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Abstract

Commonsense generation aims to generate
a plausible sentence containing all given un-
ordered concept words. Previous methods fo-
cusing on this task usually directly concatenate
these words as the input of a pre-trained lan-
guage model (PLM). However, in PLMs’ pre-
training process, the inputs are often corrupted
sentences with correct word order. This input
distribution discrepancy between pre-training
and fine-tuning makes the model difficult to
fully utilize the knowledge of PLMs. In this pa-
per, we propose a two-stage framework to alle-
viate this issue. Firstly, in pre-training stage, we
design a new format of input to endow PLMs
the ability to deal with masked sentences with
incorrect word order. Secondly, during fine-
tuning, we insert the special token [MASK] be-
tween two consecutive concept words to make
the input distribution more similar to the in-
put distribution in pre-training. We conduct
extensive experiments and provide a thorough
analysis to demonstrate the effectiveness of our
proposed method. The code is available at
https://github.com/LHRYANG/CommonGen.

1 Introduction

To investigate machines’ ability of generating logi-
cal sentences, Lin et al. (2020) propose the Com-
monsense Generation task. Given a set of concept
words, this task is designed to generate a sentence
which not only contains the given concepts but
also can correctly describe the relations between
concepts. An example is shown in Table 1.

Existing methods employ the Pre-trained
Languege Models (PLMs) such as BART (Lewis
et al., 2020), GPT-2 (Radford et al., 2019) as the
backbone to solve this problem. They (Liu et al.,
2021; Fan et al., 2020; Wang et al., 2021; Li et al.,
2021) usually take the concatenated concepts words
as the inputs. However, such processing of inputs

∗This work was done during an internship at Tencent.

concept words {wear, player, field, jersey}

references The player will wear a jersey while on the field.
A soccer player wears a jersey on the field.
· · ·

output of our model football player wears a jersey on the field.

Table 1: An example of Commonsense Generation task

causes a huge gap between pre-training and fine-
tuning. Specifically, these concept words are un-
ordered which means the order of the input words is
inconsistent with the order of these words in the ref-
erences. It seems incompatible to PLMs pre-trained
with ordered words (For BART (Lewis et al., 2020),
sentence permutation is adopted, nevertheless, the
word order within a sentence remains correct.). As
studied by Zhao et al. (2022) and Ou et al. (2022),
the word order of inputs can hinder the exploita-
tion of knowledge existing in PLMs. Moreover,
even if the word order of inputs is correct, for some
LMs (e.g., BART (Lewis et al., 2020), T5 (Raffel
et al., 2020)), the inputs are masked sentences dur-
ing pre-training, while in commonsense generation
task, the inputs are unconnected word sequences.
This kind of discrepancy also degrades the models’
performance.

In this paper, we propose a two-stage frame-
work to bridge the gap between pre-training and
fine-tuning for this task. Specifically, we firstly
propose to introduce a domain-specific pre-training
stage using the tasks’ training dataset. The pre-
training objective is designed to recover original
sentences given the masked and shuffled sentences.
Therefore, the PLMs’ ability of reasoning out new
concepts or relations (mask operation) and pro-
cessing order-agnostic inputs (shuffle operation)
is enhanced. Secondly, in downstream task fine-
tuning, we insert the special token [MASK] between
two consecutive concept words. This makes the
input distribution more similar to the distribution
in pre-training. The experimental results shows
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Figure 1: An overview of our model. _ represents the [MASK] token.

that our proposed model can significantly improve
the performance of the commonsense generation
task. We also conduct experiments to show that
our model is superior than baselines in terms of
continual learning and few-shot scenarios.

2 Model

We propose a two-stage training framework as
shown in Figure 1. We firstly continually pre-train
the BART with a newly designed input format. Sec-
ondly, we fine-tune the model whose inputs are
inserted with the special token [MASK].

