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Abstract

Determining the role of event arguments is a
crucial subtask of event extraction. Most pre-
vious supervised models leverage costly anno-
tations, which is not practical for open-domain
applications. In this work, we propose to
use global constraints with prompting to ef-
fectively tackles event argument classification
without any annotation and task-specific train-
ing. Specifically, given an event and its as-
sociated passage, the model first creates sev-
eral new passages by prefix prompts and cloze
prompts, where prefix prompts indicate event
type and trigger span, and cloze prompts con-
nect each candidate role with the target argu-
ment span. Then, a pre-trained language model
scores the new passages, making the initial pre-
diction. Our novel prompt templates can easily
adapt to all events and argument types with-
out manual effort. Next, the model regularizes
the prediction by global constraints exploiting
cross-task, cross-argument, and cross-event re-
lations. Extensive experiments demonstrate our
model’s effectiveness: it outperforms the best
zero-shot baselines by 12.5% and 10.9% F1 on
ACE and ERE with given argument spans and
by 4.3% and 3.3% F1, respectively, without
given argument spans. We have made our code
publicly available.1

1 Introduction

Event Argument Classification2 (EAC), finding the
roles of event arguments, is an important and chal-
lenging event extraction sub-task. As shown in
Figure 1, a “Transfer-Money” event whose trig-
ger is “acquiring” has several argument spans (e.g.,
“Daily Planet”). By determining the role of these ar-
guments (e.g., “Daily Planet” as “Beneficiary”), we

1https://github.com/HKUST-KnowComp/Constraints-
with-Prompting-for-Zero-Shot-EAC

2We focus on event argument because existing zero-shot
trigger extraction models like Zhang et al. (2021) are already
strong enough, but the arguments remain a challenge. Our
argument identification approach is described in Section 3.1.

Figure 1: An example of EAC. The trigger is in bold
face. Arguments are underlined and connected to their
roles by arrows.

can obtain a better understanding of the event, thus
benefiting related applications like stock price pre-
diction (Ding et al., 2015) and biomedical research
(Zhao et al., 2021).

Many previous EAC works require numerous
annotations to train their models (Lin et al., 2020;
Hsu et al., 2022; Liu et al., 2022), which is not only
costly as the annotations are labor-intensive but
also difficult to be generalized to datasets of novel
domains. Accordingly, some EAC models adopt a
few-shot learning paradigm (Ma et al., 2022; Hsu
et al., 2022). However, they are sensitive to the few-
shot example selection and they still require costly
task-specific training, which hinders their real-life
deployment. There have been some zero-shot EAC
models based on transfer learning (Huang et al.,
2018), or label semantics (Zhang et al., 2021; Wang
et al., 2022), or prompt learning (Liu et al., 2020;
Lyu et al., 2021; Huang et al., 2022; Mehta et al.,
2022). However, these models’ corresponding lim-
itations impede their real-life deployment. The
model based on transfer learning can be ineffective
when new event types are very different from the
observed one. As for models using label semantics,
they require a laborious preparation process and
have unsatisfactory performance. Regarding mod-
els adopting prompt learning, they need tedious
prompt design customized to every new type of
events and arguments, and their performance is
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also limited.

To address the aforementioned issues, we pro-
pose an approach using global constraints with
prompting to tackle zero-shot EAC. Global con-
straints can be viewed as a type of supervision sig-
nal from domain knowledge, which is crucial for
zero-shot EAC since supervision from annotations
is inaccessible. Moreover, our model’s constraints
module provides abundant global insights across
tasks, arguments, and events. Prompting can also
be regarded as a supervision signal as it induces
abundant knowledge from Pre-Trained Language
Models (PTLM). Unlike previous zero-shot EAC
works, which need a tedious prompt design for ev-
ery new type of events and arguments, the novel
prompt templates of our model’s prompting module
can be easily adapted to all possible types of events
and arguments in a fully automatic way. Specif-
ically, given an event and its passage, our model
first adds prefix prompt, cloze prompt, and can-
didate roles into the passage, which creates a set
of new passages. The Prefix prompt describes the
event type and trigger span. Cloze prompt connects
each candidate to the target argument span. Af-
terwards, our model adopts a PTLM to compute
the language modeling loss for each of the new
passages, whose negative value would be the re-
spective prompting score. The role with the highest
prompting score is the initial prediction. Then, our
model uses global constraints to regularize the ini-
tial prediction. The global constraints are based on
the domain knowledge of the following relations:
(1) cross-task relation, where our model addition-
ally performs another one or more classification
task on target argument span, and our model’s pre-
dictions on EAC and other task(s) should be consis-
tent; (2) cross-argument relation, where arguments
of one event should collectively abide by certain
constraint(s); (3) cross-event relation, where some
argument playing a certain role in one event should
play a typical role in another related event.

