
of employees

Belgium 6.11754312602818

Compensation
of employees

Estonia 20.8376944123102

Compensation
of employees

Estonia 20.8376944123102

....
Goods and
Services

Belgium 2.32592202850867

Goods and
Services

Estonia 13.9315815567675

...

Chart Schema
Extraction

Trained
Components

Rule-Based or
Algorithmic

Components

Figure 2: Chart Schema Extraction Vision Pipeline

We assume that the SQL programs ptr share the
primitive arithmetic, aggregation and logical opera-
tions (SUM, DIFFERENCE, RATIO, AVERAGE,
MEDIAN, MAXIMUM, MINIMUM, GREATER
THAN, LESS THAN) with the SQL programs re-
quired to answer the NL questions qchart. However,
distributions over the primitive operations and their
compositions can differ.

4 Approach

We follow a two stage approach. In the first stage,
we use a computer vision pipeline to extract chart
and store the chart data in a format (schema) schart,
common across all the chart types. In the second
stage, we synthesize SQL programs for the NL
questions in the dataset by using Filtered Iterative
Back-Translation (FIBT). We use SQL as the tar-
get logical form for program synthesis because it’s
grammar (i) is well suited to the tabular structure
of our extracted data and (ii) includes the primi-
tive operations required to be handled for the NL
queries in PlotQA. Also, SQL is close to NL and
easy to understand, allowing for interpretability.

4.1 Chart Schema Extraction

In the first stage, we extract chart information us-
ing the following pipeline: (i) Chart Type Detec-
tion (Trained) (ii) Text Region and Role Detec-
tion (Trained) (iii) OCR and Text Extraction (Al-
gorithm) (iv) Axis and Legend Extraction (Rule-
Based) (iv) OCR and Text Extraction (Algorithm)
(v) Chart Information extraction (Algorithm).

Since the chart types have distinct visual fea-
tures we fine-tune a Resnet-34 model pretrained
on ImageNet to detect chart types, using chart type
labels provided by PlotQA. The text present in the
image is detected by employing the CRAFT model
(Baek et al., 2019). However, CRAFT frequently

misses isolated characters and often yields partial
detection of text regions. We propose an approach
which corrects partially detected text, segments out
the corrected text region and identifies text-role la-
bels (such as chart title, legend labels, X/Y-axis,
and X/Y-tick labels) for the text regions (Appendix
B). We use Tesseract 4.0.0 (Smith, 2007) to extract
text from the detected regions and tag them to the
corresponding roles. The results of the chart ele-
ment extractions and text role region extractions are
described in Appendix F. We define rules to iden-
tify (i) the origin, axes and chart region from the
detected chart lines by a line detection algorithm
(Paliwal et al., 2021), (ii) location of the legend
previews and their styles (color and pattern) using
the detected legend-labels, and (iii) chart elements
(bars, dots, lines) which are regions matching with
each legend preview style. We extract a schema
(table) from the above available chart information,
by filtering noise (Appendix C) and extracting the
data series elements (Appendix E).

Henceforth, we use the following nomenclature.
For the horizontal-bar charts illustrated in Figure
1 (b), we refer to the X-axis as the Numerical-
axis and Y-axis as the Categorical-axis. For the
remaining chart types in Figure 1 viz. dot, ver-
tical bar, and line chart, the nomenclature is re-
versed. We call each legend label as a series.
Thus, the extracted chart information is in the form
of a set-of tuples <category_label, series_label,
numerical_value>, with the schema (table)
header being category axis label, series, and a string
formed by concatenating the chart title with the nu-
merical axis label. We store these tables schart in
the SQLite3 database to facilitate the execution of
synthesized SQL programs (Section 4.2) on the
schema. As ‘Median’ is not an in-built aggregation
operation for SQLite3, we define a stored proce-
dure for the same.

4.2 SQL Program Synthesis

As the part of the second stage, we execute Fil-
tered Iterative Back Translation (FIBT) (Algorithm
1), to train the neural semantic parser MNL−>P ,
which is used to synthesize SQL programs for the
reasoning questions in the PlotQA test set. The
generated SQLs are executed on the test set chart
schema schart, extracted from the corresponding
chart image cchart, to compute the final answer.
This answer is compared with the ground truth an-
swer achart to calculate the test accuracy.

2504

4.2.1 Bootstrapping Data

We use SPIDER (Yu et al., 2018) augmented with a
few (359) NL-SQL query pairs as the bootstrapping
dataset Dtr to initialize the parameters of the for-
ward MNL−>P and the backward MP−>NL mod-
els of FIBT. The augmented query pairs are defined
to include the primitive operations (DIFFERENCE,
RATIO, LESS THAN and MEDIAN), required by
the PlotQA NL questions qchart but missing in the
SPIDER SQLs, leading to the bootstrapping data
qtr and the PlotQA questions qchart sharing the
same set-of primitive operations. Inclusion of such
query pairs allows the models to learn these primi-
tive operations (followed by their compositions in
the subsequent FIBT iterations), which otherwise
would not be possible.The query pairs are synthe-
sized using templates. For example, the templates
used to synthesize NL-SQL pairs for RATIO oper-
ation is: NL: "What is the ratio of the numerical
column name having categorical column value a x
to that of categorical column value of y ?", SQL:

"SELECT T1.numerical_column_name /
T2.numerical_column_name FROM
table_name T1, table_name T2 WHERE
T1.categorical_column_name =
‘categorical_column_value_x’ AND
T2.categorical_column_name =
‘categorical_column_value_y’"

These queries are synthesized on a subset of SPI-
DER schema tables, whose structure match with
our extracted chart schema. Thus in the above tem-
plate, the ‘numerical_column_name’ is the name
of a column of a table belonging to one of the
SPIDER database schemas, having a numerical
datatype. and ‘categorical_column_name’ is the
column name of the same table, with text datatype
with values x and y as its entries.

4.2.2 Probabilistic Context Free Grammar

We define Probabilistic Context Free Grammar
(PCFG) depicted in Table 7 in the Appendix, as
a subset of the SQL grammar to synthesize SQL
programs: (i) to address possible compositions of
primitive operations required for the PlotQA NL
questions qchart and (ii) executable on the schema
schart. To synthesize SQL programs whose distri-
bution match with the programs for the NL ques-
tions in the PlotQA, but are not covered by the
current training data Dtr, we induce the probabil-
ity (Pinv) for each of the production rules R in the

PCFG with the heuristics depicted in Equation 1.

