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Abstract

The recent increase in the volume of online
meetings necessitates automated tools for orga-
nizing the material, especially when an attendee
has missed the discussion and needs assistance
in quickly exploring it. In this work, we pro-
pose a novel end-to-end framework for gener-
ating interactive questionnaires for preference-
based meeting exploration. As a result, users
are supplied with a list of suggested questions
reflecting their preferences. Since the task is
new, we introduce an automatic evaluation strat-
egy by measuring how much the generated
questions via questionnaire are answerable to
ensure factual correctness and covers the source
meeting for the depth of possible exploration.

1 Introduction

In recent years, video conferencing technology has
gained substantial improvements, and thus, online
meetings have become easily accessible and more
prominent. Primarily due to the pandemic and
working from home, the need for video calling has
grown significantly. Therefore, the high volume
of online meetings necessitates automated tools
for managing and organizing essential information
for attendees. Especially when an attendee has
missed an online meeting, it is critical to access the
required information since quickly reading through
the transcript is quite time-consuming.

Providing meeting summaries is a promising di-
rection (Wang and Cardie, 2013; Jacquenet et al.,
2019; Zhao et al., 2019; Singhal et al., 2020). How-
ever, recent studies show that 1) users’ needs do
not fully align with current approaches to auto-
matic text summarization (ter Hoeve et al., 2020,
2022) and 2) approaches designed for document
summarization could not effectively apply to meet-
ings transcripts (Murray et al., 2010; Mehdad et al.,
2013; Li et al., 2019) due to the following potential
reasons: (R1) Structure: standard documents are
well structured compared to meeting transcripts;

Figure 1: An example of exploring one of the meetings
from the collection (Carletta et al., 2005) based on user
preferences through an interactive questionnaire.

(R2) Language: spoken language used in meetings
is less regular than documents; and (R3) Multiple
speakers: the speaker role is essential. Moreover,
there is little meeting data publicly available that
can be used for experimentation compared to regu-
lar documents such as news or articles. In contrast
with document summarization, when summarizing
a meeting, different users tend different preferences
on what content should be included in the summary.
Therefore, there is an increasing calling for alterna-
tive ways of summarizing, especially for meetings
transcripts. Recently, Zhong et al. (2021) attempted
to tackle this problem by proposing a query-based
multi-domain meeting summary, where a user pro-
vides a query in question form, e.g., ‘What was the
discussion about the jog dial’s function when talk-
ing about changes in the current design?’ to locate
the part of the transcript that related to the query
and then summarize. However, when attendees
have missed the meeting, they cannot formulate
such questions due to no prior knowledge about
the meeting. To overcome this, we aim to address
the following research challenge: How can atten-
dees effectively explore a meeting content without
having prior knowledge about it?

This work is motivated by the fact that asking
questions is a more efficient way for humans to ac-
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Figure 2: Overview of our framework, Preference-based Meeting Exploration through an Interactive Questionnaire
(PREME), where Q is a comprehensive set of questions, and Si and Aj are extracted pairs of subjects and aspects.

quire information than notes in plain text (Lawson
et al., 2007, 2006; Aliannejadi et al., 2021). Thus,
we address preference-based meeting exploration
by automatically generating a structured interactive
questionnaire for a transcript that covers most of the
discussed topics and quickly walks users through
the discussed content. An example of the desired
questionnaire is shown in Fig. 1. First, the user has
the ability to express their preferences regarding
subjects that have been discussed (Solbiati et al.,
2021; Huang et al., 2018; Zhang and Zhou, 2019;
Sehikh et al., 2017). Next, the questionnaire inter-
actively suggests narrowing down their exploration
if possible by displaying a list of possible related as-
pects. As a result, a ranked list of questions reflect-
ing user preferences is generated. Next, the user
can pick a question that demonstrates their seeking
needs the most and is redirected to the meeting part
containing an answer. Interactively asking for pref-
erences in the questionnaire is beneficial because
the user oversees what has been covered during the
meeting they have missed. In section 4.2 we elabo-
rate on a user study on a number of professionals
who find such application useful for their daily job.
Hence, the goal of proposed questionnaires is two-
fold: (G1) to compactly represent the discussed
content; (G2) to guide users to form questions that
express their preference regarding the transcript.
We require the generated questionnaire to satisfy
the following properties:

