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Abstract
The task of multimodal referring expression
comprehension (REC), aiming at localizing an
image region described by a natural language
expression, has recently received increasing at-
tention within the research comminity. In this
paper, we specifically focus on referring expres-
sion comprehension with commonsense knowl-
edge (KB-Ref), a task which typically requires
reasoning beyond spatial, visual or semantic
information. We propose a novel framework
for Commonsense Knowledge Enhanced Trans-
formers (CK-Transformer) which effectively
integrates commonsense knowledge into the
representations of objects in an image, facilitat-
ing identification of the target objects referred
to by the expressions. We conduct extensive
experiments on several benchmarks for the task
of KB-Ref. Our results show that the proposed
CK-Transformer achieves a new state of the
art, with an absolute improvement of 3.14%
accuracy over the existing state of the art 1.

1 Introduction

Referring expression comprehension (REC) aims at
locating a target object/region in an image given a
natural language expression as input. The nature of
the task requires multi-modal reasoning and joint
visual and language understanding. In the past
few years, several REC tasks and datasets have
been proposed, such as RefCOCO (Yu et al., 2016),
RefCOCOg (Mao et al., 2016) and RefCOCO+ (Yu
et al., 2016) (RefCOCOs). These ‘conventional’
REC tasks typically focus on identifying an object
based on visual or spatial information of the object,
such as its colour, shape, location, etc.; therefore
primarily evaluating a model’s reasoning abilities
over visual attributes and spatial relationships.

In practice, however, people often describe an ob-
ject using non-visual or spatial information – con-
sider, for example, the sentence (expression) “Give

1The code will be available in https://github.com/
FightingFighting/CK-Transformer

me something soft but rich in starch to eat” (Wang
et al., 2020). Such instances require reasoning be-
yond spatial and visual attributes, and need to be in-
terpreted with respect to the common sense knowl-
edge (fact) embedded in the expressions, such as
knowledge about which kind of objects are edible,
soft and rich in starch in the given image. Recently,
Wang et al. (2020) proposed a new dataset, KB-Ref,
to evaluate the reasoning ability of a model over
not only visual and spatial features but also com-
monsense knowledge. The dataset is devised such
that at least one piece of fact from a knowledge
base (KB) is required for a target object (referred
to by an expression) to be identified.

Therefore, searching for appropriate facts from
a KB is also crucial part in KB-Ref. In contrast
to the only existing work (Wang et al., 2020), in
which for each object candidate, the top-K facts
with the highest cosine similarity between the av-
eraged Word2Vec (Mikolov et al., 2013) embed-
ding of the fact and the given expression are main-
tained, our framework focuses on multi-modal em-
bedding and reasoning simultaneously over both
the expression and the image to identify the top-K
facts. Multi-modal features encode richer infor-
mation helping to improve reasoning over varying
(semantic) contexts and identification of relevant
facts; for example, the above example of expres-
sion can be answered with the object “banana” in
an image (or, equivalently, with the object “mushed
potato” in another image).

In this paper, we propose a novel multi-modal
framework for KB-Ref – Commonsense Knowl-
edge Enhanced Transformers (CK-Transformer,
CK-T for short) – that integrates (top-K) facts into
all object candidates in an image for better identifi-
cation of the target object. Specifically, our contri-
butions are four-fold: 1) We propose the CK-T (see
Figute 1) that effectively integrates diverse input
from different modalities: vision, referring expres-
sions and facts; 2) To the best of our knowledge,
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Figure 1: CK-Transformer. For each candidate (the first one in the figure), given an expression, a set of visual
region candidates and top-K facts (K=3 in the figure), the model first encodes the expression and all top-K facts
into corresponding multi-modal features, then fuses these features and maps them into a matching score for the
candidate.

our approach is the first that introduces visual in-
formation into the identification of (top-K) relevant
facts; 3) Our approach achieves a new state of the
art using only top-3 facts per (candidate) object,
which is furthermore substantially more efficient
compared to existing work utilizing as much as top-
50 facts; 4) We introduce facts into ‘conventional’
REC tasks, leading to improved performance.