We conduct comprehensive experiments to
demonstrate the effectiveness of our model. Partic-
ularly, our approach surpasses all zero-shot base-
lines by at least 12.5% and 10.9% F1 on ACE and
ERE, respectively. When argument spans are not
given, our model outperforms the best zero-shot
baseline by 4.3% and 3.3% F1 on ACE and ERE,
respectively. Besides that, we also conduct exper-
iments to show that both the prompting and con-
straints modules contribute to the final success.

2 Methodology

We first present an overview of our approach. Then
we introduce the details by describing its prompt-
ing module and global constraints regularization
module. We follow (Liu et al., 2021) to name a
prompt inserted before input text as prefix prompt,
and a prompt with slot(s) to fill in and insert in the
middle of input text as cloze prompt.

2.1 Overview

As shown in Figure 2, given a passage with a target
argument span, our model infers the target’s role
without annotation and task-specific training. Our
model has two modules. The first module is the
prompting module that creates and scores several
new passages. During creation, the model adds
prefix prompt, cloze prompt, and candidate roles
into the passage, where the prefix prompt contains
information about event type and trigger, and the
cloze prompt joins each candidate with a target ar-
gument span.3 Afterwards, the model uses a PTLM
to score the new passages. Our novel prompt tem-
plates can easily adapt to all possible events and
arguments without manual work. Initial prediction
is the role with the best prompting scores. The sec-
ond module is the global constraints regularization
module, where the model regularizes the predic-
tion by three types of global constraints: cross-task
constraint, cross-argument constraint, and cross-
event constraint. All global constraints are based
on event-related domain knowledge about inter-
task, inter-argument, and inter-event relations.

2.2 Prompting Module

In this section, we describe the prompting mod-
ule in detail. Given a passage, we first add a prefix
prompt containing information about the event type
and trigger span to the beginning. Such a prompt
can guide a PTLM to: (1) accurately capture the in-
put text’s perspective related to the event; (2) have a
clear awareness of the trigger. Based on the defini-
tions of events and triggers (Grishman et al., 2005),
we create the following prefix prompt: “This is
a [] event whose occurrence is most clearly ex-
pressed by [].” where the first and second pairs
of square brackets are the placeholders of event
type and trigger span respectively. We also con-

3Since we focus on event argument classification, we as-
sume that the event types and trigger spans are given. The
settings without given argument spans will be discussed in
Section 3.1.
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Figure 2: Model overview using prediction for one argument span as an example. [T ]1 and [T ]2 are the parts of the
input passage before and after the span, respectively. k is the number of candidate roles of the event type.

ducted some experiments comparing different pre-
fix prompts in Section A, and the results showed
that the prefix above is the most effective.

Second, for each candidate role, the module in-
serts the cloze prompt behind the target argument
span, and the role fills the prompt’ slot. The cloze
prompt adopts the hypernym extraction pattern “M
and any other []” (Dai et al., 2021), where “M”
denotes the argument span and the square bracket
is the placeholder of the candidate role. We did not
try other hypernym extraction patterns as (Dai et al.,
2021) had shown that our pattern is the most ef-
fective. The motivation for adopting the hypernym
extraction pattern for cloze prompt is that, to some
extent a role can be regarded as a context-specific
hypernym of the respective argument span of the
associated event (e.g., “Beneficiary” can be seen
as a context-specific hypernym of “Daily Planet”of
the Transfer-Money event described by the exam-
ple in Figure 1). Hence, such a prompt induces the
linguistic and commonsense knowledge stored in
PTLM to help identify which candidate role is the
most reasonable.