P1 Coverage: coverage is the amount of the in-
formation from the source text that a question-
naire points to. The generated questionnaire
must cover the meeting as much as possible;

P2 Answerable: a given meeting transcript should
contain the answers to the questions generated
as a result of the questionnaire.

To address the defined challenge, we propose

a framework, PREME, which consists of several
concrete sequential steps highlighted in Fig. 2. We
start by enchaining the method to extract meet-
ing segments (Solbiati et al., 2021). Due to the
conversational nature of the meeting, topic de-
tection from the segments is challenging (Huang
et al., 2018; Zhang and Zhou, 2019; Sehikh et al.,
2017). Thus, we indirectly extract the topics as
follows. First, we generate questions from each
segments (Brown et al., 2020) since extracting top-
ics from the questions is much more well stud-
ied. Further, we employ a trained Conditional Ran-
dom Field (CRF) model to tag subjects and aspects
(Fig. 1) from generated questions originated from
each segments (Wallach, 2004). Once we got each
segment’s topic list, we proposed a strategy to nor-
malize them to reduce the number of options in
the questionnaire. Recently, Deutsch et al. (2020)
demonstrated that QA-Based evaluation is strongly
correlated with human opinion. Thus, to evaluate
PREME, we employ a similar QA-based strategy.

To summarize, the main contributions are:

C1 We propose PREME, a novel framework to en-
able meetings exploration based on user’s pref-
erences through an interactive questionnaire;

C2 We propose a new method for subject normal-
ization which returns the most informative sub-
ject from a set of phrases and keywords;

C3 We introduce a new automatic evaluation strat-
egy for measuring the effectiveness of the pro-
posed questionnaire to assess the required prop-
erties P1 and P2, which according to (Deutsch
et al., 2020) has a strong correlation with hu-
man judgments; and

C4 We open-source a dataset that includes 1000
questions comprehensively annotated with sub-
ject to their subjects and aspects at https:

//github.com/microsoft/preme
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2 Related Work
2.1 Automatic Textual Summarization

Automatic text summarization task has attracted
lots of attention across Natural Language Process-
ing (NLP) community recently. Many systems
are proposed to summarize documents in differ-
ent domains, including news (Rush et al., 2015;
Nallapati et al., 2017; See et al., 2017; Celikyilmaz
et al., 2018; Liu and Lapata, 2019; Zhang et al.,
2020), academic papers (Manakul and Gales, 2021;
Huang et al., 2021) and books (Kryściński et al.,
2021). Meeting summarization has also emerged
as a widespread need recently. Due to the unique
discourse structure of dialogues, conventional docu-
ment summarization systems are facing challenges
when summarizing meetings (Li et al., 2019; Zhu
et al., 2020). Thus, new models are proposed for
tackling this task. Wang and Cardie (2013) employ
decisions, and action items in dialogues to gener-
ate the summary progressively. Oya et al. (2014)
propose a template-based meeting summarization
system by learning the relationship between sum-
maries and their source meeting transcripts. Shang
et al. (2018) design an unsupervised meeting sum-
marization model with multi-sentence compression
techniques. Li et al. (2019) introduce multi-modal
information into meeting summarization with a hi-
erarchical attention mechanism. Zhu et al. (2020)
propose a hierarchical meeting summarizer that
can process both word-level and turn-level infor-
mation of dialogues. Furthermore, the community
noted that due to the lengthy content and distributed
information, a general summary of the meetings
does not necessarily satisfy what users seek. Thus,
Query-based summarization methods have become
more prevailing for generating concise and spe-
cific summaries. (Litvak and Vanetik, 2017; Nema
et al., 2017; Baumel et al., 2018; Ishigaki et al.,
2020; Kulkarni et al., 2020, 2021; Pasunuru et al.,
2021). Recently, Zhong et al. (2021) proposed
a new framework of query-based summarization
for meetings, in which they annotate QMSUM, a
query-based multi-domain meeting dataset. Each
QMSUM meetings come along with a set of queries
with different levels of abstractness, i.e., general
queries and specific queries. Human annotators
write these queries, and the summaries align with
these queries after reading the meeting transcripts.

