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Abstract

In multi-turn dialog understanding, semantic
frames are constructed by detecting intents and
slots within each user utterance. However, re-
cent works lack the capability of modeling
multi-turn dynamics within a dialog in nat-
ural language understanding (NLU), instead
leaving them for updating dialog states only.
Moreover, humans usually associate relevant
background knowledge with the current dialog
contexts to better illustrate slot semantics re-
vealed from word connotations, where previous
works have explored such possibility mostly in
knowledge-grounded response generation. In
this paper, we propose to amend the research
gap by equipping a BERT-based NLU frame-
work with knowledge and context awareness.
We first encode dialog contexts with a unidirec-
tional context-aware transformer encoder and
select relevant inter-word knowledge with the
current word and previous history based on a
knowledge attention mechanism. Experimen-
tal results in two complicated multi-turn dialog
datasets have demonstrated significant improve-
ments of our proposed framework. Attention
visualization also demonstrates how our mod-
ules leverage knowledge across the utterance.

1 Introduction

In conventional task oriented dialog systems, natu-
ral language understanding (NLU) modules aim
to transform utterances into meaningful seman-
tic representations for dialog management (Weld
et al., 2021; Zhang et al., 2020). It mainly de-
tects associated dialog acts or intents and extracts
key slot information as so-called ‘semantic frames’
(Abbeduto, 1983), shown in Table 1. Humans usu-
ally associate relevant knowledge and previous con-
texts with current utterance’s entities to understand
an utterance. Similarly, models’ prediction of over-
all intent semantics and slot values can benefit from
act relations such as ‘Inform’ may follow ‘Request’
acts, and background knowledge which is usually

Speaker Utterance

1. User Is there something that’s
maybe a good intelligent comedy?

Act & Slots: Request (genre: comedy)

Knowledge:
(intelligent; related to; well_informed)
(comedy; related to; comic)
(comedy; is a; drama)

2. System
Whiskey Tango Foxtrot is the only
Adult comedy I see playing in your
area. Would you like to try that?

Act & Slots:

Inform (movie: Whiskey Tango Foxtrot)
Inform (genre: Adult comedy)
Inform (distance limits: in your area)
Confirm_question

Knowledge:

(foxtrot; related to; dance)
(foxtrot; related to; rhythm)
(adult; capable of; work)
(area; is a; region)

Table 1: Excerpt of a single turn within a dialog with
corresponding dialog acts, slots and knowledge samples
that are related to keywords in the utterance.

represented as triples in knowledge graphs (Wang
et al., 2021a).

However such intuition has not been emphasized
when automating NLU tasks. In early attempts of
NLU systems, utterances were isolated and ana-
lyzed separately for user intents and semantic slots
(Raymond and Riccardi, 2007; Liu et al., 2017).
Models that maximize the joint distribution likeli-
hood were proposed to allow transitions between
two tasks (Liu and Lane, 2016; Wang et al., 2018;
Wu et al., 2021a; Li et al., 2018a). While driven
by large pretrained corpora, these methods still fall
short of employing complete dynamic interactions
within dialogs, especially in multiple intent cases
(Qin et al., 2019; Rashmi Gangadharaiah, 2019;
Qin et al., 2020). Some works have then integrated
dialog contexts for more robust NLU (Wang et al.,
2019; Gupta et al., 2019; Su et al., 2021; Wu et al.,
2021c). However, many of them could not capture
dialog flows well with RNN encoders or explain
how contexts should affect the slot filling task.

Publicly available models like BERT or XLNet
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provide universal contextualized representations
that could be adapted for learning task-oriented
contexts. However, it may not give full play to its
value when tagging some rare words like Foxtrot to-
gether with Tango as Movie in Table 1 that may ap-
pear in a domain-specific dataset. One can pretrain
these models beforehand emphasizing such phrase
relationship which nevertheless tends to be time-
consuming and computationally expensive. There-
fore, directly integrating external knowledge like a
knowledge graph (KG) becomes a more tractable
solution (Liu et al., 2019; Zhang et al., 2019b; Wu
and Juang, 2022b).