Formally, given a concept word set x =
{x1, x2, · · · , xn} ∈ X (n can be different for
different inputs), the task aims to generate a flu-
ent, plausible and grammatically correct sentence
y = (y1, y2, · · · , ym) ∈ Y containing all the words
in x.

2.1 Domain-Specific Pre-training

Continually pre-training the PLMs on the target
domain is beneficial to improving the performance
of the target task consistently (Gururangan et al.,
2020). We adopt this idea and moreover, we design
a new sentence corruption strategy considering that
the input words order in target task is shuffled. Be-
low is the procedure for constructing the corrupted
inputs for each sentence y ∈ Y in training dataset:

1. Randomly select a subset of words in y and
each word is selected with a probability p
which is also called the mask probability.

2. Replace the selected words with the special
token [MASK]. It should be noted that multi-
ple consecutive [MASK] tokens are merged to
one [MASK] token. This allows the PLMs to
predict a span (multiple words) based on one
[MASK] token, which is more similar to the
commonsense generation task as we will see
below.

3. The unmasked words are shuffled while the
positions of the [MASK] tokens remain un-
changed. The corrupted input is denoted by
ỹ.

An example of the above process is shown in the
upper part of Figure 1. We usually choose a large
value for the probability p instead of 15% used by
BERT (Devlin et al., 2019). We will study the effect
of p (0.5 in our experiment) in Section 3.2. Since a
part of concept words and non-concept words are
masked, this pre-training process can also enhance
PLMs’ ability of reasoning out unseen concepts
and relations between concepts.

Finally, the pre-training loss function is:

L(θ) = − 1

|Y |
∑

y∈Y
log(

m∏

i=1

P (yi|y<i, ỹ; θ)) (1)

2.2 Fine-tuning
Although the domain-specific pre-training can
adapt the PLMs to the target domain and allevi-
ate the problem related to word order, the inputs
during fine-tuning are still a list of words while
in pre-training for many LMs, the inputs are cor-
rupted sentences with [MASK] tokens. Chada and
Natarajan (2021) have shown that aligning the input
distribution between pre-training and fine-tuning
can boost the few-shot performance on QA tasks.
Armed with such finding, we transform the inputs
by inserting [MASK] tokens. Formally, given an
input x = {x1, x2, · · · , xn}, we transform x to 1:

[MASK], x1, · · · , [MASK], xi, [MASK], · · · , xn, [MASK]

Then, we input the transformed x to the PLM to
predict the target y. Through this way, the input
distribution is more similar to that in pre-training
(especially domain-specific pre-training). This in-
put format is similar to the text infilling task (Don-
ahue et al., 2020), the main differences are that

1We send the transformed x to the tokenizer so that [CLS]
and [EOS] will also be added.

377



Model \ Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE

GPT-2 17.18 39.28 30.70 21.10 26.20 12.15 25.90
UniLM 21.48 43.87 38.30 27.70 29.70 14.85 30.20

T5 22.01 42.97 39.00 28.60 30.10 14.96 31.60
BART 22.23 41.98 36.30 26.30 30.90 13.92 30.60

KG-BART 23.38 44.54 42.10 30.90 32.40 16.83 32.70
NeuroLogic - 44.70 41.3 30.60 31.00 15.90 31.10

CALM - - - 29.50 31.90 15.61 33.20
EKI-out 24.36 45.42 42.90 32.10 32.00 16.80 32.50

Ours 24.17 44.89 43.31 32.49 32.50 17.10 32.81

Table 2: Automatic Evaluation Results.

the words in commonsense generation task are un-
ordered and masked words also account for a large
proportion of sentences.

3 Experiments

3.1 Experimental Settings
Dataset We use the CommonGen dataset
collected by Lin et al. (2020). The dataset contains
67389/4018/6042 training/development/testing
samples with 32651/993/1497 different concept
sets (one concept set has multiple references.). For
evaluation metrics, we use BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005) , CIDEr (Vedantam et al., 2015)
and SPICE (Anderson et al., 2016). We also
report human evaluation score and coverage score.
However, due to the space constraint, regarding
these two scores, please refer to Appendix ?? for
more details.