While query-based summarization can be a
proper path to provide users with meeting infor-
mation at different specificity levels, we argue that

issuing such specific queries still requires a cer-
tain degree of background knowledge. In real-
life scenarios, users might not be equipped with
that knowledge and issue informative queries, espe-
cially when they did not attend the meeting. Hence,
they can not benefit from query-based summariza-
tion techniques to explore the meetings. We ad-
dress the drawbacks of query-based summarizers
by providing users with an interactive questionnaire
which provides them with potential queries and al-
lows them to explore the meetings more flexibly.

2.2 Evaluation of Summaries Factuality

The summaries often has called out for hallucina-
tion issues (Maynez et al., 2020). Thus, Wang et al.
(2020) propose a framework to evaluate factual
consistency of summaries with the source text Sim-
ilarly, Deutsch et al. (2020) propose a Question An-
swering (QA)-based evaluation approach on sum-
maries’ content quality. They measure how much
information is contained in a candidate summary
by calculating the proportion of questions it can an-
swer. These approaches inspired us for automated
end-to-end evaluations of the questionnaires.

2.3 Question Generation and Filtering

Initial works in Question Generation task leveraged
crowd-sourcing or rule-based methods to generate
pre-defined question templates (Mostow and Chen,
2009; Rus et al., 2010; Lindberg et al., 2013; Fab-
bri et al., 2020; Mazidi and Nielsen, 2014; Lab-
utov et al., 2015). Heilman and Smith (2010)
tackled this problem by over-generating candidate
questions and then using a learning to rank frame-
work to rank them to filter the low-quality ques-
tions.SQUASH (Krishna and Iyyer, 2019) is one
of the recent works in which authors used question
generation methods to convert a document into a
hierarchy of question-answer pairs with the focus
on questions’ granularity level. They employed
a neural encoder-decoder model trained on three
reading comprehension data sets, i.e., SQuAD (Ra-
jpurkar et al., 2016), QuAC (Choi et al., 2018), and
CoQ (Reddy et al., 2019) to generate the questions,
and further, they filtered out the unanswerable
questions using some heuristics and question an-
swering models. While question generation using
question answering data sets seems a general ap-
proach, this method does not work well on meeting-
related questions generated due to many reasons,
including: (1) Different structure of meetings com-
pared to documents; (2) There are not many ques-
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tion-answering datasets available from meetings;
(3) Sometimes, the answer to questions generated
from meetings could be very long, making it hard
to fit the context in neural models. In our work, we
introduce an automatic method that can generate
questions regarding the meeting to overcome the
high price of collecting with annotators.

2.4 Questionnaire Organization

Obtaining users preferences has always shown to
be a challenging task (Jiang et al., 2008; Rokach
and Kisilevich, 2012; Anava et al., 2015; Chris-
takopoulou et al., 2016; Sepliarskaia et al., 2018).
The task becomes more challenging when we aim
to minimize the number of interactions with users
to get to know their preferences. Sepliarskaia
et al. (2018) reformulate this task as an optimiza-
tion problem. They propose a static questionnaire
by choosing a minimal and diverse set of ques-
tions. Similarly, in Liu et al. (2019) proposed a dy-
namic questionnaire generation method for search
of clinical trials. Quiz-style question generation
has also been explored recently by Lelkes et al.
(2021). The authors have formulated the problem
as two sequence to sequence tasks, including the
question-answer generation step and incorrect an-
swer generation step. We argue that while the for-
mer step seems relevant to our work, it could not
be adapted to meeting transcripts since their pro-
posed dataset has been trained on factual question
answering data sets and cannot be used for meeting
purposes. All in all, we can conclude that creat-
ing questionnaires are still under exploration in
different domain. Hence, our effort in organizing
a questionnaire, especially for meetings, is timely
and useful for future research.