However, there are mainly three challenges ly-
ing in the way of such integration: (1) Hetero-
geneous information fusion: the vector space of
KG entities is inconsistent with that of the pre-
trained models. (2) Knowledge noise: overwhelm-
ing knowledge for models may adversely cause
redundant noises for more ambiguity. Many works
in knowledge grounded dialog generation has ap-
plied term-level denoising (Zheng et al., 2021) or
filtering techniques (Wang et al., 2021b) to refine
the adopted knowledge for better semantic con-
siderations. (3) Inter-token knowledge sharing:
Wang et al. (2019) predicts a slot for a given word
along with its own associated knowledge. However,
real sentences may contain phrases where knowl-
edge between words should be shared to probably
enrich the entire utterance semantics. To overcome
these challenges and ground knowledge in contex-
tual NLU, which is less explored in the research
community, we propose a Context and Knowledge
Awareness NLU Framework (CKA-NLU) to effec-
tively incorporate relevant knowledge and dialog
history in dialog understanding.

The key ingredients lie in how we can efficiently
integrate relevant knowledge and previous history
for understanding. We first introduce a context
attention module to retrieve context-aware repre-
sentations. Different from previous works of de-
termining a given word’s slot based on its own
knowledge, our objectives require models to aggre-
gate both previous dialog contexts and all intra-
sentence knowledge facts together to formulate
context-attended knowledge vectors in the same
space. Such vectors are a weighted combination
of all knowledge facts based on the aggregated
information until the current turn. We use atten-
tion masks and filtering to remove adversarial ef-
fects from redundant knowledge noises. Finally

we adopt these context-attended vectors for NLU
tasks with RNN decoders. Experiment results have
shown superior performances of our methods that
beat all competitive baselines.

Our contributions are as follows:
1. We propose a novel CKA-NLU framework
that incorporates inter-word knowledge with inter-
sentence contexts to fill the void of relevant knowl-
edge exploration for important NLU tasks.
2. We demonstrate the benefits of adopting knowl-
edge for token-level slot filling and dialog history
for sentence-level intent detection.
3. Experimental and attention visualization re-
sults show that our model achieves superior per-
formances over several competitive baselines and
demonstrates how our model adopts the knowledge.

2 Problem Formulation

For each utterance xn = {wn
1 , w

n
2 , . . . , w

n
T } in a

task-oriented dialog X with N utterances, given
the domain ontology of a dialog act set A and a
slot set S, we aim to find one or more acts {ani }
1 and a sequence of slot tags {sn1 , sn2 , . . . , snT } to
construct a semantic frame. Namely, we hope to
maximize the joint log likelihood of A and S in
Eq 1 given a parametrized model θ, its context
Cn = {x1, . . . , xn−1} and associated knowledge
Kn = ϕ(KG, xn) for the current utterance xn. We
deem KG as an external large knowledge base with
knowledge represented as triples (head h, relation
r, tail t) and ϕ(·) helps to extract related knowledge
pairs for xn (§3.2.1). It will be critical to match
correct knowledge based on current dialog history
and the utterance for better dialog understanding.

L(A,S) ≜
∑

n

log P (An, Sn | xn,Cn,Kn; θ)

(1)

3 Methodology

3.1 Context Attention

Our overall framework is illustrated in Figure 1.
To allow information flow across the dialog, we
first encode the entire dialog with a token-level
BERT (Devlin et al., 2019) encoder and a turn-
level context-aware transformer encoder. Instead
of concatenating all sentences which may cause
an extreme sequence length, we first generate the
token-level representations H = {h1, h2, . . . , hN}

1Dialog acts and intents are equivalent and interchangeably
used in this paper.
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Figure 1: Illustration of our proposed framework for joint dialog act detection and slot filling in multi-turn dialogs.
It consists of context and knowledge attention modules, and two LSTM-based decoders. The utterance-level
representations will be encoded with the context attention module and token-level representations will interact with
their corresponding knowledge in three proposed awareness submodules.

for each utterance xn in a dialog X by taking vec-
tors from each [CLS] token. During testing at turn
n, we may directly reuse these calculated represen-
tations {h1, h2, . . . , hn−1} until turn n− 1.