2 Related Work

Referring expression comprehension with com-
monsense knowledge Different from conven-
tional REC tasks (see Appendix A for details),
KB-Ref focuses on querying objects given an ex-
pression that requires commonsense knowledge
reasoning. The authors benchmarked a baseline
model, ECIFA, for integration of facts, expression
and image, and selects the target object by compar-
ing the match scores between the image features
and corresponding top-K fact features for all object
candidates in the image (Wang et al., 2020). In our
framework, we select top-K facts for each candi-
date by comparing the cosine similarity between
the fact and expression embedding, where the em-
beddings are generated from a multi-modal encoder
rather than a text encoder used in the ECIFA model.

Pre-trained vision–language encoders Several
pre-trained multi-modal encoders (Su et al., 2019;
Li et al., 2019; Chen et al., 2020; Tan and Bansal,
2019) have been proposed, achieving state-of-the-
art results on vision–language tasks. Currently,
UNITER (Chen et al., 2020) as one of powerful
pre-trained encoders achieves the best performance
on REC tasks (RefCOCOs). In this paper, we adapt
UNITER such that it is used as a multi-modal en-

coder in fact search and as part of the CK-T.

3 Methodology

We formulate KB-Ref as a classification problem
based on an image I consisting of a set of candi-
dates (image regions) I = {cj}nj=1 obtained from
either ground-truth labels or predictions of a pre-
trained object detector. Specifically, given an ex-
pression e, an image I and a KB, we first search
for top-K facts FK

i = {fj}kj=1 from the KB for
each candidate ci, and then feed e, I , and FK

I (the
selected facts over I) into our CK-T simultaneously
to predict the target object over all candidates.

3.1 Image-based fact search

For each candidate ci in a given image, we retrieve
all the facts from the KB (see Appendix D for de-
tails on the KB used in our framework) according to
its category (e.g., a candidate object may belong to
category ‘car’). Then, we calculate the cosine simi-
larity between the facts and the given expression,
where the similarities are obtained from a similar-
ity extractor which we train by adapting UNITER.
Specifically, given image–expression and image–
fact pairs as input, we extract expression and fact
features respectively from the position of the cross-
modality output of UNITER (corresponding to the
input of [CLS] token, see Appendix B for details),
and then calculate the cosine similarity between
the two. During training, inspired by Devlin et al.
(2018), we replace 50% of ground-truth facts with
random facts from the KB (with a similarity of 0),
to help the model better distinguish useful facts
from non-useful ones. Finally, we maintain top-K
facts FK

i with higher similarities to the expression
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for each candidate ci.

3.2 Commonsense Knowledge Enhanced
Transformer

The CK-T consists of a bi-modal encoder (see
3.2.1) and a fact-aware classifier (see 3.2.2).

3.2.1 Bi-modal encoder

The bi-modal encoder (initialized by UNITER-base
with N=12 layers (Chen et al., 2020)) integrates two
modalities: image and text (e or fi). Specifically,
after generating the input embedding EInp con-
sisting of image and text embedding (same with
UNITER, see Appendix C for details), for each
candidate ci, we extract the expression-aware and
fact-aware object features respectively (fei and ffi )
from the position of the visual output correspond-
ing to ci in the same encoder, based on the input of
all candidates I , and e or fi.

3.2.2 Fact-aware classifier

The fact-aware classifier is composed of multi-head
attention layers and fully connected layers. For
each candidate ci, fei and Ff

i (all K fact-aware ob-
ject features for ci) are fed into the integrator simul-
taneously (Key and Value are from Ff

i , and Query
is from fei ), and fused into one three-source object
features fti (image, expression and top-K facts).