3 Proposed Framework: PREME

This section explains PREME, our proposed novel
methodology to explore meetings based on users’
preferences through an interactive questionnaire.
An overview of our methodology is shown in
Fig. 2 in which we first apply a topic segmenta-
tion method (Solbiati et al., 2021) on meeting
transcript to retrieve segments with different topics
(Section 3.1). Then, we generate a set of all pos-
sible questions from each segment (Section 3.2).
Further, we extract the most informative part of
the questions, i.e., the subject and aspect of each
question (Section 3.3). In the last step, we map
the normalized subjects and aspects with generated
questions and form the questionnaire (Section 3.4).

3.1 Meeting Segmentation

A meeting transcript can be extremely long and
contain discussions of various topics.Therefore, our
goal is to divide the meeting text into a sequence
of topically coherent chunks. Thus, we adopted an
unsupervised topic segmentation method based on
the contextualized presentation of meeting (Solbiati
et al., 2021). In this topic segmentation method,
the authors compute the BERT embeddings for ev-
ery utterance of the meeting transcript. Further,
they curated blocks of utterances and performed a
block-wise max-pooling operation to generate con-
textualized embedding for each block. Then, the
semantic similarity between two adjacent blocks is
captured, and a change in the topic is detected if
two adjacent blocks show similarity below a certain
threshold. This approach has several advantages,
including: (1) It is unsupervised; (2) Since we are
just converting the meeting into smaller pieces, and
we are not losing any part of the meeting.

3.2 Question Generation

For question generation from a segment, we lever-
aged the powerful GPT-3 model (Brown et al.,
2020).An impressive capability of the GPT-3 is
to generate very realistic results from few train-
ing samples or even no training sample (few-shot
and zero-shot learning). The variety of the gen-
erated content can be controlled using a tempera-
ture hyper-parameter. To expand the size of gener-
ated questions’ pool as much as possible, in each
segment, the API is called in a zero shot learning
model with different temperature values between
[0-1] with a 0.05 margin, where the value closer
to 1 means more diversified questions. We set the
maximum output length to 128 tokens and then we
repeat the process for 10 trials for each specific
temperature. Given that the maximum context win-
dow for the API was 2048 tokens, we truncate and
slide by half-a-window size of 2048 tokens when-
ever a segment includes more than 2048 tokens.
As a results, A list of questions is extracted based
on random initialization in each API call, meaning
different results are achieved even with the same
hyper-parameters. We extracted five questions on
average per segment in each call. Finally, a union
across all runs is used to form our question pool.

3.3 Subject and Aspect Extraction

Every of the generated questions has one or more
subject(s) that is defined as the principal matter
that attendees have discussed, i.e., the main con-
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Table 1: Examples of annotated questions with their
subjects and aspects . Subjects are highlighted in red

and Aspects are highlighted in green.
Q1 What is the arrow symbol on the remote control for?

Q2 What are the main frustrations people have with the

remote control ?

Q3 How will the logo and color scheme be incorporated

into the product ?

Q4 What are pros and cons of having a

remote with a large number of buttons ?