In contrast with other contextual NLU (Wang
et al., 2019; Gupta et al., 2019) with hierarchi-
cal components, we introduce a GPT-like unidi-
rectional transformer encoder with the hidden size
Ha to encode H ∈ RN×Hb . It consists L lay-
ers of masked multi-head self-attention (MHA),
point-wise feed forward network (FFN), residual
sublayer and layer normalization. The future time
steps are masked for training since we will not
have access to future utterances during testing. We
will send H as the first layer input C1 and itera-
tively encode it with two sublayers in Eq 2. Each
head Ci ∈ RN×(Ha/h) will be first mapped into a
query CQ, a key CK and a value CV which partic-
ipate in the multi-head self-attention. Here f(·) is
softmax function. Finally, we will obtain the final
contextual dialog representations CL.

Cl = FFN(MHA(Cl−1,Cl−1,Cl−1))

(2)

MHA(CQ
i ,CK

i ,CV
i ) = f(

CQ
i (CK

i )T√
Hb

)CV
i

(3)

FFN(x) = max(0, xW1 + b1)W2 + b2
(4)

3.2 Knowledge Attention
Humans could naturally associate contexts with
relevant knowledge to predict semantics. Here we
elaborate on how we can leverage current contexts

CL = {cLn} and a relevant knowledge base KG to
induce the intents and slots for each utterance xn.

3.2.1 Knowledge extraction
The first step is to gather all necessary knowledge
triples γ = {h, r, t}, which are head h and tail t
entities with their relation r, related to the current
utterance xn = {wn

1 , w
n
2 , . . . , w

n
T }. For each word

wn
i , we first retrieve a list of triples with the exactly

same head entity being wn
i from a knowledge base

KG. If no head entities are matched, we instead
seek entities that has a substring of wn

i . Each triple
in the pretrained KG (Bordes et al., 2013) has a
pre-given relation weight wr ∈ [0, 1]. For each
wn
i , we select |K| triples that have the largest |K|

weights as the final word-level knowledge kni . We
will finally obtain a T length knowledge sequence
Kn = {kn1 , kn2 , . . . , knT } gathered from each word
wn
i . In case of non-alphabetic or out-of-vocabulary

(OOV) words with no match in KG, we instead
replace their Kn as zero vectors to represent agnos-
ticism of knowledge.

3.2.2 Global awareness
To improve the heterogeneous information fusion
between contexts and knowledge, after obtaining
the knowledge sequence Kn = {kni } (i.e. total
T ×|K| triples γ = {h, r, t}), we aim to obtain the
context-attended knowledge sequence VK = {vni }
by selecting the most appropriate knowledge (i.e.,
removing redundant knowledge noise) within the
entire sentence, given each word wn

i and its previ-
ous dialog history cLn . Different from the term-level
denoising like Zheng et al. (2021) and Wang et al.
(2019), to allow phrase-level knowledge sharing,
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Figure 2: Knowledge Attention Diagram. (a) Context
Attention module will first process the dialog history and
produce context-aware vectors for each utterance. (b)
Token-level representation will be concatenated with the
context-aware vector. (c) The fused vector will be used
to calculate the attention weights for every knowledge
vector in the utterance. (d) The final context-attended
knowledge vector will be the weighted combination of
all knowledge vectors.

for each word, we aim to globally select all related
knowledge in the sentence after seeing previous
turns cLn . This will allow us to possibly consider
knowledge of words in the same phrase.