Finally, fti is mapped into a match score si for ci
by a linear layer, and the optimization objective is
to minimize the cross-entropy loss over all scores
{sj}nj=1 corresponding to all candidates I .

4 Results

We compare our CK-T to existing approaches on
KB-Ref task without and with facts. Then we ex-
plore the importance of introducing visual infor-
mation for fact search. Furthermore, we introduce
facts into the traditional RefCOCOs dataset, which
was collected from MSCOCO (Lin et al., 2014) but
differs in the types of expressions and object can-
didate settings. We extract image region features
using an off-the-shelf detector, Faster R-CNN with
ResNet-101 (Ren et al., 2015), based on bounding
boxes (bbxes) (ground-truth labels or predicted re-
sults from the detector). See Appendix D and E for
details about these datasets and experiment setting2.
Through parameter search on K and M (see Figure
3 and 4 in Appendix F), we keep M = 2 Fact-aware
classifier blocks and top-3 facts for each candidate.

Model Accuracy (%)
Val Test

CMN (Hu et al., 2017) 41.28 40.03
SLR (Yu et al., 2017) 44.03 42.92
VC (Niu et al., 2019) 44.63 43.59
LGARNs (Wang et al., 2019) 45.11 44.27
MAttNet (Yu et al., 2018) 46.86 46.03
ECIFA-nf (Wang et al., 2020) 37.95 35.16
CK-T-nf (Ours) 58.02 57.53
ECIFA (Wang et al., 2020) 59.45 58.97
MAtt+E (Wang et al., 2020) 64.08 63.57
CK-T-Word2Vec 60.40 61.39
CK-T-Uw/oImage 64.44 64.78
CK-T (Ours) 65.62 66.71
Human − 90.31

Table 1: Accuracy on KB-Ref dataset without and with
facts (top and bottom part, respectively) using ground-
truth bounding boxes and object categories.

Ground-truth bounding boxes and categories
By following Wang et al. (2020), we report our
results on KB-Ref without and with facts. As can
be seen in Table 1 (top), CK-T-nf, a version of CK-
T without facts3, achieves an accuracy of 57.53%
on the test set, outperforming existing approaches
that do not utilize facts by approximately 11% −
22%. At the bottom part of the table we can see
that our fact-enhanced CK-T model achieves the
highest accuracy (66.71%) on the test set, which is
7.74% higher than that of ECIFA (a baseline model
proposed by Wang et al. (2020)), and 3.14% higher
than MAtt+E4. It is worth noting that both ECIFA
and MAtt+E incorporate the top-50 facts for each
candidate, which is considerably higher compared
to top-3 facts in our CK-T. We surmise this is due
to the fact that our fact search approach utilizes
multi-modal fact and expression embeddings.

Predicted bounding boxes and categories To
facilitate a fair comparison with ECIFA-d (Wang
et al., 2020), we also use the maximum 10 detected
bbxes for each image (CK-T-m10). As can be seen
in Table 2, CK-T-m10 achieves an accuracy which
is ≈ 5% higher than that of ECIFA-d on the test
set. CK-T-m100, a variant using at most 100 de-
tected bbxes achieves a substantial improvement

2Including the efficiency discussion about our model
3all word tokens in fact sentences are replaced with only

one [MASK] token.
4Wang et al. (2020) introduces their facts fusion module

–Episodic Memory Module (E)–into MAttNet model (Matt)
(Yu et al., 2018) widely used for conventional REC.
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Model Accuracy (%)
Val Test

ECIFA-d (Wang et al., 2020) 24.11 23.82
CK-T-m10 (Ours) 28.33 28.71
CK-T-m100 (Ours) 35.66 35.96

Table 2: Accuracy on KB-Ref using predicted bbxes
and object categories.

with ≈ 7%, compared with CK-T-m10. This dif-
ference is primarily due to the increase in the num-
ber of correctly detected bbxes and predicted cate-
gories. Specifically, we find that with the top-100
bbxes, the number of samples containing the target
bbxes rises from 18, 901 to 31, 653, while among
these target bbxes, the number of correctly pre-
dicted categories grows from 11, 324 to 15, 928,
out of a total of 43, 284 samples in the KB-Ref
dataset. This can also explain the dramatic decline
on the accuracy between CK-T and CK-T-m10.