Q5 What is the most difficult part of the project

from the industrial engineer’s point of view ?

cern of the questions. Some questions might point
to a specific aspect(s) of the subject which is de-
fined as the mentioned details about a given subject.
We aim to extract the primary subjects from any
question and the detailed aspect if it is mentioned.
Table 1 shows examples of annotated subjects and
aspects for a few questions. For instance, in the
question “What is the arrow symbol on the remote
control for?", “remote control" is annotated as the
subject and the “arrow symbol" is the specific as-
pect of the subject. To extract the subjects and
aspects from the questions, we use CRF (Wallach,
2004). We examined SOTA keyword extraction
and contextualized neural embedding-based topic
extraction models; however, the CRF model which
uses word’s identity, suffix, shape and POS tags
as features, seems to work the best among them.
To train the CRF model, we were required to have
annotated questions with subjects and aspects la-
bels. We designed an annotation study using the
UHRS1 crowd-sourcing platform, where we care-
fully trained annotators with detailed instructions
to label randomly selected 1000 questions gener-
ated by GPT3 with their subject and aspects2. Each
question has been assigned to two annotators, and
we report the annotators’ agreement in Section 4.
Further, we employ the trained CRF model to ex-
tract subjects and aspects from the questions.

3.4 Questionnaire Generation

Given a meeting transcript, for each of its segment
T which was initially supposed to coherently point
out one subject, we generate QT , a set of gener-
ated questions from T . In other words, given an
ideal meeting segmentation method, each segment

1https://prod.uhrs.playmsn.com/uhrs/
2We invested in having a few well-trained annotators rather

than having a high number of annotators who have not been
trained well. Thus, annotators were paid hourly and by the
quality of their work and they had no intentions for cheating.

is supposed to be pointed to one subject. Thus,
we assume that each segment has only one valid
topic and as shown in Figure 2, each segment is
being represented with one Snorm. We create a set
SQT

by extracting the subjects from each question
in QT . Therefore, for the segment T , we have at
least |QT | number of subjects. Extracted subjects
from a question set with the same origin segment
must be normalized so that one comprehensive,
general, and informative subject presents a seg-
ment. The more the selected subject representative
covers other concepts in SQT

, the better normal-
ization we employed. This subject normalization
reduces the number of subjects shown to the user at
the first step of the questionnaire and will decrease
the user’s effort, causing figuring out users’ pref-
erences by asking them the minimum number of
questions. In other words, our goal is to select a
single subject Snorm from SQT

which represents
SQT

in the most informative way. To do so, we
define the notion of the subject network as follows.

Definition 3.1. Given a segment T , a set of
generated questions QT , and extracted subjects
SQT

, a subject-network for G(SQT
) is denoted

as G(SQT
) = (V,E,w). It is a weighted undi-

rected graph, where V = {si ∈ SQT
}, and

E = {esi , esj : ∀si, sj ∈ V}. The function
w : E → [0, 1] is the cosine similarity between
the semantic relatedness of the contextualized em-
bedding vectors of two incident subjects of an edge
esi,sj , i.e., vsi and vsj .

In Def. 3.1, we propose a subject-network where
subjects are connected, and edge weights repre-
sent the semantic similarity between the two sub-
jects.We hypothesize that the node with highest
similarity and connection to others is the most cen-
tral one. In other words, since it has great simi-
larity to other subjects, there is a high probability
that it points to a more generic concept and that
covers the other subjects. Hence, the node Snorm

should have high centrality attribute to represent the
main subject of segment S. We employed PageR-
ank (Haveliwala, 2003) value to find the most im-
portant and informative node in this network. Sim-
ilarly, PageRank has shown to have a high correla-
tion with the most important nodes and has been
used in tackling different tasks such as quantifying
term’s specificity or ranking problems in different
information retrieval tasks (Arabzadeh et al., 2020,
2019; Kurland and Lee, 2010). We measure the
PageRank score of each node and select the node
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Figure 3: An example of how extracted subjects and aspects from a given segment are normalized.

Figure 4: An example of subject-network built for one
extracted segments from (Janin et al., 2003). The edge
weights represent the semantic similarity between each
nodes. Higher weights are shown with higher width.

with the highest PageRank value as the representa-
tive subject Snorm of the subject set SQT

for seg-
ment T . In other words, we represent each segment
T by subject Snorm where PageRank(Snorm) >
PageRank (si) for every si ∈ V.

