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Abstract

We explore zero-shot adaptation, where a
general-domain model has access to customer
or domain specific parallel data at inference
time, but not during training. We build on
the idea of Retrieval Augmented Translation
(RAT) where top-k in-domain fuzzy matches
are found for the source sentence, and target-
language translations of those fuzzy-matched
sentences are provided to the translation model
at inference time. We propose a novel archi-
tecture to control interactions between a source
sentence and the top-k fuzzy target-language
matches, and compare it to architectures from
prior work. We conduct experiments in two
language pairs (En-De and En-Fr) by training
models on WMT data and testing them with
five and seven multi-domain datasets, respec-
tively. Our approach consistently outperforms
the alternative architectures, improving BLEU
across language pair, domain, and number k
of fuzzy matches with almost no trade-off on
inference latency.

1 Introduction

Domain adaptation techniques such as fine-tuning
(Freitag and Al-Onaizan, 2016; Luong and Man-
ning, 2015) are highly effective at increasing in-
domain performance of neural machine translation
(NMT) systems, but are impractical in many re-
alistic settings. For example, consider a single
machine serving translations to thousands of cus-
tomers, each with a private Translation Memory
(TM). In this case, adapting, storing and loading
large adapted models for each customer is compu-
tationally infeasible. In this paper we thus consider
zero-shot adaptation instead, with a single general-
domain model trained from heterogeneous sources
that has access to the customer or domain specific
TM only at inference time.

∗Work done while the authors were at AWS AI Labs.

Our work builds on Retrieval Augmented Trans-
lation (RAT) (Li et al., 2022; Bulte and Tezcan,
2019; Xu et al., 2020; He et al., 2021; Cai et al.,
2021), a paradigm which combines a translation
model (Vaswani et al., 2017) with an external re-
triever module that retrieves the top-k most similar
source sentences from a TM (i.e. "fuzzy matches")
(Farajian et al., 2017; Gu et al., 2017; Bulte and
Tezcan, 2019). The encoder encodes the input sen-
tence along with the translations of the top-k fuzzy-
matches and passes the resulting encodings to the
decoder.

Prior RAT methods for NMT have fallen into
two camps: Early work (Bulte and Tezcan, 2019;
Zhang et al., 2018) concatenated the source sen-
tence and the top-k fuzzy matches before encoding,
relying on the encoder’s self-attention to compare
the source sentence to each target sentences and
determine which target phrases are relevant for the
translation. More recent work (He et al., 2021; Cai
et al., 2021) has opted to encode the source sen-
tences and the top-k fuzzy matches independently,
effectively shifting the entire burden of determin-
ing which target phrases are relevant to the decoder.
We hypothesize that neither approach is ideal: In
the first, the encoder has access to the information
that we expect to be important (namely, the source
and the fuzzy matches), but the self-attention also
has potentially confusing/spurious connections. In
the second, the encoder lacks the self-attention con-
nections between the source and the fuzzy matches.

To address these issues, we propose a novel ar-
chitecture which has self-attention connections be-
tween the source sentence and each fuzzy-match,
but not between fuzzy-matches. We denote this
method RAT with Selective Interactions (RAT-
SI). Our method is illustrated in Figure 1, along
with two previously discussed approaches.

Experiments in five English-German (En-De)
domain-specific test sets (Aharoni and Goldberg,
2020) and seven English-French (En-Fr) domain
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Figure 1: Architectures for retrieval augmented NMT. Left: Plain transformer ingesting source and retrieved fuzzy
matches concatenated with a separator symbol (Bulte and Tezcan, 2019), denoted herein as RAT-CAT. Center:
Transformer with dual encoder, one for encoding the source and one for encoding each retrieved fuzzy-matches,
inspired by He et al. (2021), denoted herein as RAT-SEP. Right: Transformer separately encoding the source and
each source + fuzzy-match pair (this work), denoted herein as RAT-SI.

specific test sets (Pham et al., 2021), for k =
{3, 4, 5}, demonstrate that our proposed method
outperforms both prior approaches in 32 out of
36 cases considered. The proposed method out-
performs the closest competitor by +0.82 to +1.75
BLEU for En-De and +1.57 to +1.93 for En-Fr.

2 Method

To isolate the effects of the underlying modeling
strategy from the various tricks and implementation
details employed in prior papers, we build baseline
models which distill the two primary modeling
strategies used in prior works:

The first concatenates a source sentence with
target-language fuzzy matches and then encodes
the entire sequence, as in Bulte and Tezcan (2019)
and Xu et al. (2020). In this approach, the cross-
attention of the encoder must learn to find the rel-
evant parts of target-language fuzzy-matches by
comparing each fuzzy-match to the source sen-
tence, while ignoring potential spurious fuzzy-
match to fuzzy-match interactions (see the left di-
agram in Figure 1). We denote this method RAT-
CAT.