Incorporating image features into fact search
We experiment with various approaches to fact
search and evaluate their effectiveness on KB-Ref
(Table 1). We first utilize top-k facts searched in
(Wang et al., 2020), where they use a pre-trained
Word2Vec (Skip-Gram) (Mikolov et al., 2013) for
searching facts (CK-T-Word2Vec). Then, we also
selected facts from similarity predictors based on
only text as input (CK-T-Uw/oImage)5, instead of
image-text pairs in CK-T. As shown in Table 1,
both CK-T-Uw/oImage and CK-T achieve better ac-
curacy on the test set compared to CK-T-Word2Vec.
Compared to CK-T-Uw/oImage, CK-T achieves
around 2% higher accuracy. This is primarily due
to the additional visual information used during
fact search (see Appendix I for the examples of the
selected facts by these fact search methods).

Introducing facts in traditional REC tasks We
incorporate facts from the KB used in KB-Ref into
the tasks of RefCOCOs using CK-T. Table 3 shows
the results comparison based on the ground-truth
bbxes and categories (discussion about the detected
results can be seen in Appendix G). Compared with
UREC

6, the model introducing facts achieves better
or equal accuracy on all RefCOCOs tasks, where
RefCOCOg is improved more than RefCOCO and

5Inspired by Frank et al. (2021), we replace all object
candidate feature with the average of all image region features.

6Chen et al. (2020) achieve state-of-the-art results on Re-
fCOCOs by finetuning UNITER. (We re-finetune the model
for fair comparison and conduct McNemar Test)

Task Accuracy (%)
UREC Intro Facts

Ref-
COCO

Val 90.98 91.43
Test A 91.50 92.09
Test B 90.89 90.95

Ref-
COCO+

Val 83.23 83.45
Test A 85.09 85.49
Test B 79.08 79.08

Ref-
COCOg

Val 86.23 87.21
Test 85.79 87.59

Table 3: Introducing facts into RefCOCO, RefCOCO+
and RefCOCOg. RefCOCO and RefCOCO+ have two
different test sets, Test A and Test B, containing multiple
persons and multiple objects in images respectively.

RefCOCO+. This is because RefCOCOg has less
same-category object candidates in an image com-
pared to RefCOCO and RefCOCO+ (an average
of 1.63 and 3.9 per image, respectively) (Yu et al.,
2016), and thus the retrieved facts integrated into
different candidates are diversified (we first retrieve
facts using the category), which contributes to dis-
tinguishing between candidates. This difference
can also be proved in McNemar Test, where we find
the change in the proportion of errors is statistically
significant after introducing facts as compared to
before on RefCOCOg (p-value = 1.19e−08 <α =
0.05), while the similar proportions are found on
RefCOCO and RefCOCO+ (see Appendix H for
details about McNemar Test). The overall impact
of commonsense knowledge in traditional REC is,
however, not substantial. This is primarily due to
much smaller number (78) of categories among the
candidates in RefCOCOs, compared to 1805 in the
KB-Ref (Wang et al., 2020). This limits the variety
of selected facts, therefore impacting the extent to
which commonsense knowledge is useful.

5 Analysis

To investigate in what cases commonsense knowl-
edge helps, we conduct a fine-grained analysis
of model performance on the test set of KB-Ref.
Specifically, we compare the samples predicted by
model with and without facts (CK-T and CK-T-nf)
on three aspects: object categories, spatial relation-
ships and the size of the bounding box.