Fig. 4 displays a subject-network generated from
extracted subjects from one of the meetings’ seg-
ments in the QMSUM dataset. subjects such as
“Education", “Schools," “Young people who are
leaving school" are included in this subject set and
represented by nodes in this subject-network. Fur-
ther, we connect every pair of nodes in this graph,
and the edge weight is directly related to their se-
mantic similarity. As presented in Fig. 4, some
nodes have higher edge weights which their con-
nected lines are shown with greater width. We
measure page rank in this weighted network. Here
“Education" got the highest PageRank value in this
subject-network. Hence, we present these subjects
by one subject, i.e., “Education". “Education" can
be a promising representative for these subjects as
it covers more specific concepts such as “schools",
“statutory education," and “post 12 education."

Next, the extracted aspects from each question
set should be mapped to their representative subject.
We remove the redundant and repetitive aspects
and subjects by removing those who have highly
similar n-grams. Plus, There might be several sub-
jects existing in SQT

which all point out to Snorm,
and they might be semantically very similar. In
this step, we must be concerned not to lose any
aspect because of subject normalization. We aim to

Table 2: Annotators agreement on annotated questions
with respect to subjects and aspects using Kripendorff’s
score (Krippendorff, 2011)

Subject Aspect
Hard [Exact Match] 0.459 0.415
Soft [At least one term matched] 0.490 0.485

map every aspect from Snorm and every si in SQT

which is highly similar to Snorm to maximize the
potential of questions we might want to show at
the end of the questionnaire. For instance, in Fig 3
we display a few extracted subjects and aspects
from one segment. If we only consider “education"
and its related aspect, we will lose many aspects
that users might be interested in, and as a result,
the questionnaire coverage will drop. On the other
hand, if we merge the highly similar representative
subjects with, e.g., “school setting" and “Educa-
tion and Skills Committee," we will have a broader
host of questions to suggest to users. Therefore,
we will filter out dissimilar subjects from SQT

to
Snorm and map extracted aspects from filtered SQT

to Snorm as it is shown in Fig. 3. As a result, if
“education" is the subject of interest for a user, they
have the opportunity to select which aspects of edu-
cation they are more interested in, such as "Role" of
education or “challenges" of education. Finally, we
will show users the questions in which the selected
aspects and normalized subjects have appeared.

4 Evaluation Methodology

For experiments, we use the QMSUM
dataset (Zhong et al., 2021), which includes
232 product, academic, and committee meetings
(Janin et al., 2003; Carletta et al., 2005). Each
meeting comes with a set of general and specific
questions; the general ones are out of the scope of
this work since they refer to very broad concepts,
e.g., “summarize the whole meeting.". Further
evaluations are conducted on the QMSUM test set.

4.1 Evaluating Framework Components
The proposed framework consists of several steps
(Fig. 2). The used meeting segmentation (Solbiati
et al., 2021) method has shown to outperform base-
lines (Hearst, 1997; Beeferman et al., 1999; Bad-
jatiya et al., 2018). Hence, we refer to original
paper for evaluation results.
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Figure 5: Coverage of PREMEon QMSUM test set considering different similarity metrics and threshold

Table 3: CRF performance on extracting subjects and
aspects of questions using 10-fold cross validation

Precision Recall F1-Score
Subject 0.64 0.69 0.67
Aspect 0.89 0.80 0.84
N/A 0.63 0.73 0.68

