Few-Shot Structured Policy Learning for Multi-Domain and Multi-Task Dialogues

Thibault Cordier1,2 and Tanguy Urvoy2 and Fabrice Lefèvre1 and Lina M. Rojas-Barahona2
1LIA - Avignon University, France
2Orange Innovation, Lannion, France
thibault.cordier@alumni.univ-avignon.fr
fabrice.lefevre@univ-avignon.fr
(linamaria.rojasbarahona, tanguy.urvoy)@orange.com

Abstract

Reinforcement learning has been widely adopted to model dialogue managers in task-oriented dialogues. However, the user simulator provided by state-of-the-art dialogue frameworks are only rough approximations of human behaviour. The ability to learn from a small number of human interactions is hence crucial, especially on multi-domain and multi-task environments where the action space is large. We therefore propose to use structured policies to improve sample efficiency when learning on these kinds of environments. We also evaluate the impact of learning from human vs simulated experts. Among the different levels of structure that we tested, the graph neural networks (GNNs) show a remarkable superiority by reaching a success rate above 80\% with only 50 dialogues, when learning from simulated experts. They also show superiority when learning from human experts, although a performance drop was observed, indicating a possible difficulty in capturing the variability of human strategies. We therefore suggest to concentrate future research efforts on bridging the gap between human data, simulators and automatic evaluators in dialogue frameworks.

1 Introduction

Multi-domain multi-task dialogue systems are designed to complete specific tasks in distinct domains such as finding and booking a hotel or a restaurant (Zhu et al., 2020). A domain is formally defined as a list of slots with their valid values. The most common task, the information-seeking task, is usually modelled as a slot-filling data-query problem in which the system requests constraints to the user and proposes items that fulfil those constraints.

The design of a dialogue manager (DMs) is costly: hand-crafted policies require a lot of engineering, pure supervised learning (or behaviour cloning) requires a lot of expert demonstrations, and pure reinforcement learning requires a lot of user interactions to converge. The simulators provided with frameworks, such as PYDIAL (Ultes et al., 2017) or CONVLAB (Zhu et al., 2020), are only rough approximations of human behaviour and the ability to learn from a small number of human interactions remains crucial. This is especially true on multi-domain and multi-task environments where the action space is large (Gao et al., 2018).

A popular approach to reduce these costs is to wire some knowledge about the problem into the policy model, namely: few shot learning (Wang et al., 2020). In particular, structured policies like graph neural networks (GNNs) are known to be well suited to handle a variable number of slots and domains for the information-seeking task (Chen et al. 2018; Chen et al. 2020). In this paper, we explore structured policies based on GNN. A graph in a GNN is fully connected and directed. Each node represents a sub-policy associated with a slot, while a directed edge between two nodes represents a message passing.

For studying sample efficiency, we analyse the dialogue success rate of structured policies once trained in a supervised way from expert demonstrations. We consider two types of demonstrations: human experts extracted from the MULTIWoz dataset (Budzianowski et al., 2018), and simulated experts generated by letting the CONVLAB’s hand-crafted policy interact with a simulated user.

We perform large scale experiments. We study the impact of different levels of structure (see them in Figure 2) on policy success rate after a limited number of dialogue demonstrations. For each level of structure, we also compare two sources of demonstrations: simulated and human dialogues. We show a notable result: our structured policies are able to reach a success rate above 80\% with only 50 when following a simulated expert in CONVLAB. To the best of our knowledge there are not previous works that studied the impact of structure for dialogue policy in a few-shot setting.
Another important finding is that few-shot learning from human demonstrations is harder, producing a lower success rate. This can be explained first by the large variability of human strategies that is not covered by simulated users which stick to more repetitive – easy to learn – dialogue patterns. Another explanation could be an evaluation bias, simulated dialogues are more in line with artificial evaluators.

The remainder of this paper is structured as follows. We present the related work in Section 2. Section 3 presents the proposed GNNs from demonstrations. The experiments and evaluation are described in Sections 4 and 5 respectively. Finally, we conclude in Section 6.

2 Related Work

Few shot learning takes advantage of prior knowledge to avoid overloading the empirical risk minimiser when the number of available examples is small. In particular, prior knowledge can be used to constrain hypothesis space (i.e. model parameters) with parameter sharing or tying in order to reduce reliance on data acquisition and on data annotation (Wang et al., 2020).