Shown in Figure 2, we calculate the vector vni
where rnij , tnij are j-th relation and j-th tail en-
tity vectors for the word wn

i . WH,WR,WT are
learnable matrices during training. [; ] is the con-
catenation of two vectors:

vni =
T∑

i=1

|K|∑

j=1

αij [r
n
ij ; t

n
ij ] (5)

αij = exp(βij)/

T∑

i′=1

|K|∑

j′=1

exp(βi′j′) (6)

βij = (h̃ni W
H)(tanh(rnijW

R + tnijW
T))T (7)

h̃ni = [hni ; c
L
n ] (8)

We first concatenate the token-level representations
for each word hni in the utterance xn with its con-
text vector cLn , which entails the embedded infor-
mation from previous turns (Eq 8). Then we use h̃ni

to calculate the attention weight αij with any of the
knowledge (rnij , t

n
ij) related to this utterance (Eq 6,

7). Eventually, we linearly combine all knowledge
vectors together to formalize the context-attended
knowledge vector vni (Eq 5). Additionally, to avert
the noise from zero-vectors of non-alphabetic word
knowledge, we introduce an attention mask to cal-
culate αij only on the non-zero knowledge vectors.

3.3 Semantic Decoder
After obtaining the context-attended knowledge
VK = {vni }, context vectors CL and initial token-
level vectors H, we adopt two BiLSTMs to predict
multiple dialog acts and slots which exhibit the
sequential information in BIO scheme.

Hact = BiLSTM([H̃;VK]) (9)

Hslot = BiLSTM([H;VK]) (10)

For dialog act detection, we concatenate VK with
the fused context H̃ = ([H;CL])WH from the
attention mechanism and serve as the inputs of
BiLSTM. For slot filling, since the task focuses
more on token-level information for decision, we
only concatenate raw token-level representations
and VK to be inputs of another BiLSTM, which
empirically works better. Finally, we can gen-
erate logits ŷact = σ(HactWact) by transform-
ing Hact with Wact ∈ RHL×|Ya| and a sigmoid
function σ. HL is LSTM hidden size and |Ya| is
the size of dialog act set. Likewise, we compute
ŷslot = softmax(HslotWslot). Total loss will be
the combination between the binary cross entropy
loss based on ŷact and the cross entropy loss based
on ŷslot as shown in Eq 11, 12. Finally, the joint
objective is formulated as the sum of La and Ls.

La ≜ −
N∑

n=1

|Ya|∑

a=1

(yna log(ŷ
n
a )

+(1− yna )log(1− (ŷna )) (11)

Ls ≜ −
N∑

n=1

T∑

t=1

|Ys|∑

s=1

(y(n,t)s log(ŷ(n,t)s )) (12)

4 Experiment Setting

4.1 Experimental setup
We evaluate our proposed framework on two large-
scale dialog datasets, i.e. Microsoft Dialog Chal-
lenge dataset (MDC) (Li et al., 2018b) and Schema-
Guided Dialog dataset (SGD) (Rastogi et al., 2019).
MDC contains human-annotated conversations in
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three task-completion domains (movie, restaurant,
taxi) with total 11 dialog acts and 50 slots. SGD
entails large-scale task-oriented dialogs over 20 do-
mains ranging from travel, weather to banks, etc.
It has total 18 dialog acts and 89 slots. To compare
the relevant knowledge usage in different domains
and save computational resources, we randomly
select 1k dialogs for each domain in MDC and two
restaurant and flights domains from SGD for to-
tal 5k dialogs in 6:1:3 train, validation, test ratio.
For SGD, Restaurant domain is chosen to compare
with that of MDC and Flights domain is the one not
existing in MDC. Each utterance is labeled with
one or more dialog acts and several slots.

4.2 Baselines
We compare our models with several competitive
baselines which sequentially include more features:

• MID-SF (Rashmi Gangadharaiah, 2019) consid-
ers joint multi-intent and slot detection in use of
BiLSTMs.

• ECA (Chauhan A., 2020) encodes the dialog
context with LSTM for joint tasks.

• KANLUM (Wang et al., 2019) extracts knowl-
edge from the knowledge base and incorporates
dialog history for joint tasks.

• ERNIE (Zhang et al., 2019b): We take ERNIE
backbone to integrate knowledge entities and
take the token and entity outputs for intent detec-
tion and slot filling directly.

• LABAN (Wu et al., 2021b) leverages label infor-
mation to construct a latent semantic space for
utterance projection. It is mainly for the multiple
intent detection task only.