The second encodes the source and each target-
language fuzzy-match separately (with two distinct
encoders), and instead concatenates the encoded
representations, inspired by He et al. (2021) and
Cai et al. (2021). In this approach, the spurious
connections between the target-language fuzzy-
matches are eliminated, but the connections be-
tween the source and each fuzzy-match are also
eliminated, forcing the attention in the decoder to

find the relevant portions in the fuzzy-match that
are relevant to the source (see the center diagram
in Figure 1). We denote this method RAT-SEP.

Finally, we propose a third method which at-
tempts to build on the strengths of each of the prior
methods. As in RAT-SEP, our method separately
encodes (with the same encoder) the source and
each target-language fuzzy-match; however, each
fuzzy-match is jointly encoded with a copy of the
source, as in RAT-CAT, allowing the encoder to
find portions of the fuzzy-match which are relevant
to the input. Finally, all the encoded inputs are
concatenated and exposed to the decoder; How-
ever, the encoding of the source is only provided
to the encoder once, to avoid potentially spurious
interactions between copies of the input (see the
right diagram in Figure 1). We denote our proposed
method RAT-SI.

3 Experimental Setup

Our experiments are in two language directions:
English-German (En-De) and English-French (En-
Fr). We train models using the public WMT
2014 (Bojar et al., 2014) data set, with 4.5M En-
De sentences and 36M En-Fr sentences.

During training, the model sees target-language
fuzzy-match sentences from the same dataset it is
being trained on (i.e. WMT14), but at inference,
models must perform zero-shot adaptation to five
En-De domain-specialized TMs1 and seven En-Fr
domain-specialized TMs.2 En-De data is taken

1Medical, Law, IT, Religion and Subtitles.
2News, Medical, Bank, Law, IT, TED and Religion.
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from Aharoni and Goldberg (2020), which is a
re-split version of the multi-domain data set from
Koehn and Knowles (2017) while En-Fr data set is
taken from the multi-domain data set of Pham et al.
(2021).

To find target-language fuzzy matches for our
model from domain specific TMs, we use Okapi
BM25 (Robertson and Zaragoza, 2009), a classical
retrieval algorithm that performs search by comput-
ing lexical matches of the query with all sentences
in the evidence, to obtain top-ranked sentences for
each input. To enable fast retrieval, we leverage the
implementation provided by the ElasticSearch li-
brary.3 Specifically, we built an index using source
sentences of each TM, and for every input source
sentence, we collect top-k similar source side sen-
tences and then use their corresponding target side
sentences as inputs to the model.

To explore how each method performs (and how
robust they are) under different conditions, we run
a full set of experiments for k = {3, 4, 5}. We train
separate models for each language pair and k value,
and then apply that model to each of the 5 (En-De)
or 7 (En-Fr) domains.

We report translation quality with BLEU scores
computed via Sacrebleu (Post, 2018).4 We use
compare-mt (Neubig et al., 2019) to perform pair-
wise significance testing with bootstrap = 1000
and prob_thresh = 0.05 for all pairs.

All models employed transformers (Vaswani
et al., 2017) with 6 encoder and 6 decoder lay-
ers. Hidden size was set to 1024 and maximum
input length truncated to 1024 tokens. All models
employed a joint source-target language subword
vocabulary of size 32K using Sentencepiece algo-
rithm (Kudo and Richardson, 2018).

We use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9;
and (ii) increase the learning rate linearly for the
first 4K training steps and decrease it thereafter;
(iii) use batch size of 32K source tokens and 32K
target tokens. Checkpoints are saved after every
10K iterations during training. We train models
with maximum of 300K iterations. We use dropout
of 0.1 and label-smoothing of 0.1.

3https://github.com/elastic/elasticsearch-py
4SacreBleu signature: nrefs:1|case:mixed|eff:no|

tok:13a|smooth:exp|version:2.0.0.

4 Results

Results for En-De are shown in Table 1 and results
for En-Fr are shown in Table 2.

We observe several trends in the results. First,
our proposed RAT-SI method outperforms both the
RAT-CAT and RAT-SEP methods across both lan-
guage pairs, having the best performance in 32/36
cases considered. In En-De, the proposed RAT-SI
method has an average improvement of 1.43 BLEU
over RAT-CAT and 2.35 BLEU over RAT-SEP,
while in En-Fr we observe an average improve-
ment of 1.73 BLEU over RAT-CAT and 2.98 over
RAT-SEP. These results support our hypothesis that
attention connections between the source sentences
and each fuzzy match are critical to translation qual-
ity and the connections between the fuzzy matches
are actually harmful.