Object categories The test set contains 1502 cat-
egories and CK-T outperforms CK-T-nf on 1347
categories. Top 10 categories for which most im-
provement is observed are shown in Figure 2(a).
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(a) Top 10 categories showing most improvement after intro-
ducing facts.

(b) The analysis of spatial relationships.

(c) The analysis of different bounding box sizes.

Figure 2: Fine-grained analysis. all: the total number
of samples in the test set; with fact: the number of test
samples that CK-T predicts correctly; without fact: the
number of test samples that CK-T-nf predicts correctly.

In case of the 155 categories that do not show im-
provement, we find that the average number of
samples per category is 6.68, making the results
less reliable.

Spatial relationships We then investigate to
what extent solving the REC task with and with-
out facts relies on spatial reasoning, and whether
there are particular spatial relationships between
objects for which the use of facts is most crucial.
Similar to the works of (Kazemzadeh et al., 2014;
Johnson et al., 2017), we focus on the following
spatial relationships: left, right, front, behind, bot-
tom, top, middle. As shown in Figure 2(b), the
model with facts (CK-T) outperforms that without
facts (CK-T-nf) on all spatial relationships.

The size of the bounding box We then inves-
tigate the role of facts when identifying objects
of different sizes, using the size of their bound-
ing box as a proxy. We use the normalized area
of the bounding box as the metric of bbxes size.
As shown in Figure 2(c), the facts improve model
performance on all bounding box sizes.

6 Conclusion

In this paper, we proposed CK-Transformer, which
effectively integrates commonsense knowledge and
the expression into the representations of the corre-
sponding visual objects for multi-modal reasoning
on KB-Ref. Our CK-Transformer achieves a new
state-of-the-art performance on KB-Ref using only
top-3 most relevant facts. We also demonstrated
that visual information is beneficial for fact search.
Finally, we show that commonsense knowledge
improves conventional REC tasks across three dif-
ferent datasets.

7 Limitations

The computational requirements of our model are
affected by the number of facts. Specifically, we
train our CK-Transformer for 10000 steps with a
batch size of 64 on one Titan RTX GPU, which
takes 2.5, 3, 3.5, 7 days with the number of facts:
3, 5, 10, 20 respectively. The CK-Transformer
processes 3.8, 2.8, 2.1, 0.7 samples on average
per second at training time and 8.3, 7.3, 6.6, 1.1
samples per second at test time, with these amounts
of facts. The computational requirements of our
models are thus substantial, and future work should
consider improving computational efficiency and
thus reducing environmental impact.
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A Referring expression comprehension

Early approaches to REC use joint embedding of
image and language by combination of Convo-
lutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), and predict the target ob-
ject that has the maximum probability given an in-
put expression and an image (Mao et al., 2016; Hu
et al., 2016; Zhang et al., 2018). In order to model
different types of information encoded in input ex-
pression (subject appearance, location, and rela-
tionship to other objects), subsequent work used
modular (attention) networks, to “match” the input
to corresponding regions in the image, predicting
as the target the region with the highest matched
score (Hu et al., 2017; Yu et al., 2018).

B UNITER

UNITER is trained using four pre-training tasks,
Masked Language Modeling (MLM), Masked Re-
gion Modeling (MRM), Image–Text Matching
(ITM), and Word–Region Alignment (WRA), on
four large-scale image–text datasets, COCO (Lin
et al., 2014), Visual Genome (Krishna et al., 2016),
Conceptual Captions (Sharma et al., 2018), and
SBU Captions (Ordonez et al., 2011). This en-
ables UNITER to capture fine-grained alignments
between images and language. The architecture of
UNITER is similar to BERT (Devlin et al., 2018)
apart from the input and the output. Specifically,
the input consists of an image (a set of visual region
candidates), a sentence and [CLS] token, and they
respectively lead to different outputs, i.e. vision
output, language output and cross-modality output
on the top of UNITER.