After adding the previous two types of prompts,
we get several new passages. For instance, suppose
the passage is“In Baghdad, a bomb was fired at
17 people.” whose event type is “Conflict:Attack”,
trigger is “fired”, target argument span is “bomb”,
and candidate roles are {“Attacker”, “Instrument”,
“Place”, “Time”, “Target”}. The created passages
would be: (1) “This is a Attack event whose oc-
currence is most clearly expressed by “fired.” In
Baghdad, a bomb and any other attacker was fired
at 17 people.”; (2) “This is a Attack ... “fired.” ...
bomb and any other instrument was ...”; and simi-

lar text for other roles.4

For each new passage, we apply a PTLM to com-
pute the language modeling loss. The negative
value of the loss would be the prompting score of
the respective passage, where a higher value indi-
cates higher plausibility according to the PTLM.
Since our model’s prompt templates are inde-
pendent of event type and argument role, their
adaptation to any new type of events and argu-
ments is trivial and fully automatic. Hence, our
prompting method is more scalable and generaliz-
able than those of previous zero-shot EAC models,
since, for every new type of events and arguments
they need to design a customized prompt. For in-
stance, for every type of events/arguments, Lyu
et al. (2021) manually design a unique prompt as
text entailment/question answering template. The
initial prediction would be the role with the high-
est prompting score. Since the steps of obtaining
scores for each candidate role are independent of
other candidate roles, we implement the steps of
different candidate roles in parallel. Such a parallel
implementation significantly improves our model’s
efficiency.

2.3 Global Constraints Regularization
Module

This module regularizes the prediction by the fol-
lowing three types of global constraints.5

Cross-task constraint exploits the label depen-
dency between EAC and auxiliary task(s) so that

4We only use the subtype of all events following the pre-
processing done by (Lin et al., 2020)

5We designed 14 global constraints in total and we used
preliminary experiments to choose the three most effective
ones. In the preliminary experiments, we randomly sample
1k instances covering all trigger and argument types. We then
evaluate each constraint on the sampled subset.
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our model can get global information from the aux-
iliary task(s) about event arguments. We use Event
Argument Entity Typing (EAET) as the auxiliary
task. The task aims to classify an argument into
its context-dependent entity type (e.g., PER). As
specified in ACE2005 ontology, an argument of
a certain role in an event can only be one of sev-
eral respective entity types (e.g., an argument of
“Attack” role in a Conflict:Attack event can only
be “ORG,” “PER,” or “GPE”). Based on this
domain knowledge, we design the cross-task con-
straint as follows: (1) For each input passage, our
model performs prompting for EAET, where the
prompting is the same as in Section 2.2 except that
candidate entity types replace the candidate roles
in cloze prompt.; (2) After obtaining the scores and
prediction of EAET, the model check the consis-
tency between the predictions of EAC and EAET;
(3) If the consistency is violated and the score of
EAC’s predicted role is lower, then discard the cur-
rent role, use the role with the highest score in the
remaining ones, and check the consistency again;
(4) The constraint ends when the labels of two tasks
are consistent. An example illustrating this type of
constraint is shown in Figure 3.

Cross-argument constraint is based on do-
main knowledge about relationships between ar-
guments within an event. Specifically, our model
constrains the number of particular arguments for
some or all events. For instance, it is very unlikely
that an event mentioned is associated with multi-
ple “Time” arguments. Such constraints offer a
global understanding of event arguments to our
model. The cross-argument constraint we adopt is
“A Personnel:End-POSITION event has at most
one Position argument.” Given a Personnel:End-
POSITION event, our model first checks the num-
ber of “Position” argument. If the number is more
than one, then our model will first collect the ar-
guments whose roles are “Position” and remove
the one with the highest score among these argu-
ments. Then for each remaining argument, our
model would change the role to its candidate with
the second highest score. An example illustrating
this type of constraint is shown in Figure 4.

Cross-event constraint regularizes predicted
roles of arguments shared by related events. A
model with such a constraint can have global in-
sights into event arguments, because while they
are making inferences for the arguments of one
event, they are aware of the information of other

Figure 3: An Example of cross-task constraint. The
text in bold face is the trigger, underlined text is target
argument span, and a tuple denotes a predicted label
with its prompting score (e.g., “(Target, -3.5)” denotes
the predicted label “Target” with its prompting score“-
3.5”). Similar notations are adopted in all remaining
figures.

related event(s) and cross-event relations. The
cross-event constraint we adopt is “If a Life:Injure
event and a Conflict:Attack event share argu-
ments, then Injure.Place is the same as At-
tack.Place, Injure.Victim is the same as At-
tack.Target, Injure.Instrument is the same as
Attack.Instrument, Injure.Time is the same as
Attack.Time, Injure.Agent is the same as At-
tack.Attacker”. Given a passage containing an
Injure and an Attack event sharing arguments, the
model imposes the constraint by checking the con-
sistency between the respective roles of each shared
argument as specified in the constraint. Any incon-
sistency would be fixed by changing the role with
a lower prompting score to the new one satisfying
the consistency. An example illustrating this type
of constraint is shown in Figure 5.