Pinv(R) =
Wt(R)∑

RHS(r)=RHS(R) Wt(r)
(1)

Wt(R) = (
MAXRHS(r)=RHS(R)(P (r))

P (R)
)1−α (2)

P (R) gives the probability with which a rule
R is triggered by the set-of SQL queries exist-
ing in the training data Dtr. RHS(R) is the
Right Hand Side of the production rule R. Thus,
RHS(r) = RHS(R) provides the set of all pro-
duction rules which share the source node (RHS)
with the rule R. α is the hyper-parameter control-
ling the skewedness of the distribution over the
prodcution rules. Lower the value more skewed is
the distribution. For our experiments α = 0.8.

Algorithm 1: FIBT
Input :Dchart = {qchart, schart, achart}N1 ,

Defined PCFG
Output :Trained Semantic Parser MNL−>P

Initial Stage : Bootstrapping data
Dtr = {str, qtr, ptr}M1
qrep = sample(cluster(generalize(
qchart))) where qrep ⊂ qchart
Drep = (qrep, srep, arep)

n
1 , n << N

pfilter = Φ
1 while MNL−>P and MP−>NL have not converged

do
2 Train MNL−>P on Dtr // Forward Pass
3 Feed qrep to MNL−>P to generate prep
4 Execute prep on schema srep to compute ac

5 if ac == arep // Filter
6 then
7 Add (srep, qrep, prep) to Dtr Remove

(srep, qrep, prep) from Drep

8 end if
9 Train MP−>NL on Dtr // Backward

Pass
10 induce(PCFG , (ptr + pfilter)) (Equation 1)
11 Sample SQL psyn on schart from PCFG.
12 Feed psyn to MP−>NL to generate qsynth

13 filter_flag = 1
14 if max_sim(generalize(qsynth)) ,

generalize(qrep)) > threshold
// Filter1

15 then
16 if look_up(qsynth, psynth)// Filter2
17 then
18 Add (schart, qsynth, psynth) to Dtr

// Augment
19 filter_flag = 0
20 end if
21 end if
22 if filter_flag == 1 then
23 Add psynth to pfilter
24 end if
25 end while

2505

4.2.3 Sampling Representative Questions

As depicted in Table 2, PlotQA has ∼16.6 Mil-
lion reasoning based NL questions as the part of
the training data. For a more compute efficient
solution, we identify representative NL questions
from PlotQA for training. We randomly sample
200K NL questions from the PlotQA training set
and perform the generalize operation to replace
schema specific information in each NL question
with generalized tokens and to highlight its com-
position or structure. We replace the schema re-
lated entity (column headings) and values (column
values) in the NL questions with more generic
< entity > and < value > tags using sub-
string matching. For example, the reasoning based
question, depicted in Table 1 , is modified to:
‘Is the difference between < entity_num > on
< value_series > in < value_category >
and < value_category > greater than the
difference between < entity_num > on <
value_series > in < value_category > and
< value_category >?’, where ‘the amount col-
lected as tax’ being a sub-string of the numerical
column name of the schema, gets replaced with the
generic token < entity_num > and the values of
the category column, viz. ‘2003’, ‘2007’ and the se-
ries column ‘goods’ and ‘exports’ get replaced with
< value_category > and < value_series >,
respectively. We further get the representations
of these generalized NL questions using sentence-
BERT (Reimers and Gurevych, 2019) and cluster
them via DBSCAN 1 with cosine similarity as the
similarity metric. As DBSCAN allows us to cluster
data without specifying the number of clusters in
advance, with minpoints = 15 and ϵ = 0.25, we get
345 clusters for the 200K generalized NL questions.
We then randomly sample 200 questions from each
cluster to get 69K representative generalized NL
questions. We fetch the corresponding original NL
questions qrep for these 69K questions along with
their corresponding schema crep and answers arep
to form a dataset of representative queries Drep. A
similar sampling strategy is applied on the valida-
tion split. Table 2 illustrates the statistics of the
representative dataset.

4.2.4 FIBT Forward Pass

We train the forward model MNL−>P with the
training data Dtr by feeding the flattened schema,

1https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.DBSCAN.html

the table contents, the NL query with a separator
token to the encoder and generate the SQL tokens
at the output of the decoder in an auto-regressive
fashion. The model is trained using cross entropy
loss. We feed the NL queries qrep from Drep to
MNL−>P to generate the corresponding SQL pro-
grams (prep). We execute these SQL programs on
the corresponding extracted chart schema srep. The
programs which do not execute to the ground truth
denotations are filtered, and the training data Dtr

is augmented by the remaining pairs.

4.2.5 FIBT Backward Pass
We train the backward model MP−>NL with the
training data Dtr by feeding the flattened schema
and the contents followed by the SQL program
with a separator token to the encoder and gener-
ating the NL tokens at the output of the decoder
in an auto-regressive fashion. We use ptr in the
training set Dtr, along with the SQL programs
pfilter filtered in the prior iteration to induce the
inverse probabilities of PCFG as explained in sec-
tion 4.2.2. Here, the filtered programs are the ones
whose equivalent NL questions do not match with
PlotQA representative questions (explained later in
this section). We sample SQL programs (psynth)
from the PCFG to be executed on schart and feed
these synthesized SQL programs to the backward
model MP−>NL to generate the corresponding NL
questions qsynth. We (i) transform qsynth by us-
ing the generalize operation, explained in section
4.2.3, (ii) extract the representation for qsynth us-
ing sentence-BERT (Reimers and Gurevych, 2019)
and (iii) compare them with the representations
of generalized representative queries (qrep) using
cosine similarity. NL questions having their maxi-
mum similarity score (max_sim) below a threshold
are filtered. The SQL programs corresponding to
the filtered NL questions are added to pfilter, rep-
resenting queries not matching the PlotQA ques-
tions. With this filtering, we still observe some
synthetic questions with semantic noise, meaning
the semantics of the NL questions qsynth and the
corresponding SQL programs psynth do not match.
(Shen et al., 2019) uses phrases of NL questions to
estimate the operator candidates in the correspond-
ing programs and thus reduce the search space
of the semantic parser. We use a similar tech-
nique of phrase-operator look-up to further filter
the synthetic query pairs. Given a qsynth, psynth
pair the look-up operation returns ‘False’ if the
pre-defined (set-of) phrase(s) in NL query (qsynth)