C Input embedding

Same with UNITER, we extract the input embed-
dings EInp consisting of an image and a text em-
bedding corresponding to the object candidate I
and text (an expression e or a fact fi) respectively.

Image embedding The image embedding EI is
computed by summing three types of embeddings:
visual feature embedding, visual geometry embed-
ding and modality segment embedding. We first
extract the visual features V = {v1, v2, ..., vn}
for all candidates using Faster R-CNN (pooled
RoI features), and build a geometry feature G =
{g1, g2, ..., gn} for all candidates, where gi is a
7-dimensional vector consisting of the geometry
information of the bounding box corresponding to

candidate ci, namely normalized top, left, bottom,
right coordinates, width, height, and area, denoted
by gi = [x1, y1, x2, y2, w, h, w ∗ h]. Visual fea-
ture embeddings and visual geometry embeddings
are generated by mapping the visual features and
the geometry features into the same vector space
through a fully connection layer fc:

EI = LN(fc(V) + fc(G) + MI) (1)

where LN is the layer normalization layer and MI

is the modality segment embedding for the image
input (like segment embedding for two sentence in
BERT model).

Text embedding Similarly, the text embedding
ET is computed based on three different types of
embeddings: token embedding, position embed-
ding and modality embedding (Normally there is
a fourth embedding, sentence segment embedding
similarly to BERT, but, in our task, both expres-
sions and facts consist of one sentence only and
so only the first sentence segment embedding is
used). Similar to BERT (Devlin et al., 2018), the
text W = {w1, w2, ..., wu} is first tokenized by
WordPieces (Wu et al., 2016), which are then built
into token embeddings T = {t1, t2, ..., tv} and po-
sition embeddings P = {p1, p2, ..., pv} according
to their position in the text sequence.

ET = LN(T + P + MT ) (2)

where MT is the modality segment embedding for
the text input.

Input embedding The final input embedding
EInp is computed by concatenating image embed-
ding EI and text embedding ET :

EInp = [EI ,ET ] (3)

D Datasets

We use the KB-Ref dataset (Wang et al., 2020)
aiming at evaluating the task of referring expression
comprehension based on commonsense knowledge.
KB-Ref consists of 43,284 expressions for 1,805
object categories on 16,917 images, as well as a
knowledge base of key–value (category–fact) pairs
collected from three common knowledge resources:
Wikipedia, ConceptNet (Speer et al., 2017) and
WebChild (Tandon et al., 2017)). KB-Ref is split
into a training set (31,284 expressions with 9,925
images), a validation set (4,000 expressions with
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Figure 3: Accuracy across a varying number of facts
(top-K).

2,290 images) and a test set (8,000 expressions
with 4,702 images).

We furthermore introduce commonsense knowl-
edge into traditional tasks/datasets of referring ex-
pression comprehension, namely RefCOCO, Re-
fCOCOg and RefCOCO+ 7. The datasets are de-
vised from the MSCOCO image dataset (Lin et al.,
2014) but differ in the types of expressions and
object candidate settings. Specifically, RefCOCO+
does not allow the use of absolute location words in
the expressions, and most expressions focus on the
appearance of the objects. The expressions in Re-
fCOCOg are longer and contain more descriptive
words. RefCOCO and RefCOCO+ contain more
objects of the same category within an image.

E Experimental settings

We extract image region features using Faster R-
CNN with ResNet-101 (Ren et al., 2015) which
was pre-trained on Visual Genome (Krishna et al.,
2016) using object and attribute annotations (An-
derson et al., 2018). For bounding box detection,
we keep the bounding boxes with at least 0.2 confi-
dence score indicating the extent of detection. In
the CK-T, the hidden layer dimension is 768 and
the number of multi-head attention heads is 12. The
models are trained using Adamw (Loshchilov and
Hutter, 2017) with a learning rate of 6e−5 and a
batch size of 64 on Titan RTX GPUs. Our CK-
Transformer has 120M parameters in total where
fact-aware classifier has 34M and bi-modal encoder
has 86M. As for UNITER model, we use same set-
ting with UNITER-base, except for using Nvidia

7following Apache License 2.0

Figure 4: Accuracy across a varying number of fact-
aware classifier block (M).