• CASA-BERT (Gupta et al., 2019) encodes the
context with sentence2token and DiSAN which
we replace with BERT for fair comparison with
other BERT-based models.

We also perform several variations of our proposed
framework to conduct the ablation study with the
following detailed descriptions.

• Less-Relevant knowledge triples (LR-KA): We
replace the top |K| knowledge triples with the
less related knowledge triples ranked from |K| ∼
2|K| (from relation weights in KG) to perform
sensitivity analysis on the quality of knowledge.

• Word-Level knowledge attention (WL-KA):
We use the attention-based filter (AF) (Wang
et al., 2021b) to perform token-level knowledge

attention instead of sentence-level attention in
our framework.

• Transformer decoder (Trans): We replace the
semantic decoder (§ 3.3) with a transformer
decoder to both predict dialog acts and slots.

4.3 Implementation details
We adopt the pretrained BERTbase (Devlin et al.,
2019) as our utterance encoder. Context attention
transformer has L = 6-layer attention blocks with
768 head size and 4 attention heads. The max
sequence length is 60. We use ConceptNet knowl-
edge base (Speer et al., 2018) to obtain relevant
knowledge for attention. It involves many crowd-
sourced and expert-created resources like DBPedia,
OpenCyc and WordNet with 1.5M word entities
connected with weighted edges (relation). Each
word or relation is represented as a dense 100-dim
vectors by adopting TransE (Bordes et al., 2013)
learning mode. Each knowledge also contains an
ExternalURL to represent the external source. We
retrieve |K| = 5 most related knowledge from each
word based on weights assigned on the edges. Both
LSTMs have 256 hidden units. We use the batch
size of 2 dialogs for MDC and 1 for SGD. In all
training, we use Adam optimizer with learning rate
as 5e-5. The best performance on validation set is
obtained after training 30 epochs on each model.
For metrics, we report the dialog act accuracy (ex-
act match) and slot filling F1 score. Here we only
consider a true positive when all BIO values for a
slot is correct and forfeit ‘O’ tags.

5 Main Results

5.1 Main results
Table 2 shows our main results on the joint task per-
formance. MID-SF with only LSTMs has relatively
inferior performance on both datasets especially in
SGD. ECA by taking dialog contexts into consid-
eration has much greater increase in SGD than in
MDC. ERNIE and KANLUM have better slot fill-
ing performance which suggests the importance of
further knowledge induction. Leveraging BERT-
based encoder seems to substantially increase se-
mantic visibility in ERNIE, CASA-BERT and our
proposed framework, while introducing dialog con-
texts additionally gives better dialog act detection
performance in CASA-BERT and our model. Even-
tually, our proposed framework beats all baselines
both in MDC and substantially in SGD, by more
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Dataset MDC SGD
Domain Movie Restaurant Taxi Restaurant Flights
Model MDA SL MDA SL MDA SL MDA SL MDA SL
MID-SF (Rashmi Gangadharaiah, 2019) 76.56 67.56 77.35 65.77 85.03 70.03 74.26 81.38 84.74 84.48
ECA (Chauhan A., 2020) 77.10 69.72 77.56 66.85 86.61 71.28 87.98 84.87 95.16 87.91
KANLUM (Wang et al., 2019) 81.86 73.32 80.76 68.36 88.31 74.07 86.81 87.82 92.87 90.05
ERNIE (Zhang et al., 2019b) 81.52 79.18 80.60 74.68 87.72 76.85 88.53 91.37 89.33 90.50
LABAN (Wu et al., 2021b) 82.05 - 82.28 - 88.19 - 90.51 - 94.23 -
CASA-BERT (Gupta et al., 2019) 84.22 79.59 83.17 74.89 90.00 78.54 92.54 94.20 95.00 91.79
CKA-NLU 86.09† 80.58† 84.01† 75.27† 90.80† 79.60† 98.47† 94.86 99.22† 92.67†

Table 2: Experimental Results on several NLU models including our proposed frameworks which are specified in
percentage (%). MDA indicates the dialog act detection accuracy by counting corrects when all acts are predicted
correctly. SL indicates the slot filling F1 score. † indicates the significant improvement of p-value < 0.05, compared
with CASA-BERT.