Second, on average, k = 5 produces the best
results for the RAT-SI method, but only by a small
amount. However, considering individual language
pair / domain combinations, there are many cases
where k = 5 does not produce the best results,
sometimes by several BLEU points. We hypothe-
size that this is due to the different domains con-
taining, on average, different amounts of relevant
data. This observation underscores the importance
of tuning k, as well as testing new RAT methods
under a variety of conditions, including different k
values.

Finally, consistent with prior work, we see large
improvements for all online domain-adapted meth-
ods (RAT-CAT, RAT-SEP, and RAT-SI) over the
non-domain-adapted baseline, with improvements
of up to +13.85 BLEU. This is not surprising, since
the baseline model does not take advantage of any
domain-specific data.

4.1 Latency

While not the focus of this work, we did a pre-
liminary study of latency, comparing a baseline
transformer to RAT-CAT and RAT-SI models dur-
ing inference. We follow Domhan et al. (2020) and
measure latency values as the 90th percentile of
inference time when translating each sentence indi-
vidually (no batching). We run experiments on an
EC2 p3.2xlarge instance with a Tesla V100 GPU
and report encoding latency results in Table 3. We
use a batch size of 1 and k=3 for all experiments.

We observe a small increase of encoding latency
by using RAT-SI (i.e. 17.48 ms) compared to of
RAT-CAT. We provide a breakdown of the total
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Model k IT LAW REL MED SUBT Average
Baseline n/a 27.92 35.59 11.26 30.74 19.46 24.99
RAT-CAT

k=3
33.97 50.34 25.14 45.05 19.89 34.88

RAT-SEP 32.78 49.04 22.92 44.28 20.48 33.90
RAT-SI (this work) 33.08 52.02* 26.40* 46.16 20.83* 35.70
RAT-CAT

k=4
33.67 49.59 23.40 44.87 20.27 34.36

RAT-SEP 31.84 48.38 24.37 43.55 19.99 33.63
RAT-SI (this work) 33.68 52.00* 28.42* 46.13 20.23 36.09
RAT-CAT

k=5
33.44 49.67 24.95 44.16 20.01 34.45

RAT-SEP 30.84 47.92 23.91 44.10 20.27 33.41
RAT-SI (this work) 33.84 52.17* 27.53* 46.95* 20.49 36.20

Table 1: BLEU scores for En-De experiments. The best BLEU for RAT models with a specific top-k value is bolded,
and "*" indicates the best result is statistically significant compared to both the other methods. The proposed method
(RAT-SI) produces the best results in 13/15 cases considered, with an average improvement of 1.43 BLEU over
RAT-CAT and 2.35 BLEU over RAT-SEP.

Model k LAW MED IT NEWS BANK REL TED Average
Baseline n/a 52.68 31.12 32.22 35.09 41.04 14.51 35.55 34.60
RAT-CAT

k=3
66.32 37.09 39.91 35.09 49.01 61.83 36.39 46.52

RAT-SEP 64.93 37.06 38.02 35.57 49.14 53.34 37.29 45.05
RAT-SI (this work) 66.56 41.30* 40.61 35.53 50.19* 67.55* 37.42 48.45
RAT-CAT

k=4
65.71 37.31 38.71 34.60 49.43 63.55 36.10 46.49

RAT-SEP 64.35 37.89 38.89 35.45 49.28 53.41 37.13 45.20
RAT-SI (this work) 66.63* 39.50* 41.90* 35.71 50.04 65.20* 37.47 48.06
RAT-CAT

k=5
65.60 37.35 38.74 34.46 49.33 63.21 36.08 46.40

RAT-SEP 64.62 38.50 39.53 35.59 49.97 52.56 37.09 45.41
RAT-SI (this work) 67.03* 39.05 41.33* 35.93* 49.82 65.49* 37.90* 48.08

Table 2: BLEU scores for En-Fr experiments. The best BLEU for RAT models with a specific top-k value is bolded,
and "*" indicates the best result is statistically significant compared to both the other methods. The proposed
method (RAT-SI) produces the best results in 19/21 cases considered, with average improvements of 1.73 BLEU
over RAT-CAT and 2.98 over RAT-SEP.