Our constraint modeling method can be easily
generalized to other datasets/ontologies by simply
using the knowledge about corresponding cross-
task, cross-argument, and cross-event relations to
design new constraints. The design processes are
not costly as we could easily find such knowledge
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Figure 4: An Example of cross-argument constraint.

from the guidelines of the target dataset.

3 Experiments

We first present the experimental settings, baselines
used for comparison, and some implementation de-
tails. Next, we show and analyze the experiment
results. Then we present a detailed analysis of
the prompting module and global constraints reg-
ularization module. Finally, we conduct an error
analysis.

3.1 Settings

We use ACE (2005-E+)6 (Doddington et al., 2004;
Lin et al., 2020) and ERE(-EN) (Song et al., 2015)
as datasets. In total, ACE has 33 event types and
22 roles, whereas ERE has 38 event types and 21
roles. We pre-process all events to keep only the
event subtypes whenever applicable, as done in
(Lin et al., 2020). Following the pre-processing in
(Zhang et al., 2021), for each dataset, we merge
all splits into one test set since our approach is
zero-shot. When argument spans are not given, we
pipeline our model with an argument identification
module adapted from (Lyu et al., 2021). Specifi-
cally, we replace the QA model in (Lyu et al., 2021)
with a more powerful PTLM with a span classifi-
cation head on top, and the whole model has been
fined-tuned for extractive QA tasks. Then for a pas-
sage, we prompt each role using the new QA model
as in (Lyu et al., 2021). We collect the prompt re-
sults for all roles (ignoring the “None” result) as

6https://www.ldc.upenn.edu/collaborations/past-
projects/ace

Figure 5: An Example of cross-event constraint.

candidate spans for the passage. We use the F1
score for evaluation following (Ji and Grishman,
2008), where argument spans are evaluated on the
head level when not given. Regarding PTLMs, We
use GPT-J (6B) (Wang and Komatsuzaki, 2021)
instances from Huggingface (Wolf et al., 2020),
where an instance for causal language modeling is
used for prompting, and an instance for QA is used
for argument identification. In all the following sec-
tions except Section 3.2, we conduct experiments
on ACE, assuming that argument spans are given.

3.2 Main Results

We report the main results comparing our models
with three previous powerful zero-shot models (Liu
et al., 2020; Lyu et al., 2021; Zhang et al., 2021).
Moreover, we also report the results of a SOTA
supervised model (Hsu et al., 2022). We obtain
the results of all compared methods from our own
experiments to ensure a fair comparison on the
same datasets and same settings. From Table 1, we
have the following observations:

• Our model achieves superior performance on
both datasets under both settings compared
with all zero-shot baselines. Specifically, our
model surpasses the best zero-shot baselines
(Zhang et al., 2021) by 12.5% and 10.9% on
ACE and ERE, respectively. Without argu-
ment spans, our model outperforms the re-
spective best zero-shot baselines (Lyu et al.,

2531



Model
ACE ERE

argument span given argument span not given argument span given argument span not given

(Hsu et al., 2022) (supervised) 79.3 71.8 79.8 72.5

(Liu et al., 2020) 46.1 24.2 40.9 22.8
(Lyu et al., 2021) 47.8 26.9 44.5 26.3

(Zhang et al., 2021) 53.6 23.5 51.9 20.2
Ours 66.1 31.2 62.8 29.6

Table 1: Performance of supervised model, zero-shot baselines, and our model. The best scores among the ones of
zero-shot methods are in bold font.

2021) by 4.3% and 3.3% on ACE and ERE,
respectively, which is also a noticeable gap.
Such large performance improvements can
be attributed to the following: (1) the prefix
prompt guides the PTLM to effectively cap-
ture input’s event-related perspective and trig-
ger; (2) the cloze prompt leverages linguistic
and commonsense knowledge stored in PTLM
to improve its contextual understanding of
event arguments; (3) the global constraints
regularization incorporate global information
and domain knowledge in inference. In Sec-
tion 3.3, we compare the effects of using dif-
ferent PTLMs like BERT in the prompting
module, and the results show that our model
consistently outperforms previous zero-shot
models, as shown in Table 1 and Figure 6.