Evaluating Question Generation: We evalu-
ate the quality of our generated questions by mea-
suring the fraction of generated questions by hu-
man annotators in QMSUM that we covered in
PREME. We assume the specific queries in the
QMSUM dataset enjoy relatively high quality be-
cause annotators issued them after comprehen-
sively reading the transcript (gold standard ques-
tions). Hence, Fig. 5 reports the similarity between
most similar questions generated by PREME and
the gold questions by three different similarity met-
rics i.e., Sentence-BERT similarity (Reimers and
Gurevych, 2019), Rouge F-1 score (Lin, 2004),
and BLEU-4 score (Papineni et al., 2002). We
assume a questions from QMSUM is covered if
there is at least a question generated by PREME
that has similarity is higher than a certain threshold
t ∈ [1, 0.9, ..., 0.1, 0]. We report the percentage
of ‘Covered/Not Covered’ questions based on dif-
ferent similarity matching thresholds. Based on
Fig. 5 we conclude while we cover a relatively fair
number of specific questions, there is still room
for improvement. However, we should note that
the questions in QMSUM are very limited, and ini-
tially, they were not supposed to cover all possible
questions that one could raise from the meeting.
Additionally, we observe that questions in QM-
SUM, which are issued by humans, include more
abstractive questions while our generated questions
inclined toward more factual ones.

Evaluating Subject and Aspect Extraction:
To assess the quality of the collected dataset, we
measure Krippendorff’s alpha agreement between
annotators (Krippendorff, 2011) for extracted sub-
ject and aspect of the 1000 questions generated
from the training set. Tab. 2 shows annotators have

agreement ∼ 0.4, which is interpreted as “Moder-
ate” agreement for such a challenging task. Since
different annotators might selected different section
of the text, Tab. 2 reports both hard and soft agree-
ments. we trained the CRF model using crfsuite
library and evaluated it by 10-fold cross-validation.
Given each term in the questions, the model pre-
dicts whether the term is considered the subject,
aspect, or not applicable for labeling (N/A). Tab. 3
shows the result of the CRF model evaluation in
terms of precision, recall, and F1 scores. We no-
tice that the model shows better performance on
detecting aspects compared to the subject.

4.2 Evaluating Questionnaires

To the best of our knowledge, we are first to pro-
pose a preference-based questionnaire as a way for
meeting exploration; thus, no particular gold stan-
dard benchmark or evaluation metrics. Since we
require users to express their preference, it makes
it challenging to simulate ‘enough imaginative con-
text’ among annotators. Thus, we conducted a user
study to highlight the usefulness of exploring meet-
ings through an interactive questionnaire. We pro-
vided 20 participants who were professional work-
ers and graduate students aged between 24-41 with
detailed explanations and examples of results gen-
erated by PREME such as in Figure 1. Participants
on average had over 5 hours of online meetings per
week. Among which, over 80% of them reported
that they need to explore the content of a past meet-
ing, at least a couple of times a week. Finally, over
80% of participants agreed on finding PREME use-
ful for meetings exploration. Also, we introduce
a new evaluation strategy that satisfies the desired
properties on coverage (P1) and the existence of
answers in the transcript (P2). The proposed au-
tomatic metrics capture if our framework is ready
to be tested through a more comprehensive user
study in the future, when we can run a pair-wise
preference-based comparison between PREME and
other meeting exploration methods.
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Table 4: Test set statistics and PREME Performance:
Average number of generated questions and Coverage.

#Meetings Average #
Turns

Average #
Questions Coverage (%)

Academic 9 893 1257 83.07%
Committee 6 214 1105 64.04%
Product 20 569 724 86.25%
All 35 591 927 81.62%

Automatic evaluation: We utilize the model
SOTA called Locator in (Zhong et al., 2021) in
which, given the query, it can extract the relevant
spans from the meeting. The Locator employs a
hierarchical ranking-based model structure based
on CNN (Kim, 2014) and Transformers (Vaswani
et al., 2017) architecture. The Locator embeds each
utterance of the meeting and feeds it to a CNN
network by capturing the local features, and utilize
Transformer layers to obtain contextualized turn-
level representations. In addition, the speaker’s
embedding is also concatenated to the features list.
Finally, the model uses MLP to score each turn,
and the turns with the highest scores are considered
the relevant spans for each question.