Dataset MDC SGD
Domain Movie Restaurant Taxi Restaurant Flights
Model MDA SL MDA SL MDA SL MDA SL MDA SL
CKA-NLU 86.09 80.58 84.01 75.27 90.80 79.60 98.47 94.86 99.22 92.67

w/ LR-KA 85.63 80.26 83.43 75.76 89.77 80.03 98.38 94.31 98.93 91.99
w/ WL-KA 85.25 79.46 83.27 74.89 90.05 79.59 96.84 94.61 97.17 91.14
w/ Trans 85.98 79.94 83.27 75.19 90.40 78.33 97.35 94.34 98.20 91.95
w/o KG 86.01 79.92 83.53 74.76 90.56 78.29 97.53 94.83 97.73 92.23
w/o CA 84.87 79.79 81.33 74.68 89.00 78.50 95.88 94.36 97.17 91.94
w/o LSTM 84.57 79.14 82.70 74.35 89.65 79.00 90.96 93.64 94.80 91.33

Table 3: Ablation Results of joint tasks (%) by removing some key components of our proposed model: CKA-NLU.

efficiently incorporating external knowledge and
dialog contexts with the proposed global awareness
attention mechanism.

5.2 Ablation analysis

To better estimate the effectiveness of each module
of our best model, we conduct ablation experiments
in Table 3. We ablate or replace each component
from CKA to observe the performance drops. First,
we could see knowledge quality may affect the per-
formance of joint tasks where most performance
drops are observed with LR-KA, while we found
that slot accuracy may increase if the overall ex-
tracted knowledge is less relevant to utterances. To
note, the word matching accuracies in the knowl-
edge base are 78.12% (MDC) and 80.97% (SGD),
which indicates that there is still about 20% of
zero vectors introduced as redundant noises. Sec-
ond, considering global knowledge across the en-
tire sentence has overall better performance than
only word-level knowledge, where knowledge of
some phrases should be treated jointly. Finally, we
see a single transformer decoder may still entangle
the act and slot information by updating gradients
simultaneously with poorer performance.

By removing the entire knowledge attention
module, we could see a larger accuracy decrease in
slot filling tasks, denoting the necessity of external
knowledge in enriching the current word represen-
tations. By substituting a LSTM on top of BERT

for our context attention module (CA), we obtain
poorer performance in dialog act detection. By
replacing two LSTMs with fully connected layers
after knowledge attention, the performance drops
especially in SGD. Overall, we observe dialog act
detection relies more on contexts while slot filling
tasks may concentrate on inter-utterance relations
where external knowledge benefits more instead.

5.3 Further Discussion

Could knowledge amend the data scarcity? We
also study how knowledge could contribute to the
joint tasks when resources are scarce. Figure 3
shows the performance changes with different num-
bers of training data. We found that inducing the
knowledge will have the positive effect on both
tasks. In the few-shot setting, we see the perfor-
mance difference enlarges where knowledge be-
comes beneficial to enrich the external informa-
tion aside from data itself. However, knowledge
becomes less useful when we have extreme low
dataset particularly for slot detection in MDC. In-
troducing more MDC data at a certain point may
contradict with the external knowledge data base
that possibly makes models hard to generalize,
while it helps dialog act detection that amends the
training instability from data scarcity.
Does global knowledge help non-alphabetic
slots? We are interested if knowledge for other
words would also help with the slot prediction of
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Figure 3: NLU performance gain by using knowledge in
CKA-NLU with a subsample (%) of the original training
data of two datasets: MDC and SGD.

non-alphabetic words. Table 4 shows the results for
each non-alphabetic slot for our global and local
attention models. Since there is no knowledge for
the non-alphabetic words, we observe an overall
2% increase by inducing global attention. Contexts
are beneficial especially for slots associated with
rating, money and address, which should be likely
inferred by other keywords near them. However,
introducing more knowledge noises may not help
to predict time and zip code since they are rather
independent to contexts.