2506

NL Phrase SQL Operator
ratio ↔ /

difference ↔ -
greater than ↔ >

less than ↔ <
total OR sum ↔ + OR SUM

maximum OR highest ↔ MAX
minimum OR lowest ↔ MIN

average ↔ AVG
how many ↔ COUNT

median ↔ MEDIAN

Table 3: Mapping of NL Phrases and SQL Operators

do(es) not match with the (set-of) operator(s) in the
corresponding SQL programs (psynth) and returns
‘True’ otherwise. This matching is done following
the pre-defined look-up dictionary with the phrase-
operator mappings between the NL questions and
the SQL programs (Table 3). This filtering helps
to remove the semantically incorrect NL questions
(qsynth), which have been generated by the back-
ward model MP−>NL for the synthetic SQL pro-
grams (psynth). With this two level filtering, the
training data Dtr is augmented with the remain-
ing synthetic tuples <schart, qsynth, psynth> and is
further used to train the models in the next itera-
tion. These added synthetic queries are closer to
the PlotQA queries and thus help in adapting the
models to answer PlotQA questions. For every it-
eration, the above defined threshold for similarity
based query filtering is automatically set to a value
for which the KL-divergence between the operator
distributions of (i) PlotQA questions qchart and (ii)
the synthetic questions getting augmented to the
training set (qsynth−qfilter), after filtering with the
phrase-operator mappings (Table 3) is minimum.
This ensures that the augmented synthetic query
pairs, after filtering with the threshold, are closer
to the required PlotQA questions.

5 Results and Discussion

CodeT5 (Wang et al., 2021c) provides the best
results on the Spider dataset 2 in terms of exe-
cution accuracy. For chart QA, we are more in-
terested in correctly computing the final answer
(execution accuracy) than the intermediate logi-
cal form (exact match accuracy). Thus we choose
CodeT5 based neural semantic parser as our for-
ward model (MNL−>SQL) and CodeT5 based code
summarization model 3 as the backward model
(MSQL−>NL). The number of trainable param-

2Spider Leaderboard Dated: August 2022 https://yale-
lily.github.io/spider

3https://huggingface.co/Salesforce/codet5-base-multi-
sum

ANS
Type

Test
Queries Human Plot

QA T5 Ours
ES

Ours
OS

YN 72,968 76.51 62.75 62.38 43.21 44.13
FV 566,655 59.97 7.95 2.41 63.91 67.70
OV 2,919,769 58.01 14.95 0.003 60.42 85.35
Total 3,559,392 58.70 14.82 1.17 60.44 84.49

Table 4: Results on PlotQA V2 Reasoning Queries
(% Test Accuracy), ANS: Answer, YN: Yes/No, FV:
Fixed Vocabulary, OV: Open Vocabulary, ES: Extracted
Schema, OS: Oracle Schema

eters in the CodeT5 base model are 220M. We
fine-tune the models with a batch size of 48 and a
learning rate of 0.0001 and gradient accumulation
step of 4 using the Adam optimizer on an NVIDIA
Tesla V100 32GB GPU. The average run-time for
training the model differs in each iteration as the
number of training samples increase with the data
we augment in each iteration. However, for infer-
ence on the PlotQA V2 Test Split, with the given
hyper-parameter configuration, it takes ∼360 hours.
For sampling the representative questions and SQL
queries from the dataset and PCFG respectively,
we use the random seed of 7. The training details
of the chart extraction modules are provided in Ap-
pendix D. We use test accuracy as the evaluation
metric, where for numeric answers with floating
point values, we consider an answer to be correct
if it is within the 5% range of the correct answer as
followed by (Methani et al., 2020).

Table 4 illustrates the results of the Q&A task
over reasoning based queries in the PlotQA V2 test
set (∼3.56M NL queries on ∼33.6K charts). Fol-
lowing the benchmark approaches (Methani et al.,
2020; Masry et al., 2022), we report results on
PlotQA V2 test set and not the validation set. As
mentioned in (Methani et al., 2020) most human er-
rors are due to numerical precision as it is difficult
to visually identify the exact value from the chart
even within a 5% margin. Our weakly supervised
approach surpasses the baselines (PlotQA (Methani
et al., 2020) and T5 (Masry et al., 2022)) by a large
margin even exceeding the human baseline. We
observe improvement in test accuracy results from
39.69% to 57.45% to 60.44% in the 1st, 2nd and
3rd iterations of FIBT, respectively. This demon-
strates the utility of the FIBT approach with the
filtering and augmentation mechanisms used for
capturing the relevant query compositions.

As per the definition provided by the authors
of PlotQA, the fixed vocabulary comprises of the
set of top 1000 frequently occurring answer words.
Our approach yields superior performance for fixed

2507

vocabulary (FV) and open vocabulary (OV) an-
swers. Both FV and OV answers are numeri-
cal. Prior approach of end-to-end model predict-
ing the final answer directly (T5 (Masry et al.,
2022)) and approach which address queries with
distinct answer types distinctly (PlotQA(Methani
et al., 2020)), learn to distinguish the queries hav-
ing YES/NO (binary) type of answers from other
queries. Once this is learnt, any random guess of
YES/NO as an answer to these queries would lead
to a performance of 50%. On the other hand, our
approach trains a single model to generate SQL
programs for all queries with distinct answer types.
For some cases the generated SQL program for
questions with binary answers does not yield a bi-
nary result. Thus, for our approach, the random
accuracy for Yes/No queries is not 50%. Moreover,
the SQL programs for questions with YES/NO an-
swers are more complex as compared to the SQL
programs which leads to numerical answers (FV
and OV questions) in terms of entailed compo-
sitions of primitive operations involving nesting,
leading to harder synthesis. Also, our approach
does not yield good performance for some of these
questions with binary answers as there is no ex-
plicit mapping between the phrases in the NL query
and the primitive operations involved in the SQL
program. For example, for the questions: ‘Do a
majority of the years between 2013 and 2010 (in-
clusive) have a number of secure internet servers
greater than 1.16? or ‘Do the payments made to-
wards primary income monotonically increase over
the years?’ or ‘Is the payments made towards goods
and services strictly less than the payments made
towards primary income over the years ?’ , the
model finds it harder to learn to map the abstract
phrases ‘majority of’ or ‘monotonically increasing’
or ‘strictly less than’ to a composition of primitive
operations in the corresponding SQL programs as
this knowledge is not explicitly provided. These are
the reasons that the performance of our approach
for queries with YES/NO answer type is inferior as
compared to the other reasoning queries.