• Compared with the supervised SOTA model
(Hsu et al., 2022), there is still a significant
gap between our model’s performance and
that it. Specifically, (Hsu et al., 2022) out-
performs our model by 13.2% and 17.0% on
ACE and ERE, respectively. When argument
spans are not provided, (Hsu et al., 2022) out-
runs our model by 40.6% and 42.9% on ACE
and ERE, respectively. We can see that the
advantage of supervised SOTA over our zero-
shot method is much more distinct when ar-
gument spans are not given in advance. This
is probably because our zero-shot argument
identification module described in Section 3.1
is not powerful enough, which causes severe
error propagation to our EAC model.

3.3 Analysis of Prompting Module

We conduct experiments to examine the effects of
different configurations of prefix prompt templates.
Specifically, we compare our model’s complete pre-
fix prompt with the following configurations: (1)
removing event type information from the prefix;
(2) removing trigger information from the prefix;

Configurations F1 ∆

complete prefix prompt 66.1 -

w/o event type 64.4 -1.7
w/o trigger 64.9 -1.2

w/o prefix prompt 62.8 -3.3

Table 2: Results of using different configurations of
prefix prompt.

(3) removing the whole prefix. For instance, sup-
pose the passage is “In Baghdad, a bomb was fired
at 17 people.” mentioned in Section 2.2, the prefix
in configuration (1) would be “This event’s oc-
currence is most clearly expressed by ‘fired’.”,
the prefix in configuration (2) would be “This is
a Attack event.”, and in configuration (3) there
would be no prefix. The corresponding results are
shown in Table 2, where we have the following
observations. First, removing either event type or
trigger from the prefix prompt will cause a per-
formance drop, which indicates that both kinds of
information have contributions to the prompting
process. Second, event type plays a more signif-
icant role than trigger does in prefix prompt, and
the joint effect of them is greater than the sum of
their respective effects.

In addition, we examine the effects of using dif-
ferent PTLMs in the prompting module. We com-
pare the following PTLMs with GPT-J (6B): BERT
(large, uncased) (Devlin et al., 2019), RoBERTa
(large) (Liu et al., 2019), BART (large) (Lewis
et al., 2020), GPT-2 (xl) (Radford et al., 2019), T5
(11B) (Raffel et al., 2020). The results are shown
in Figure 6, where we have the following observa-
tions. First, the instance using GPT-J has the best
performance, surpassing other instances by 4.2% to
7.9%. This shows that GPT-J has a better ability to
understand events and their associated arguments
compared to other PTLMs. Second, as PTLMs are
listed in ascending order based on their numbers of
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Figure 6: Comparison between the performance of using
different PTLMs in prompting module.

parameters, we can see that for the first five models,
the performance increases as the sizes of PTLMs
become larger, which is consistent with the widely
accepted notion that the larger model has a bet-
ter capability of solving language tasks. However,
the instance using the largest PTLM, T5 (11B),
has a worse performance than GPT-2 and GPT-J.
This is probably because autoregressive language
modeling is more suitable for capturing informa-
tion related to event arguments than mask language
modeling is.

3.4 Analysis of Global Constraints
Regularization Module

We conduct experiments to study the individual
effect of each global constraint on the overall per-
formance. The results are shown in Table 3, where
we have the following observations. First, every

Model F1 ∆

Full model 66.1 -

w/o cross-task constraint 60.5 -5.6
w/o cross-argument constraint 64.8 -1.3

w/o cross-event constraint 63.6 -2.5

Table 3: Results of using different configurations of
global constraints.

global constraint used by our model is beneficial
to overall performance, which demonstrates that
exploiting the domain knowledge about cross-task,
cross-argument, and cross-event relations indeed
provides our model with global understanding of
event arguments. Second, the contribution of cross-
task constraint is the most significant, which sug-
gests that the global insights from the entity typing
tasks are more effective in improving our model’s
reasoning ability about event arguments. Third, the
cross-argument constraint is less effective than the

Figure 7: An Example of the wrong prediction caused
by too general argument roles. The text in bold face
denotes trigger and the underlined text denotes target
argument span.

other constraints, which shows that the global in-
sights provided by the cross-argument constraint is
less informative than those provided by the other
constraints.