Model Encoding Latency
Transformer 14.80 ms
RAT-CAT 15.23 ms
RAT-SI 17.48 ms

Table 3: Encoding latency in milliseconds of models
(lower is better).

encoding latency in Table 4 which shows encoding
the inputs in RAT-SI is faster than RAT-CAT but
it requires an extra overhead for extracting the en-
coding of fuzzy matches from the joint encoding
of source with fuzzy match. However, the encod-
ing time is a very small fraction of overall latency
(see Table 5) and thus this difference appears to be
negligible.

We find that RAT-CAT and RAT-SI have nearly
identical latencies, and each is only slightly slower
than the baseline transformer (see Table 5). This
is somewhat surprising since both methods make
the input to the decoder significantly longer. We
hypothesize that we are under-utilizing the GPU in
all cases, and thus the increased computations does
not increase latency. Further investigation of this is

RAT-SI Model
Encoding

Latency
Encoding input 14.91 ms
Extra overheads 2.57 ms
Total time 17.48 ms

Table 4: Encoding latency of RAT-SI in milliseconds
(lower is better). Extra overheads include (1): Concate-
nate input and k = 3 input-suggestion pairs (2): Extract
k = 3 suggestion encodings and append them to the
input encoding.

left for future work.

5 Related Work

Bulte and Tezcan (2019) proposed augmenting the
input to NMT with target-language fuzzy-match
sentences from a TM, concatenating the input and
fuzzy-matches together. Their method was sim-
pler than prior works such as (Zhang et al., 2018),
which manipulated n-gram probabilities based on
their occurrence in the fuzzy-matches. Xu et al.
(2020) proposed several enhancements using the
same architecture, including fine-tuning models
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Model Translation Latency
Transformer 574.02 ms
RAT-CAT 597.28 ms
RAT-SI 597.41 ms

Table 5: Translation latency in milliseconds of RAT-
CAT and our model RAT-SI (lower is better). Batch size
was set to one to simulate an on-demand system.

and masking out or marking words not related to
the input sentence, and matching arbitrarily large
n-grams instead of sentences.

More recent work has explored using separate
encoders for input and fuzzy-match (He et al., 2021;
Cai et al., 2021). He et al. (2021) also considers the
realistic scenario where a TM may include noise,
while Cai et al. (2021) explores finding target sen-
tences in monolingual data instead of relying on a
TM at inference time.

Xia et al. (2019) and Xu et al. (2020) explore
aspects of filtering fuzzy-matches by applying sim-
ilarity thresholds, leveraging word alignment in-
formation (Zhang et al., 2018; Xu et al., 2020; He
et al., 2021) or re-ranking with additional score
(e.g. word overlapping) (Gu et al., 2018; Zhang
et al., 2018).

Our work is related to the use of k-nearest-
neighbor for NMT (Khandelwal et al., 2021; Zheng
et al., 2021) but it is less expensive and does not
require storage and search over a large data store
of context representations and corresponding target
tokens (Meng et al., 2021).

Other works have considered online adaptation
outside the context of RAT, including Vilar (2018),
who proposes Learning Hidden Unit Contributions
(Swietojanski et al., 2016) as a compact way to
store many adaptations of the same general-domain
model. For an overview of fuzzy-match augmenta-
tion outside of NMT, see Li et al. (2022).

Domain adaptation can also be performed off-
line, typically via fine tuning (Luong and Manning,
2015). Regularization is often applied during fine
tuning to avoid catastrophic forgetting (Khayrallah
et al., 2018; Thompson et al., 2019a,b).

TMs are commonly used in the localization in-
dustry to provide suggestions to translators in order
to boost their productivity (Federico et al., 2012).
Enhancing translation quality of MT system by
leveraging fuzzy-matches extracted from TMs has
been explored widely for statistical MT (Koehn and
Senellart, 2010; Mathur et al., 2013) and neural MT

systems (Farajian et al., 2017; Gu et al., 2017; Cao
and Xiong, 2018; Bulte and Tezcan, 2019).

6 Conclusion

Previous work in retrieval augmented translation
has used architectures which either have full con-
nections between source and all fuzzy matches, or
independently encode the source and each fuzzy
match. Based on our hypothesize that the attention
connections between source and each fuzzy match
are helpful, but that the the connections between
different fuzzy matches are harmful, we propose
a new architecture (RAT-SI) with the former con-
nections but not the latter. Experiments on several
language pairs, domains, and different numbers of
fuzzy matches (k) demonstrate that RAT-SI sub-
stantially outperforms the prior architectures.

7 Limitations

Due to the availability of domain specific datasets,
we perform experiments on two high-resource lan-
guages, both out of English. It is unclear if our
conclusions would hold on low-resource language
pairs. Furthermore, our domains may or may not
match real world use cases where an MT customer
has their own TM. Real TMs may be significantly
larger/smaller, contain multiple domains, etc.
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