ChartQA (Masry et al., 2022) provides results
on the complete PlotQA V2 test split (∼4.34 M
questions) for all question types including struc-
tural, data retrieval and reasoning. The test accu-
racy of their best performing model (T5), trained
on the complete PlotQA train set (∼20.25 M ques-
tions), end-to-end is 56.22%. For fair comparison
with ChartQA (Masry et al., 2022), we train the

T5 model in an end-to-end fashion (direct answer
based supervision), with 69K representative ques-
tions (0.04%) of the PlotQA training set following
the same input format as in ChartQA. We test the
model on reasoning based questions in PlotQA V2
test data (∼3.56 M) to obtain the results depicted
in Table 4. The T5 model can address the yes/no
type of binary answers but struggles on questions
with numerical answers (FV and OV). Effectively,
as discussed earlier, once T5 has learnt to iden-
tify questions having binary answers, a random
guess would lead to 50% accuracy. For T5, low
performance on non-binary reasoning questions is
expected because the end-to-end training in gen-
eral struggles to perform complex reasoning in the
latent space, and this is compounded by the very
small amount of training data used for fair com-
parison. On the other hand, better performance
of FV and OV answer type questions, underscores
the efficacy of our approach to better handle com-
plex numerical reasoning questions. Moreover, as
we generate SQLs for NL, our approach is more
interpretable, allowing users to understand the rea-
soning steps to get the final answer.

Apart from PlotQA (Methani et al., 2020),
CharQA (Masry et al., 2022) is the only other
dataset available. After thorough analysis of this
dataset, we observed that the dataset contains sam-
ples with incorrect ground truth labels, spurious
questions and Gold data tables with incorrect infor-
mation. The details of our analysis is provided in
Appendix G. Hence, we have not used CharQA
(Masry et al., 2022) for benchmarking our ap-
proach.

To understand the impact of errors from vision
based chart schema extraction on the downstream
reasoning task, we perform an ablation to calcu-
late the test accuracy of the reasoning task using
the schema constructed with oracle extractions pro-
vided by PlotQA. We observe a 24.05% lower test
accuracy with the extracted schema as compared to
the oracle. We further analyze the results based on
operators involved in the query. We observe that
our approach works well not only for reasoning
questions involving one primitive operators, but
also for more complex questions involving compo-
sition of numerical operators such as (i) ‘COUNT
VALUES GREATER THAN AVERAGE’ (For ex-
ample, For how many years, is the payments made
towards primary income greater than the average
payments made towards primary income over all

2508

years ?) or (ii) ‘SUM GREATER THAN MAX’
(For example, Is the sum of the payments made to-
wards goods and services in 2008 and 2010 greater
than the maximum payments made towards primary
income across all years ?) or (iii) DIFFERENCE
GREATER THAN DIFFERENCE’ (For example,
reasoning type of query mentioned in Table 1 for
dot charts).

We further observe that our approach does not
yield good results for NL questions involving nest-
ing in the SQL program. For example, (i) queries
computing a ‘DIFFERENCE’ between the ‘MAX-
IMUM’ and the ‘SECOND MAXIMUM’ values
of the numerical column (For example, the rea-
soning type of query mentioned in Table 1 for (b)
Horizontal bars). In the corresponding SQL pro-
gram for such questions, to compute the ‘SEC-
OND MAXIMUM’ value requires nesting, (ii) the
queries which try to find if the ‘SUM’ of two nu-
merical values is ‘GREATER THAN’ the ‘SUM’
of other two numerical values, for ‘EVERY’ value
of a non-numerical column. These NL questions
demand nested SQL programs which ensure the
‘SUM GREATER THAN SUM’ criteria is true for
‘ALL DISTINCT’ values of the non-numerical col-
umn. Table 7 shows that the defined PCFG allows
synthesis of nested SQL programs. We observe that
as such nested SQL programs are not present in the
initial training set, the strategy of inducing inverse
probabilities for the PCFG facilitates synthesis of
nested SQL programs in the later iterations of FIBT.
However, for most of such nested SQL programs
the backward model fails to generate semantically
meaningful NL questionsSuch noisy synthetically
generated NL questions are filtered by our filtra-
tion strategy in the backward pass leading to fewer
nested query samples in the training data which in
turn cause low test accuracy for such questions.

6 Conclusion

We present an approach for QA on charts which
addresses complex reasoning based questions that
require a combination of natural language under-
standing, fine-grained perception, and analytical
reasoning. We employ a pretrained semantic parser
and FIBT we generate SQL programs for the NL
questions without any program annotations. Our
novel PCFG based approach helps the model to
adapt to the given dataset’s query compositions
and domains, unseen in the bootstrapping data. As
the future work we plan to extend our approach fur-

ther to handle complex questions requiring nesting
by using a hierarchical or grammar based program
search technique.

7 Limitations

The focus of this paper is on complex reasoning
type of questions. Our approach is not designed
for structural (Table 1) or visual types of questions,
pertaining to attributes of the visual elements of
the plot such as color, size, spatial location. These
questions are not useful for real-life applications,
which require analysis on chart data to draw mean-
ingful conclusions. Our existing approach is not
designed to address such questions as the extracted
schema only captures the underlying data of the
chart, and not the visual entities present therein.