Apart from the three global constraints described
above, we have designed another 11 global con-
straints, which rely on cross-argument or cross-
event relations. We add each of them into our
model to check their respective effects on the over-
all performance. The results of three of them are
in Table 4, whereas the results of all of them are in
Section B. From the results, we can find that each
of these constraints either brings minor improve-
ment or even has a negative influence on the overall
performance. Hence, we do not incorporate these
constraints in our model to maintain our model’s
efficiency and effectiveness.

3.5 Error Analysis
We manually checked 100 wrong predictions of our
model and found that most of the errors are caused
by too general roles of some event types. Specifi-
cally, some roles’ linguistic meanings are so gen-
eral that a model, not knowing their detailed event-
type-dependent semantics, tends to assign them to
some arguments which should have been assigned
other roles. An example is shown in Figure 7.
The example describes a Justice:Arrest-Jail event,
which is associated with the following roles: “Per-
son,” “Agent,” “Crime,” “Time,” and “Place.” “Per-
son” refers to the person who is jailed or arrested,
whereas “Agent” refers to the jailer or the arresting
agent. In the example, the argument span’s true
role should be “Agent” according to the detailed
event-type-dependent semantics of “Person” and
“Agent.” However, our approach is zero-shot and
directly models all role labels as natural language
words, without incorporating the detailed event-
type-dependent semantics of those roles, which are
too general (e.g., “Person”). Therefore, our model
assigns “Person” to “Police” since it is reasonable
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Global constraint Effect on overall performance

There is at most one Time-Arg in each event. 0.4
A TRANSPORT event has at most one ORIGIN argument. -0.1

If an Arrest-Jail event and a Charge-Indict event share arguments,
0.3Arrest-Jail.Person is the same as Charge-Indict.Defendant, they

share the same Crime argument.

Table 4: Results of three other global constraints. Results of all other global constraints are in Section B

from the perspectives of linguistic and common-
sense knowledge, and “Person” is much more com-
mon than “Agent” in the pre-training corpus of the
PTLM in the prompting module, which makes it
have much higher likelihood in the language mod-
eling process. Incorporating event-type-dependent
semantics of the roles which are too general into
our model is left as future work.

4 Related Work

In this section, we introduce related works about
constraint modeling, event extractions, and prompt-
based Information Extraction (IE).

4.1 Constraint Modeling

Constraint modeling, as an important technique
in machine learning and NLP, aims to improve
a model’s performance by incorporating domain
knowledge as constraints (Ganchev et al., 2010;
Chang et al., 2012, 2013; Deutsch et al., 2019;
Chang et al., 2008, 2010; Graça et al., 2010). One
of the most significant advantages of constrained
modeling is that it enables a model to capture the
expressive and complex dependency structure in
structured prediction problems like EAC (Chang
et al., 2012). Especially in zero-shot scenarios,
constrained modeling can provide useful indirect
supervision to a model, which further boosts per-
formance (Ganchev et al., 2010). Some previous
works have adopted constraints based on event-
related domain knowledge to classify event ar-
guments (Lin et al., 2020; Zhang et al., 2021).
However, their constraints either require labor-
intensive annotations (Lin et al., 2020) or consider
limited global information (e.g., cross-event rela-
tions) (Zhang et al., 2021). In this paper, our model
uses global constraints to regularize prediction by
incorporating global insights from cross-task, cross-
argument, and cross-event relations.

4.2 Event Extraction

Event extraction is a fundamental information ex-
traction task (Sundheim, 1992; Grishman and Sund-
heim, 1996; Riloff, 1996; Grishman et al., 2005;
Chen et al., 2021; Du and Cardie, 2020; Liu et al.,
2020), which can be further divided into four sub-
tasks: trigger identification, trigger classification,
argument identification, and argument classifica-
tion. Traditional efforts mostly focus on the su-
pervised setting (Ji and Grishman, 2008; Liao and
Grishman, 2010; Liu et al., 2016; Chen et al., 2015;
Nguyen et al., 2016; Liu et al., 2018; Zhang et al.,
2019; Wadden et al., 2019; Lin et al., 2020). How-
ever, these works could suffer from the huge burden
of human annotation. In this work, we focus on the
argument classification task and propose a model
using prompting and global constraints, without
annotation and task-specific training.