To measure the coverage (to satisfy P1), we
adopt the newly proposed QA-style of evalua-
tion (Deutsch et al., 2020; Wang et al., 2020) which
has shown to have substantial correlation with hu-
man judgments in terms of questions quality as-
sessments. Coverage is defined as the fraction of
a meeting that a questionnaire encompasses. To
measure the coverage, first, the relevant answer
spans for the existing questions in a questionnaire
are located. Further, the proportion of utterances
that were already located as relevance answer spans
w.r.t. the whole meeting transcripts, is measured as
the coverage. We believe that that is a promising
indicator of questionnaire informativeness. The
coverage is basically how much of the original
meeting was covered by the questionnaire. We
hypothesize that a good questionnaire should ide-
ally include questions from all parts of a meeting.
i.e., the questionnaire includes questions related
to every part of the meeting so that users are able
to explore their section of interest from the meet-
ing. Therefore, the more the questionnaire covers
the meeting, the better it is. To do so, we find
the answer spans to the generated question in each
questionnaire and we report the percentage of utter-
ances that the locator detected as the answer span
for all the questions in the questionnaire from the
whole meeting. We run our experiments on the
QMSUM test set. Tab. 4 shows the details of this
test set. We over generate the questions and after

Figure 6: Histogram of Confidence Scores of Question-
Answering model on generated questions from PREME.

removing the duplicates, on average, the question-
naire has 1257 unique questions from Academic
meetings, 1105 questions from Committee meet-
ings, and 724 questions from Product meetings.
Further, Tab. 4 reports the percentage of utterances
covered in each meeting. On average, our pro-
posed questionnaire can cover 81% of the meet-
ing. We also compared the coverage on different
types of meetings. While our generated question-
naire covered Committee meetings the least (64%),
the Product and Academic meetings show higher
coverage (over 80%). Further, we evaluate how
much the generated questions in PREME are an-
swerable (to satisfy P2). Inspired by (Krishna and
Iyyer, 2019), we run a pretrained QA model (Sanh
et al., 2019) over generated questions and report
the confidence score for each QA pair in Fig. 6. We
use DistilBERT fine-tuned on SQUAD (Rajpurkar
et al., 2016) dataset. We observe that more than
73% of generated questions from PREME on meet-
ings in test set of QMSUM shows confidence score
higher than 0.5 and more than 42% of questions
shows confidence score greater than 0.7. The re-
sults confirm that a promising portion of generated
questions are answerable.

5 Conclusions and Future Work
We proposed an end-to-end framework, called
PREME, that allows automatically building a ques-
tionnaire that will enable users to explore the most
of discussed subjects and their aspects if desired.
As a result, users are supplied with questions about
the meetings that express their information needs,
and answers can be found in the transcript. Since
simulating actual users’ preferences is challenging
and requires hired annotators, we have ran a small
user study as well running an automatic end-to-end
evaluation strategy to demonstrate the desired prop-
erties (P1 and P2) of the generated questionnaires.
We publicly release the collected dataset of anno-
tated questions concerning its subjects and aspects,
the code for questionnaires generation, and our
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evaluation procedure to carry forward the proposed
state-of-the-art for the newly formulated problem.
In future, and by proposing a new method for ques-
tionnaire generation will allow us to run a user
study for pair-wise comparison of the methods and
reveal the correlation between human and auto-
matic evaluation metrics for the suggested task.

6 Limitations

Generally, there is not much data available for meet-
ing exploration. Thus, all studies on this domain
are limited by small training and exploratory data.
Therefore, it would be beneficial for the commu-
nity to collect more labelled meeting data for meet-
ing exploration and organization purposes. Since
PREME is made of different SOTA components,
its performance is also limited by individual com-
ponents. In future, novel attempts can be made to
address this problem as an end-to-end framework.
In addition, the future works should include an ex-
tensive human evaluation that will reveal additional
requirements for the PREME to satisfy, which will
suggest additional evaluation metrics. Plus, since
this the first work on to tackle meeting exploration
via questionnaire, the preference-based evaluation
is not possible.
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