To have a good kick-start for the FIBT pipeline,
we assume that the bootstrap SPIDER data covers
the primitive SQL clauses, operators and functions
required for the questions in the target dataset and
there is some minimal overlap between the compo-
sitions of the SQL queries in the bootstrap SPIDER
data and SQL queries required for the natural lan-
guage questions in the target dataset.

In the current phrase-operator based filtering
strategy only limited phrases are manually de-
signed for the mapping of NL phrases and SQL
operators (Table 3). We plan to make this approach
more robust by using paraphrases or semantically
similar phrases to manually designed phrases for
mapping.

8 Ethical Considerations

PlotQA charts contain only factual information
which is openly available in public domain and
is not (i) specific to any individual or (ii) offensive.
The solution provided in the paper is agnostic to the
domain of the data. Like any QA task, to avoid the
risks involved in critical domains such as finance,
healthcare or medicine, we would have to calibrate
the model or need human intervention, such that
the errors are not propagated to the downstream
tasks.

References
Rishabh Agarwal, Chen Liang, Dale Schuurmans, and

Mohammad Norouzi. 2019. Learning to general-
ize from sparse and underspecified rewards. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 130–140. PMLR.

2509

https://proceedings.mlr.press/v97/agarwal19e.html
https://proceedings.mlr.press/v97/agarwal19e.html

Priyanka Agrawal, Ayushi Dalmia, Parag Jain, Ab-
hishek Bansal, Ashish Mittal, and Karthik Sankara-
narayanan. 2019. Unified semantic parsing with
weak supervision. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4801–4810, Florence, Italy. Asso-
ciation for Computational Linguistics.

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo
Yun, and Hwalsuk Lee. 2019. Character region
awareness for text detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 9365–9374.

Ritwick Chaudhry, Sumit Shekhar, Utkarsh Gupta,
Pranav Maneriker, Prann Bansal, and Ajay Joshi.
2020. Leaf-qa: Locate, encode & attend for figure
question answering. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 3512–3521.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. 2021.
Unifying vision-and-language tasks via text genera-
tion. In International Conference on Machine Learn-
ing, pages 1931–1942. PMLR.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2021. Ryansql: Recursively
applying sketch-based slot fillings for complex text-
to-sql in cross-domain databases. Computational
Linguistics, 47(2):309–332.

Pritha Ganguly, Nitesh Methani, Mitesh M Khapra, and
Pratyush Kumar. 2020. A systematic evaluation of
object detection networks for scientific plots. arXiv
preprint arXiv:2007.02240.

Michael Glass, Mustafa Canim, Alfio Gliozzo, Sa-
neem Chemmengath, Vishwajeet Kumar, Rishav
Chakravarti, Avi Sil, Feifei Pan, Samarth Bharad-
waj, and Nicolas Rodolfo Fauceglia. 2021. Cap-
turing row and column semantics in transformer
based question answering over tables. arXiv preprint
arXiv:2104.08303.

Jiaqi Guo, Jian-Guang Lou, Ting Liu, and Dongmei
Zhang. 2021. Weakly supervised semantic parsing
by learning from mistakes. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 2603–2617.

Tong Guo and Huilin Gao. 2019. Using database rule
for weak supervised text-to-sql generation.

Yinuo Guo, Hualei Zhu, Zeqi Lin, Bei Chen, Jian-
Guang Lou, and Dongmei Zhang. 2020. Revisit-
ing iterative back-translation from the perspective
of compositional generalization. arXiv preprint
arXiv:2012.04276.

Kaylin Hagopian, Qing Wang, Tengfei Ma, Yupeng Gao,
and Lingfei Wu. 2019. Learning logical representa-
tions from natural languages with weak supervision
and back-translation. In Knowledge Representation
& Reasoning Meets Machine Learning Workshop
(KR2ML).

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24, Mel-
bourne, Australia. Association for Computational
Linguistics.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and
Luc V Gool. 2016. Dynamic filter networks. Ad-
vances in neural information processing systems,
29:667–675.

Kushal Kafle, Brian Price, Scott Cohen, and Christo-
pher Kanan. 2018. Dvqa: Understanding data visual-
izations via question answering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5648–5656.

Kushal Kafle, Robik Shrestha, Scott Cohen, Brian Price,
and Christopher Kanan. 2020. Answering questions
about data visualizations using efficient bimodal fu-
sion. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages
1498–1507.

Samira Ebrahimi Kahou, Vincent Michalski, Adam
Atkinson, Ákos Kádár, Adam Trischler, and Yoshua
Bengio. 2017. Figureqa: An annotated fig-
ure dataset for visual reasoning. arXiv preprint
arXiv:1710.07300.

Dae Hyun Kim, Enamul Hoque, and Maneesh Agrawala.
2020. Answering questions about charts and generat-
ing visual explanations. In Proceedings of the 2020
CHI conference on human factors in computing sys-
tems, pages 1–13.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc Le, and Ni Lao. 2018. Memory augmented pol-
icy optimization for program synthesis and semantic
parsing. In Proceedings of the 32nd International
Conference on Neural Information Processing Sys-
tems, NIPS’18, page 10015–10027, Red Hook, NY,
USA. Curran Associates Inc.

Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and
Jian-Guang Lou. 2021. Tapex: Table pre-
training via learning a neural sql executor. ArXiv,
abs/2107.07653.

Ahmed Masry and Enamul Hoque. 2021. Integrating
image data extraction and table parsing methods for
chart question answering. In Chart Question Answer-
ing Workshop, in conjunction with the Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1–5.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. 2022. Chartqa: A benchmark
for question answering about charts with visual and
logical reasoning. arXiv preprint arXiv:2203.10244.

2510

https://doi.org/10.18653/v1/P19-1473
https://doi.org/10.18653/v1/P19-1473
https://doi.org/10.48550/ARXIV.1907.00620
https://doi.org/10.48550/ARXIV.1907.00620
https://doi.org/10.18653/v1/W18-2703
https://doi.org/10.18653/v1/W18-2703

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and
Pratyush Kumar. 2020. Plotqa: Reasoning over sci-
entific plots. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 1527–1536.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard EM ap-
proach for weakly supervised question answering. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2851–
2864, Hong Kong, China. Association for Computa-
tional Linguistics.