4.3 Prompt-based IE

With the fast development of large PTLMs like
T5 (Raffel et al., 2020), GPT-3 (Brown et al., 2020),
and Pathway Language models (Chowdhery et al.,
2022), the prompt-based method has been an ef-
ficient tool of applying those giant models into
downstream NLP tasks (Liu et al., 2021). IE is
not an exception. People have been using lever-
age prompts and giant models to solve IE tasks
like named entity recognition (Cui et al., 2021),
semantic parsing (Shin et al., 2021), and relations
extraction (Chen et al., 2022; Han et al., 2021) in
a zero-shot or few-shot way. However, previous
prompting methods for IE need a tedious prompt
design for every new type of events and arguments.
In contrast, our model’s prompt templates can be
adapted to all possible types of events and argu-
ments in a fully automatic way.

5 Conclusion

We propose a zero-shot EAC model using global
constraints with prompting. Compared with previ-
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ous works, our model does not require any annota-
tion or manual prompt design, and our constraint
modeling method can be easily adapted to any other
datasets. Hence, our model can be easily general-
ized to any open-world event ontologies. Exper-
iments on two standard event extraction datasets
demonstrate our model’s effectiveness.

6 Limitations

Our work has the following limitations. One lim-
itation is that our model is not aware of the de-
tailed event-type-dependent semantics of those
roles which are too general, as discussed in Section
3.5. In the future, we will work on enabling our
model to capture the event-type-dependent seman-
tics of the roles which are too general. Another
limitation is that our model’s performance is still
unsatisfactory compared with SOTA supervised
model when argument spans are not given, as dis-
cussed in Section 3.2. In the future, we will work
on designing a more powerful zero-shot event argu-
ment identification module for our model, so that
we can obtain satisfactory zero-shot EAC perfor-
mance even when argument spans are not given.
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A Comparison between Different Prefix
Prompts

In this section, we conduct experiments on ACE-
2005 dataset to compare the effectiveness of us-
ing different prefix prompts in our models. We
compare the following prefix prompts with the one
discussed in Section 2.2: (1) “This is a [] event
whose trigger is "[]".”; (2) “The event type is [],
and its occurrence is most clearly expressed by
"[]".”; (3) “The event type is [] and the trigger
is "[]".”. The results are shown in Table 5, where
“Prefix (0)” refers to the prefix prompt discussed
in Section 2.2, whereas “Prefix (1)” refers to the
first prefix prompt described in this section, and
so on. From the table we can see that the prefix

Prefix Prompt F1

Prefix (0) 66.1
Prefix (1) 65.2
Prefix (2) 65.6
Prefix (3) 63.0

Table 5: Performance of different prefix prompts.

prompt described in Section 2.2 is the most effec-
tive one, which might be due to the fact that the
prefix prompt not only is based on the definitions
of events and triggers (Grishman et al., 2005), but
also has a natural and smooth expression.

B Results of all Other Global Constraints

In this section, we present the results of all other
global constraints. The results are shown in Table
6.
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Global constraint Effect on overall performance

There is at most one Time-Arg in each event. 0.4
There is at most one Place-Arg in each event. 0.1

A TRANSPORT event has at most one Destination argument. -0.2
A TRANSPORT event has at most one ORIGIN argument. -0.1

A START-POSITION event has at most one Person argument. 0.2
A START-POSITION event has at most one Entity argument. -0.1

A START-POSITION event has at most one Position argument. 0.1
A End-POSITION event has at most one Person argument. -0.2
If a Start-Position event and an End-Position event share

0.1
arguments, then Start-Position.Person is the same as

End-Position.Person, and Start-Position.Entity is the same
as End-Position.Entity, Start-Position.Position is the same

as End-Position.Position.
If an Arrest-Jail event and a Charge-Indict event share arguments,

0.3Arrest-Jail.Person is the same as Charge-Indict.Defendant, they
share the same Crime argument.

If a Die event and an Attack event share arguments, then

-0.2
Die.Place is the same as Attack.Place, Die.Victim is the

same as Attack.Target, Die.Instrument is the same as
Attack.Instrument, Die.Time is the same as Attack.Time,

Die.Agent is the same as Attack.Attacker.

Table 6: Other global constraints and corresponding effects on overall performance.
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