Apex8 for speeding up training. The efficiency
of our model is effected by the number of facts.
Specifically, we train our CK-Transformer 10000
steps and a batch per step, which takes 2.5, 3, 3.5, 7
days with the number of facts: 3, 5, 10, 20 respec-
tively. The CK-Transformer trains 3.8, 2.8, 2.1, 0.7
sample in average per second and tests 8.3, 7.3, 6.6,
1.1 sample per second.

F Impact of CK-T structure

We explore the impact in performance on KB-Ref
as we vary the number of top-K facts (K) and fact-
aware classifier block (M) on the development set.
We first keep the number of the fact-aware classifier
block constant and set it to 1 to experiment with
different values for K from 1 to 20. As shown
in Figure 3, as K increases, performance starts to
improves with a peak at K=5 before starting to
gradually decrease performance.

In the second experiment, we keep K constant
and set it to 3 and explore the effect of varying
values for M. We observe that the highest accuracy
is achieved with with top-3 facts and 2 integrator
layers as shown in Figure 4.

G Introducing facts in traditional REC
tasks based on detection

The results of introducing facts in traditional REC
tasks based on detected bbxes and categories are
shown in Table 4. Compared to result based on
ground-truth bbxes and categories (Table 3), the
improvement on models based on detection is less
or even worse than the models without facts.

8https://github.com/NVIDIA/apex
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Task Accuracy (%)
UREC Intro Facts

Ref-
COCO

Vald 81.15 81.06
Test Ad 86.85 86.87
Test Bd 74.48 73.97

Ref-
COCO+

Vald 74.74 74.68
Test Ad 81.05 80.70
Test Bd 65.88 66.07

Ref-
COCOg

Vald 74.49 74.69
Testd 75.24 74.86

Table 4: Introducing facts into RefCOCO, RefCOCO+
and RefCOCOg based on detection (d).

Task McNemar Test
(p-value)

RefCOCO
Test A 0.049
Test B 0.905

RefCOCO+
Test A 0.297
Test B 0.966

RefCOCOg Test 1.19e−08

Table 5: The McNemar Test between models before and
after introducing facts on the tasks of RefCOCOs.

H McNemar Test

We also report the statistical significance for accu-
racy (shown in Table 3) on the tasks of RefCOCOs.
Specifically, we conduct the McNemar Test be-
tween models before and after introducing facts,
on the test set of RefCOCO, RefCOCO+ and Ref-
COCOg, respectively. As shown in Table 5, as for
Test set on RefCOCOg and Test A on RefCOCO p-
value = 1.19e−08 and p-value = 0.049 (< 0.05)re-
spectively, which means the proportion of errors is
statistically significantly different after introducing
facts as compared to before. However, the change
in the proportion of errors after introducing facts on
other tasks (Test B on RefCOCO, Test A and Test
B on RefCOCO+) is not statistically significant.
This is reasonable, as the error from detection will
affect the fact search (we first retrieve facts using
the category) and thus more error information is
introduced into CK-Transformer, which make the
performance worse.

I Example searched fact using different
methods

As shown in Figure 5, there are several facts which
are selected from three different fact search meth-
ods: CK-Transformer, CK-T-Uw/oImage and CK-

T-Word2Vec. As we can see in the Table, normally
the facts of CK-Transformer model (green) is the
best relevant with the referring expression (blue)
and the facts in CK-T-Word2Vec model is the worst
relevant with the expression.
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Figure 5: Example fact search process (using the top-1 fact) for different search methods: CK-T (green), CK-T-
Uw/oImage (orange) and CK-T-Word2Vec (yellow).
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