Shubham Paliwal, Arushi Jain, Monika Sharma, and
Lovekesh Vig. 2021. Digitize-pid: Automatic dig-
itization of piping and instrumentation diagrams.
CoRR, abs/2109.03794.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
ArXiv, abs/1908.10084.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomedical
image segmentation. In International Conference
on Medical image computing and computer-assisted
intervention, pages 234–241. Springer.

Tao Shen, Xiubo Geng, Tao Qin, Guodong Long,
Jing Jiang, and Daxin Jiang. 2019. Effective
search of logical forms for weakly supervised
knowledge-based question answering. arXiv preprint
arXiv:1909.02762.

Noah Siegel, Zachary Horvitz, Roie Levin, Santosh
Divvala, and Ali Farhadi. 2016. Figureseer: Pars-
ing result-figures in research papers. In European
Conference on Computer Vision, pages 664–680.
Springer.

Hrituraj Singh and Sumit Shekhar. 2020. Stl-cqa:
Structure-based transformers with localization and
encoding for chart question answering. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3275–3284.

Ray Smith. 2007. An overview of the tesseract ocr en-
gine. In Ninth international conference on document
analysis and recognition (ICDAR 2007), volume 2,
pages 629–633. IEEE.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021a.
Learning from executions for semantic parsing. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2747–2759, Online. Association for Computa-
tional Linguistics.

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019.
Learning semantic parsers from denotations with la-
tent structured alignments and abstract programs. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3774–
3785, Hong Kong, China. Association for Computa-
tional Linguistics.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021b. Learning to synthesize data for
semantic parsing. arXiv preprint arXiv:2104.05827.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021c. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Tomer Wolfson, Daniel Deutch, and Jonathan Berant.
2021. Weakly supervised text-to-sql parsing through
question decomposition.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. ArXiv, abs/2009.13845.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Appendices

A Prior work on Table Q&A and
Semantic Parsing

Current approaches for table QA use an end-to-end
modeling approach for either: (i) directly gener-
ating the answer (TAPAS (Herzig et al., 2020)),
(ii) generate a program which produces the answer

2511

https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.18653/v1/D19-1284
http://arxiv.org/abs/2109.03794
http://arxiv.org/abs/2109.03794
https://doi.org/10.18653/v1/2021.naacl-main.219
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.48550/ARXIV.2112.06311
https://doi.org/10.48550/ARXIV.2112.06311

upon execution of the generated SQL (TABERT
(Yin et al., 2020) and RCI (Glass et al., 2021))
or (iii) using a Language Model pre-training strat-
egy (neural query execution engine in TAPEX (Liu
et al., 2021) using synthetic SQL programs or se-
mantic parser trained on synthetic NL-SQL pairs
generated using a Synchronous Context Free Gram-
mar (SCFG) in GraPPa (Yu et al., 2021). These
approaches are mainly designed for handling data
retrieval or simple aggregation type of queries de-
fined in WikiSQL (Zhong et al., 2017) or Wiki
Table (Pasupat and Liang, 2015) datasets. The
complex reasoning type queries which are part of
the PlotQA dataset involve nested arithmetic op-
erations with self-joins as well as nesting in the
conditional (WHERE) clauses. (Yin et al., 2020)
applied their approach on the benchmark Spider
Text-to-SQL dataset (Yu et al., 2018) but their re-
sults have been eclipsed by RYANSQL (Choi et al.,
2021), whose decoder is specifically designed to
address nested complex queries. GraPPa (Yu et al.,
2021) achieves state of the art performance on the
complex spider dataset after fine-tuning with spider
program (SQL) annotations.

In our scenario there are no SQL program annota-
tions for PlotQA queries, and only the output deno-
tations are available. Since annotating a sufficiently
large number of SQL programs is a resource heavy
task, semantic parsers can be trained with execu-
tion output denotations under a weak-supervision
setting. These execution denotations can be used
to model a reward signal in order to train the under-
lying semantic parser (Zhong et al., 2017; Liang
et al., 2018; Hagopian et al., 2019; Agrawal et al.,
2019; Agarwal et al., 2019). They can also be used
to train the semantic parser with a log Multiple log
Marginal Likelihood (MML) objective by using a
limited number of SQL programs as latent logical
forms (Wang et al., 2019; Min et al., 2019; Wang
et al., 2021a). While synthesizing SQL programs,
the denotations can also be used to filter candidate
programs with rule-based synthesis systems (Guo
and Gao, 2019; Guo et al., 2021; Wolfson et al.,
2021). The reward-based approaches face issues
with a large program search space and possible spu-
rious programs. Unlike the MML approaches, we
do not use any gold annotated SQL programs from
the dataset under consideration (PlotQA). Most
of the above weak-supervision approaches do not
explicitly handle modeling or synthesizing the spe-
cific complex program compositions pertinent to

the dataset under consideration. On the other hand,
our approach uses a publicly available semantic
parsing dataset (Spider) as the bootstrapping data
to initialize the parameters of the semantic parser,
and then defines a novel PCFG-based strategy to
adapt the models through FIBT to answer unseen
complex reasoning queries in the PlotQA by effec-
tively capturing the relevant query compositions.

B Text Role Region Extraction

The architecture consists a Encoder-Decoder Mod-
ule, which the U-net (Ronneberger et al., 2015).
The encoder filters out irrelevant information by
squeezing the feature map to a latent space. The
output of the decoder is appended along the channel
dimension with the trigger patch of a text region de-
tected by CRAFT, with highlighted patch contours
and provided as an input to the Trigger-Controller
Module, extracts features using a convolutional fea-
ture extractor followed by a Global Average Pool-
ing (GAP) layer. The features of the trigger patch
are concatenated with the extracted encoder output
features and are fed to the controller module to
generate dynamic kernels, which are used to gen-
erate the segmentation map (Jia et al., 2016). The
dynamic kernel output is also given to a fully con-
nected linear layer to determine the text role of the
region. Thus, the trigger-controller module exploits
the spatial relationships between text-roles to gen-
erate dynamic kernels and obtain text-role specific
segmentation maps from the decoded image. The
whole network is trained with cross entropy loss
on text-role class labels and text-role segmentation
map (all ground truth text-regions corresponding
to that text-role). During inference, given a trigger
patch for an image of a detected text-region belong-
ing to an unknown text-role, the model provides
the actual text-role classification output and the
segmentation map of the text-region of that text-
role. Trigger patches overlapping with detected
text-role regions are removed before repeating the
process for the remaining trigger patches. This
process may lead to multiple segmentation maps
for each text-role, over which a union operation is
performed.