5.4 Knowledge Attention

In Figure 4, we visualize the attention heatmap
of tokens with their slot labels vs. all knowledge
triples from each token. First, we focus on the
rows of the heat map. Without attached knowledge
for the words like numbers or punctuations, their
attention weights are perceived blank across all to-
kens in the utterance. Second, for valid attention
weights, we found the knowledge corresponding
to keywords like ‘you’, ‘with’, ‘restaurant’ and

‘antioch’ are most adopted for overall knowledge
representations across all the utterance. It eluci-
dates that the model will mostly grasp knowledge
in words especially tagged as valued slots (non-O
tag) for overall semantic understanding. Interest-

Slot CKA-NLU (%) WL-KA (%) ∆ (%)
address 17.39 0.00 +17.39
price 66.67 50.00 +16.67
critic_rating 34.48 23.08 +11.41
dress_code 50.00 44.44 +5.56
rating 52.17 49.32 +2.86
cost 95.54 95.29 +0.26
numberofpeople 95.63 95.51 +0.12
date 86.96 86.99 -0.02
pricing 42.55 43.14 -0.58
starttime 76.80 77.68 -0.88
numberofkids 73.68 77.78 -4.09
mpaa_rating 76.92 83.33 -6.41
zip_code 77.65 84.44 -6.80
pickup_time 75.19 82.29 -7.09
total 65.83 63.80 +2.03

Table 4: F1 scores of non-alphabetic slots in overall
SGD dataset when using all (CKA-NLU) or word-level
(WL-KA) knowledge.

ingly, this collection of knowledge is more empha-
sized on predicting a word to be non-valued than
those words with valued slots. For the columns, we
could see for non-valued words, they will rely on
knowledge of valued words like ‘restaurant’ and

‘antioch’, than the knowledge related to itself. It
substantiates the belief that the overall semantics of
the utterance may be driven by these valued words.

In Table 5, we further show an utterance ex-
ample with some highlighted words including

‘you’, ‘restaurant’ and ‘Antioch’ with their ex-
tracted knowledge and weights for semantic detec-
tion. We take the average of all attention weights
across all tokens for that knowledge triple; then nor-
malized across the knowledge triples in the same
word (head). We could see ‘you’ as an object is
most adopted to clarify the user being offered and
informed counts. Then we observe that the knowl-
edge triple (restaurant, atl, city) where restaurant
is at a location of the city is most recognized to
illustrate the relations of restaurant and city tags.
Finally, knowledge for ‘Antioch’ keyword is mostly
relevant to a country which is conducive when the
system seldom sees this word during training. But
without further contexts, our model believes ‘Anti-
och’ is more of a part of Turkey.

6 Related Work

Intent detection and slot filling are two main NLU
tasks (Weld et al., 2021). Many classification or
clustering approaches (Sarikaya et al., 2011; Ray-
mond and Riccardi, 2007; Liu et al., 2017; Wu and
Juang, 2022a) had been proposed for single intent
detection. However, treating two tasks separately
may experience error propagation. Liu and Lane
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Figure 4: Attention visualization of a single utterance
example with respect to all knowledge related to each
word. We denote an utterance with tokens followed by
their predicted tag in x-axis. For y-axis, each word will
have five knowledge triples with each as a single tick.
The blank area is where attention weights are zero.

(2016) first proposed an attention-based LSTM net-
work to model the correlations between intents
and slots. Li et al. (2018a) proposed the gating
mechanism for better self-attention on joint tasks,
which is not scalable for longer sequences. Wang
et al. (2018) instead proposed the bi-model to di-
rectly model the cross impacts and Zhang et al.
(2019a) utilized capsule neural networks. Memory
networks are also popular choices to model long-
range dependency (Wu et al., 2021a). However, a
single utterance may have many intents. Qin et al.
(2019) proposed a stack-propagation networks to
predict intents on each token. Rashmi Gangadhara-
iah (2019) and Qin et al. (2020) considered the
dynamic interactions between two tasks by jointly
detecting multiple intents. Wu et al. (2021b) ex-
tended the multiple intent scenario with zero-shot
cases. These methods nevertheless restrict their re-
sources to current utterances for prediction where
we consider the multi-turn dialogs jointly where
dialog acts could be context-sensitive (Bothe et al.,
2018).