Baselines We compare our model with several
baselines. For PLMs, we choose GPT-2 (Radford
et al., 2019), UniLM (Dong et al., 2019), T5 (Raf-
fel et al., 2020), BART (Lewis et al., 2020). We
also compare our model with (1) KG-BART (Liu
et al., 2021) which incorporates the knowledge
graph to BART. (2) NeuroLogic (Lu et al., 2021)
which controls the decoding stage to enforce the
satisfaction of the given lexical constraints. (3)
CALM (Zhou et al., 2021) which designs several
self-supervised tasks to obtain a concept-aware lan-
guage model. (4) EKI-out (Fan et al., 2020) which
augments inputs with retrieved sentences from out-
of-domain corpus. Generally, EKI-out is stronger
than other baselines due to the high informativeness
of Wikipedia.

Implementation Details We adopt BART-large
as the generation model. The max length of x and

y are set to 48 and 128 respectively. The batch size
is set to 32. For Domain-Specific Pre-training, the
mask probability p is set to 0.5. The number of
training epochs is 10. We use AdamW (Loshchilov
and Hutter, 2019) with learning rate 1e-7 to op-
timize the model. For fine-tuning, the model is
optimized using AdamW with an initial learning
rate of 2e-5. We also employ linear warmup with
steps 10000. We save the model with the highest
Rouge-L score on development set for testing.

3.2 Results

Main Results As summarized in Table 2, Ours
can generally achieve better performance than all
the baselines on BLEU, MENTOR, CIDEr. On
ROUGE, Ours outperforms most of the baselines
except EKI-out which facilitates the Wikipedia as
the external corpus. On SPICE, Ours is superior
than most of the baselines except CALM.

Ablative Results We conduct ablation study with
three variants. The results are shown in Table 4.
We can see that the performance of -mask (Ours
without adding [MASK] during fine-tuning) and
-pretraining (Ours without pretraining) are infe-
rior than Ours. -both (Ours with neither) obtains
the worst performance. We can also observe that
adding mask and adding pretraining have sim-
ilar degree of improvement compared to -both.
Moreover, since there are numerous ways to in-
sert [MASK] to inputs (different positions or differ-
ent numbers), we compare our model with Ran-
dom Mask: during pre-training and fine-tuning,
one mask token is randomly inserted into the cor-
rupted inputs. We can see from Table 4 that Ours
outperforms Random Mask. Moreover, we provide
some generated examples in Appendix B.
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Model Training on Evaluation on ROUGE-L BLEU-4 METEOR CIDEr SPICE

Ours

Size = 3 Size = 3 45.25 18.74 24.06 14.64 34.92
Size = 4 Size = 3 46.31(+1.06) 19.33(+0.59) 25.76(+1.70) 15.47(+0.83) 36.89(+1.97)

Size = 4 44.97 31.02 31.25 16.14 31.68
Size = 5 Size = 3 45.62(-0.69) 19.38(+0.05) 25.50(-0.26) 15.26(-0.21) 36.51(-0.38)

Size = 4 45.27(+0.30) 32.00(+0.98) 31.63(+0.38) 16.49(+0.35) 31.46(-0.22)

Size = 5 43.53 30.98 30.93 16.12 31.01

-mask

Size = 3 Size = 3 44.80 17.89 24.24 14.68 34.28
Size = 4 Size = 3 45.52(+0.72) 17.46(-0.43) 24.71(+0.47) 14.58(-0.10) 35.38(+1.10)

Size = 4 44.29 31.53 30.98 16.24 32.04
Size = 5 Size = 3 45.36(-0.16) 17.75(+0.29) 24.77(+0.06) 14.69(+0.11) 35.88(+0.50)

Size = 4 44.49(+0.20) 30.99(-0.54) 30.88(-0.10) 16.09(-0.15) 31.17(-0.87)

Size = 5 42.69 29.16 29.63 15.11 30.05

Table 3: Continual Learning Results. The rows with the same color represents the same domain we evaluate the
model on. The red number in parentheses is the improvement compared with the previous time step on the same
domain. For example, (+1.06) = 46.31− 45.25, (-0.69) = 45.62− 46.31, (+0.30) = 45.27− 44.97.