C Noise Correction

To handle false positive and false negative detection
of Numerical-axis ticks, we find the mode (M) of
differences between the (X/Y) coordinates for the
consecutive ticks. We remove or add ticks where

2512

IOU @0.90 @0.75 @0.50
Existing Models (Ganguly et al., 2020) Bar Dot-line Leg Lbl Leg PV Title X-Lbl X-Ticks Y- Lbl Y- Ticks mAP mAP mAP
FrCNN (FPN+RA) 87.59 31.62 79.05 66.39 0.22 69.78 88.29 46.63 84.60 61.57 69.82 72.18
FrCNN (RA) 63.86 14.79 70.95 60.61 0.18 83.89 60.76 93.47 50.87 55.49 89.14 96.80
FrCNN (FPN+RA) 85.54 27.86 93.68 96.30 0.22 99.09 96.04 99.46 96.80 77.22 94.58 97.76
PlotNet 92.80 70.11 98.47 96.33 99.52 97.31 94.29 97.66 94.48 93.44 97.93 98.32
Ours (Train: All) 89.67 69.13 99.89 98.67 99.99 99.90 99.45 99.89 97.69 94.92 95.80 96.70
Ours (Train: 4K) 89.67 69.13 96.31 96.31 99.63 96.35 96.84 99.48 96.58 92.86 93.66 94.50

Table 5: Chart Extractions on the PlotQA dataset with mAP scores (in %). Leg: Legend, Lbl:
Labels, PV: Preview

Method PlotQA Ours
Title 94.60 99.69

X-axis Label 95.50 99.73
Y-axis Label 97.07 99.59

Legend Labels 91.11 98.13
X-tick Labels 91.38 97.62
Y-tick Labels 88.07 95.94

Table 6: OCR Module Ac-
curacy

the difference in the consecutive ticks is more or
less than the mode, respectively. We add a dummy
value ‘x’ for the newly added tick, if any, which
is handled during correction. We replace a non-
numerical tick-value detection, if any, by using M
as an offset to the the neighboring tick value. To
correct the tick-values not adhering to a progression
followed by the majority values, we consider a tick-
value as an ‘anchor’ (correct value) and calculate
the other values adding and/or subtracting M from
this anchor. We compute the ‘gain’ with respect to
this anchor to be the intersection of the extracted
values and calculated values. We repeat this pro-
cess by considering distinct numerical-axis values
as anchors. For the ‘anchor’ giving us the maxi-
mum ‘gain’, the corresponding calculated values
are considered to be the correct set of numerical-
axis tick values. Some charts (Figure 1 (a)) use
scientific notation for denoting large numerical val-
ues which are converted to float values.

D Training Details for Chart Extraction
Models

For the chart type classification ResNet-34 is fine-
tuned for 2000 steps. We use the Adam optimizer,
a learning rate of 0.0005, and a batch size of 8. The
model yields 99.91% test accuracy. For text region
and role detection, we use the pre-trained VGG19
and train with a batch size of 8, for 1 epoch, using
the Adam optimizer with an initial learning rate
of 0.0005. As the data is skewed for axes-labels,
while creating training tuples, we under-sample for
this text-role to avoid class imbalance.

E Data Extraction

We use interpolation and extrapolation to calculate
a numerical value associated with every pixel on
the numerical-axis by using numerical-axis tick co-
ordinate pixels as reference. For every data point
(pivot-point in case of dots and line charts, bar-
tops in case of bars) detected we assign it: (i) a
series by matching its style with the style of a
legend label, (ii) a category by matching its co-

ordinate with the category tick, and (iii) a value
of the pixel on the numerical axis whose coordi-
nate matches with it. Thus, we extract the data
in the form of a set-of tuples <category_label,
series_label, numerical_value>. For the cate-
gory for which no pivot point or bar is detected for
a series due to VED errors, we consider its value to
be zero. We finally define a tabular schema with the
column names as category axis label (category col-
umn), series (series column), and a string formed
by concatenating the chart title with the numeri-
cal axis label (numerical column). All the spaces
in the column names are replaced by underscores
to make them SQL compatible. We insert the ex-
tracted tuples as rows in the tabular schema. The
generic schema obtained for the chart in Figure
1(b) is shown in Figure 2. Charts containing only
one series have a schema with only category and
numerical columns.

Improvements over FIBT Iterations The gener-
ated SQL programs for the NL queries requiring
certain compositions of primitive operations got
corrected after the iterations of back-translation.
For example, the required composition of the NL
query ’In how many years, is the amount spent
in making social contributions greater than the
average amount spent in making social contribu-
tions taken over all years ?’ is ‘Count Greater
Than Average’. After the first iteration the gen-
erated SQL program for this query is “Select
t1.social_contributions > t2.social_contributions
from table_data t1, table_data t2 where t1.year
= ’2010’ and t2.year = ’2010’ “, which got
corrected to “select count(*) from table_data
where social_contributions > (select avg (so-
cial_contributions) from table_data)”, after the
second iteration. This improvement is because
of the data augmented by PCFG-based synthetic
queries, which contained these SQL queries having
compositions not present in the original bootstrap-
ping data (details in Section 4.3). Some additional
improvements over the iterations are because of the
coverage of the additional (chart) domains, which

2513

sql → sel_num_col | sel_col | sel_arth
sel_num_col → "SELECT" agg "(" "num_col_name" ")" from "WHERE" cond_series | cond_cat
sel_col → sel_cat_col | sel_series_col "WHERE" cond_num ("AND" cond_series | cond_cat)0−1

sel_col → sel_cat_col | sel_series_col "ORDER" "BY" "num_col_name" "DESC" | "ASC" "LIMIT" "1"
sel_cat_col → "SELECT" "DISTINCT" ("COUNT")0−1 "(" "cat_col_name" ")" from
sel_series_col → "SELECT" "DISTINCT"("COUNT")0−1 "(" "series_col_name" ")" from
sel_arth → "SELECT" agg "(" "num_col_name" ")" arth agg "(" "num_col_name" ")" from