Contexts and knowledge Contexts are also crit-

Utterance Example in Figure 4

Utterance
I found 2 places that may interest you.
Starting with Celia’s Mexican restaurant
located in Antioch.

Dialog acts Offer, Inform Count

Slots O O O O O O O O O O B-res I-res I-res
O O B-city

Keyword Knowledge

you (hc, noun) (0.29), (hc, object) (0.7)
(rel, guys) (6e-4)

restaurant (isa, establishment) (8e-9), (atl, hotel) (0.2)
(atl, town) (0.14), (atl, city) (0.65)

Antioch (rel, orontes) (4e-5), (rel, swiss) (2e-2)
(rel, usa) (5e-2), (ptof, turkey) (0.9)

Table 5: The utterance example in Figure 4 for joint task
prediction. Knowledge (Relation, Tail) related to three
keywords as head are presented with their attention
weights (number after the knowledge). We only show
the top four knowledge adopted for each keyword based
on the attention weights. ‘hc’ represents ‘has context’,
‘rel’ represents ‘related to’, ‘atl’ represents ‘at location’
and ‘ptof’ represents ‘part of’.

ical for dialog understanding. Bertomeu et al.
(2006) first studied the contextual phenomena in
words. Bhargava et al. (2013) and Shi et al.
(2015) then introduced contextual signals to the
joint intent-slot tasks. Advanced hierarchical struc-
tures are also emphasized to encode multi-turn dia-
log contexts efficiently (Chauhan A., 2020; Wang
et al., 2019; Gupta et al., 2019; Wu et al., 2021c).
Knowledge is also another important resource to in-
duce commonsense for understanding. It is widely
adopted for knowledge-enhanced pretraining to en-
rich representations (Liu et al., 2019; Zhang et al.,
2019b). In task-oriented dialogs, main emphasis
lies in the interaction with task-related knowledge
bases (Madotto et al., 2020; Yang et al., 2020).
Most of works also focus on open-domain dialog
response generation (Zhao et al., 2020; Wang et al.,
2021b; Rashkin et al., 2021; Zheng et al., 2021) or
task-specific responses (Wang et al., 2021a). How-
ever, commonsense knowledge is seldom adopted
in NLU. Wang et al. (2019) tried to apply knowl-
edge in NLU but it is not suitable for complex
dialog modeling. To amend the gap in modeling
such knowledge and context interactions, we follow
these previous works’ paradigms and explore the
mechanisms of characterizing their mutual effects.

7 Conclusion

In this paper, we propose a novel BERT-based
knowledge-augmented network to effectively in-
corporate dialog history and external knowledge
in the joint NLU tasks. Compared to recent works
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which consider only intra-word knowledge, we in-
stead raise the knowledge awareness by selecting
all relevant knowledge triples in an utterance with
the current dialog contexts. We found that our
framework is verified to be effective in two com-
plex multi-turn dialog datasets where contexts and
knowledge are crucial in dialog act detection and
slot filling respectively. The visualization shows
that our models adopt some key knowledge in par-
ticular words and learn to grasp useful information
for better interpretability. These context-attended
knowledge vectors could be easily applied to down-
stream dialog state tracking or management tasks.

Limitations

The possible limitations for our works are two-
folds. First, the scalability of our method is subject
to the size of the knowledge base and the number of
incorporated knowledge since selecting from larger
knowledge candidates may require more computa-
tional memory and training time but with higher
performance. Exact string matching between con-
text words and knowledge entities is relatively sim-
ple and could be replaced with more advanced se-
mantic matching techniques, which nevertheless
may increase model complexity. Second, depend-
ing on the domains of datasets to apply, too many
out-of-vocabulary words (OOV) with no match in
the knowledge base may affect the model perfor-
mance and our future works will investigate a better
solution to replace zero-vectors that are associated
with non-alphabetic words.
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