Model ROUGE-L BLEU-4 METEOR CIDEr SPICE

Ours 44.89 32.49 32.50 17.10 32.81
-mask 44.67 31.66 32.09 16.51 32.11
-pretraining 44.35 31.60 31.87 16.57 32.33
-both 43.56 29.61 30.87 15.61 30.93
Random Mask 44.43 31.64 32.23 16.69 32.36

Table 4: Variant Analysis Results.

Effects of Hyperparameter p We investigate the
effects of the mask probability p. As presented
in Table 6, the performance is the best when p
equals 0.5. The reason may be that if p is too
large, it is hardly possible to recover corrupted
sentences during pre-training. However, if p is too
small, most of the masked tokens are not concept
words, thus the pre-trained model cannot learn the
relations between concepts.

Human Evaluation & Coverage To provide
more perspective of the generation quality, we re-
port the human evaluation score and coverage score.
For human evaluation, we randomly select 30 sen-
tences and each sentence is given a score ranging
from one to five to assess the holis- tic quality. We
report the average value of two annotators. The con-
cept coverage score is the average percentage of in-
put concepts that are present in lemmatizatized out-
puts. The results are shown in Table 5. We can see
that Ours achieves the highest human evaluation
score and coverage score and Ours-w/o-pretraining
achieves a slightly better performance than Ours-
w/o-mask, indicating that inserting [MASK] to the
input is more important than adding the pretraining
stage.

3.3 Few-Shot Scenario
We investigate the performance of our model un-
der few-shot scenario. We randomly select n ∈

Model Ours Ours-w/o-mask Ours-w/o-pretraining Ours-w/o-both

human score 4.534 4.367 4.467 4.084
coverage 97.48 96.03 96.07 93.05

Table 5: Human Evaluation Score and Coverage Score

p ROUGE-L BLEU-4 METEOR CIDEr SPICE

0.2 44.36 31.21 31.16 16.48 32.33
0.4 44.32 30.99 32.05 16.64 32.48
0.5 44.89 32.49 32.50 17.10 32.81
0.6 44.37 31.95 32.64 16.91 32.72
0.8 44.58 32.25 32.38 16.83 31.90

Table 6: Effects of p.

{16, 32, 64} samples from original training dataset
as the new training dataset and the testing dataset
remains unchanged. The learning rate is set to 2e-5.
Table 7 shows the results. We can see that insert-
ing [MASK] to the inputs can significantly boost the
performance on all the metrics. Combined with the
result in Table 2, we can conclude that inserting
[MASK] to the inputs is beneficial to the perfor-
mance on both full-data and few-shot settings.

3.4 Continual Learning Scenario

We investigate the performance of our model under
continual learning scenario (Biesialska et al., 2020).
We regard concept sets with the same length as a
domain. The details of the dataset are described
in Appendix A. The model is trained sequentially
from the domain with length 3 to the domain with
length 5. After the model is trained on a new do-
main, we also evaluate it on previous domains to
measure the backward transfer degree. Backward
transfer means that learning a new task may hurt
(negative backward transfer) or improve (positive
backward transfer) the performance of previously
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n model ROUGE-L BLEU-4 METEOR CIDEr SPICE

16

Ours 35.04 16.22 21.98 9.02 21.93
-pretraining 33.49 12.25 19.29 7.46 20.42

-mask 32.33 7.5 19.23 6.16 17.24
-both 31.74 6.75 19.83 6.18 16.30

32

Ours 35.66 19.72 23.20 10.00 21.43
-pretraining 35.92 16.21 21.35 8.88 20.78

-mask 33.98 15.17 21.34 8.63 18.36
-both 33.15 11.73 19.36 7.51 19.13

64

Ours 38.94 22.15 25.96 12.31 26.64
-pretraining 38.17 21.17 25.48 11.6 26.27

-mask 35.75 18.79 24.73 10.73 24.00
-both 35.04 15.43 22.58 9.18 21.23

Table 7: Few-Shot Setting.