("WHERE" cond_series | cond_cat)0−1

sel_arth → "SELECT" "DISTINCT" "(" "t1." "num_col_name" arth "t2." "num_col_name" ")" from_2
"WHERE" "t1." cond_cat | cond_series "AND" "t2." cond_cat | cond_series
("AND" "t1." cond_series | cond_cat "AND" "t2." cond_series | cond_cat)0−1

sel_arth → "SELECT" "DISTINCT" "(" "t1." "num_col_name" arth "t2." "num_col_name" ")"
arth agg "(" "t3." "num_col_name" ")" from_2 "," "table_data" "t3"
"WHERE" "t1." cond_cat "AND" "t2." cond_cat
("AND" "t1." cond_series "AND" "t2." cond_series "AND" "t3." cond_series)0−1

sel_arth → "SELECT" "DISTINCT" "(" "t1." "num_col_name" arth "t2." "num_col_name" ")"
arth "(" "t3." "num_col_name" arth "t4." "num_col_name" ")" from_2 from_4
"WHERE"" t1." cond_series | cond_cat "AND" "t2." cond_series | cond_cat
"AND" "t3." cond_series | cond_cat "AND" "t4." cond_series | cond_cat

from → "FROM" "table_data"
from_2 → "FROM" "table_data" "AS" "t1" "," "table_data" "AS" "t2"
from_2 → "FROM" "table_data" "AS" "t1" "JOIN" "table_data" "AS" "t2"

"ON" "t1." "cat_col_name" | "series" "=" "t2." "cat_col_name" | "series"
from_4 → "," "table_data" "t3" "," "table_data" "t4"
cond_num → "num_col_name" op "num_val" | op "(" sel_num_col ")" | "NOT" "IN"

"(" sel_num_col ")"
cond_series → "series" "=" "’""series_col_val""’" | "cat_col_name" "IN" "(" sel_cat_col ")"
cond_cat → "cat_col_name" "=" "’""cat_col_val""’" | "series" "IN" "(" sel_series_col ")"
agg → "SUM" | "MIN" | "MAX" | "AVG" | "MEDIAN"
arth → "<" | ">" | "/" | "-" | "+"
op → "=" | "<" | ">"

Table 7: Probabilistic Context Free Grammar (PCFG)

are not present in the initial bootstrapping data
(having queries covering the SPIDER database do-
mains), but got covered in the PCFG based syn-
thetically generated queries on the PlotQA chart
schema, addressing the domain shift.

F Results of Plot Extraction

For plot extractions we prefer mAP @0.90 IOU
over mAP @0.75 and mAP@0.50 IOU as the eval-
uation metric as we require precise fine-grained
extractions else the resulting data errors will propa-
gate to the downstream QA task. For OCR we use
accuracy (1 - Word Error Rate (WER)) as the eval-
uation metric. Table 5 illustrates the SOA results
on plot extraction by our approach. We have state-
of-the-art results with for Chart Extraction yielding
94.92% mAP @0.90 IOU when trained with all
PlotQA (157K) images, beating the baseline (Gan-
guly et al., 2020) by 1.48%. mAP @0.90 IOU.
The extraction of dot/line regions is challenging
because of their small size, sparse distribution and

eclipsed or intersected dots/lines of distinct series.
Table 6 depicts the SOA results of the OCR mod-
ule. The PlotQA Oracle refers to the results with
the OCR model applied to the ground truth text-
regions. Our predicted text-detections followed by
OCR outperform both the baselines from PlotQA
(Methani et al., 2020), yielding State-of-the-Art
results.

G ChartQA Dataset Analysis

After thorough analysis of CharQA (Masry et al.,
2022) dataset, because of the following observa-
tions we have not used it for benchmarking: (i)
Samples with incorrect Ground Truth (GT) labels:
Few examples: (a) for the question ‘In what year
did Nicaragua have the highest risk score of money
laundering and terrorist financing?’ on the chart

‘two_col_102453.png’, the actual answer is ‘2020’,
and the provided GT is ‘2015’, (b) for the ques-
tion ‘What’s the ratio of the lowest value of green
bars and blue bars?’ on the chart ‘1392.png’, the

2514

actual answer is ‘2.41’ and the GT is ‘1.216’, (c)
For the question ’In republicans what is the dif-
ference between the more likely and less likely?’
on the chart ’9987.png’ the ground truth label is
’21’, where as based on the question the ground
truth label should be ’-21’. (ii) Samples with spu-
rious questions: The contents of the question are
not relevant to the data present in the chart. Few
examples: (a) For the question ‘What was the third
most popular brand on Foursquare?’ on the chart

‘two_col_80744.png’, ‘Foursquare’ is itself an in-
dividual brand depicted in the chart and no other
information about Foursquare is provided. and the
GT is ‘MTV’ which in itself is a separate brand and
not related to Foursquare. (b) the question ‘How
many people checked in to New Delhi on Face-
book between June and August 2017?’ posed on
chart ‘two_col_5556.png’ has some terms such as
Facebook or specified Month/Year which are not
present in the chart, (iii) Gold data tables4 with
incorrect information: Gold data tables crawled
through web source ‘PEW’5 have incorrect infor-
mation, which leads to predicted answers. In the
test set 310 (20.54%) samples have all the data val-
ues to be zeros and others (‘4931.png’, ‘2721.png’,

‘11627839005738.png’) have floating point errors.
For example, the Gold data tables for charts
‘4931.png’, ‘2721.png’, ‘11627839005738.png’ are
spurious. Due to this incorrect Gold Table contents
even though the GT labels corresponding to the
question to these charts is correct, with incorrect
data points, the resulting answer does not match
the label. Due to the above listed observations, we
have not used this dataset for the benchmarking
purpose.

4
https://drive.google.com/file/d/17-aqtiq_KJ16PIGOp30W0y6OJNax6SVT/view

5
https://github.com/vis-nlp/ChartQA/issues/8

2515