learned tasks (Lopez-Paz and Ranzato, 2017). The
results are shown in Table 3. We can see that Ours
generally obtains better performance than -mask.
Also, we can see that our model achieves a larger
positive backward transfer and a smaller negative
backward transfer (forget less) than -mask. For ex-
ample, ROUGE-L of the domain with concept set
size 3 is changed from 45.25 to 46.31 (improved
by 1.06) after the model is trained on the domain
with concept size 4 for our model. While for -mask,
the improvement is only 0.72. Therefore, we can
conclude that bridging such a gap is effective under
continual learning setting.

4 Conclusion

We study the gap issue between pre-training and
fine-tuning for commonsense generation task. We
propose a two-stage training framework which is
composed of a domain-specific pre-training stage
and a fine-tuning stage. Pre-training stage aims to
recover the masked and shuffled sentences which
could enhance the models’ ability of processing
unordered inputs and reasoning out the relations
and concepts. Inserting [MASK] to the inputs dur-
ing fine-tuning have also been demonstrated very
useful. Experimental results show that our model
is superior than many baselines, especially under
few-shot setting.
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Limitations

In this work, we study the gap between pre-training
and fine-tuning for commonsense generation task.
Despite the promising experimental results, there
are still several limitations of our work:

1. The order issue is still not fully solved since
the original pre-training stage uses ordered
sentences. Our proposed domain-specific
training stage can only alleviate this issue in-
stead of completely solving it.

2. During fine-tuning, the optimal positions and
an optimal number of the [MASK] tokens are
not well solved.
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A Continual Learning

We introduce how to construct the dataset used for
continual learning. Table 8 shows the distribution
of the original dataset. Since there is no testing
instances whose concept set size is 3. We randomly
sample a number of instances with concept size 3
from the training dataset. Also, since the dataset
is unbalanced (the number of instances belonging
to the domain with concept size 3 is far larger than
that in other domains.) We re-sample the instances
to make the dataset more balanced. The statistic of
the continual learning setting dataset is shown in
Table 9.

Statistics Train Dev Test

Sentences 67,389 4,018 6,042
Concept-Sets 32,651 993 1,497

-Size = 3 25,020 493 -
-Size = 4 4,240 250 747
-Size = 5 3,391 250 750

Table 8: Statistics of Original Dataset.

Statistics Train Dev Test

-Size = 3 5,867 1,819 2,170
-Size = 4 5,352 1,137 2,993
-Size = 5 3,436 1,062 3,049

Table 9: Statistics of Continual Learning Dataset.

B Generated Examples

We list some examples generated by our proposed
model and ablative models, which are shown in
Table 10.

concept words {sheep, wool, shave, hold}

Ours A man is holding a sheep and shaving its wool.
Ours-w/o-pretraining A woman holds a sheep and shaves its wool.
Our-w/o-mask A man is holding a sheep and shaving it with wool.
Our-w/o-both sheep holding their wool in their beaks as they shave.

concept words {stand, fence, feed, goat}

Ours A goat stands at the fence to be fed.
Ours-w/o-pretraining goats standing next to a fence to feed.
Our-w/o-mask A goat standing next to a fence to feed.
Our-w/o-both A goat stands at the fence to feed a goat.

concept words {hold, bag, popsicle, eat, chip}

Ours A boy is eating a popsicle while holding a bag of chips.
Ours-w/o-pretraining A girl is holding a bag of chips and eating a popsicle.
Our-w/o-mask A man holding a bag of chips and a popsicle to eat.
Our-w/o-both A man holding a bag of chips and a popsicle eats a chip.

Table 10: Generated Examples
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