Prior knowledge can be built into dialogue systems by imposing a structure in the neural network architecture. A first approach is to use hierarchical reinforcement learning that divides a main problem into several simpler sub-problems. We refer to Sutton et al. (1999) that introduces semi-Markov decision process using temporal abstraction and to Wen et al. (2020) that introduces sub-Markov decision process using state partition. In the scope of the paper, a hierarchical policy corresponds to a meta-controller that chooses to activate a domain and we have one sub-policy per domain (Budzianowski et al., 2017; Casanueva et al., 2018; Le et al., 2018).

In the same vein, graph neural networks (GNNs) have been explored in a wide range of domains because of their empirical success and their theoretical properties which explains its efficiency: the abilities of generalisation, stability and expressiveness (Garcia and Bruna, 2018). GNNs are suitable for applications where the data have a graph structure i.e where the graph outputs are supposed to be permutation-invariant or equivariant to the input features (Zhou et al., 2020; Wu et al., 2020).

In single-domain dialogue environments, this architecture has been adapted to model the DM in Chen et al. (2018) and Chen et al. (2020). They have shown that GNNs generalise between similar dialogue slots, manage a variable number of slots and transfer to different domains that perform similar tasks. We thus adopt in this work the domain independent parametrisation (DIP) (Wang et al., 2015), which standardises the slots representation into a common feature space.

In this work, as in Chen et al. (2018) and Chen et al. (2020), we propose to improve multi-domain covering by learning a generic policy based on GNN. But unlike them, (i) we use a multi-domain multi-task setting, in which several domains and tasks can be evoked in a dialogue; (ii) the dialogue state tracker (DST) output is not discarded when activating the domain; and (iii) we adapt the GNN structure to each domain by keeping the relevant nodes while sharing the edge’s weights.

3 Structured Policies with Expert Demonstrations

In order to investigate the impact of structured policies with behaviour cloning in improving sample efficiency in multi-domain multi-task dialogue environments, we introduce the dialogue state and action spaces for structured policies and we present the different policies and the experts’ nature.

3.1 Dialogue State / Action Representations

In multi-domain multi-task dialogues, the domain refers to the set of concepts and values speakers can talk about. Examples of domains are restaurants, attractions, hotels, trains, etc. A dialogue act is a predicate that refers to the performative actions of speakers in conversations (Austin, 1975). These actions are formalised as predicates like INFORM (i.e., affirm) or REQUEST with slots or slot-values pairs as arguments. Examples of system actions are: REQUEST(food), or INFORM(address). These structured actions are used to frame a message to the user. We adopt here the multi-task setting as presented in CONVLAB (Zhu et al., 2020), in which a single dialogue can have the following tasks: (i) find, in which the system requests information in order to query a database and make an offer; (ii) book, in which the system requests information in order to book the item.

We adopt the DIP state and action representations, which are not reduced to a flat vector but to a set of sub-vectors: one corresponding to the domain parametrisation (or slot-independent representation), the others to the slots parametrisation.
Figure 1: Structure of the input and graph parsing model in restaurant domain example. The input is a fully-connected graph with two kinds of nodes and three kinds of edges. The I-NODE are depicted in yellow; the S-NODE in green. The structured policy is described by successive graph convolutions composed of the shared weights $W_{i,j}^l$.

(or slot-dependent representations). For any active domain, the input to the slot-independent representation is the concatenation of the previous slot-independent user and system actions (see examples of the output below, and a formal definition in Section 3.2), the number of entities fulfilling the user’s constraints in the database, the booleans indicating if the dialogue is terminated and whether an offer has been found / booked. The output corresponds to action scores such as REQMORE, OFFER, BOOK, GREAT, etc. Regarding the slot-dependent representation, its input is composed of the previous slot-dependent user and system actions (see output below), the booleans indicating if a value is known and whether the slot is needed for the find / book task. Its output are actions scores such as INFORM, REQUEST and SELECT. The parameterisation used in CONVLAB does not depend on the probabilistic representation of the states, i.e. does not consider the uncertainty in the predictions made by the natural language understanding (NLU) module.

3.2 Graph Neural Network

Prior knowledge can be integrated in our models by constraining the layer structure imposing symmetries in the neural dialogue policies. Without prior knowledge, the standard structure used is the feed-forward neural network layer (FNN). This unconstrained structure does not assume any symmetry in the network.

Assuming that sub-policies associated with the slots are the same, a better alternative is to use the graph neural network layer (GNN). This structure assumes that the state and action representations have a graph structure that are identically parameterized by DIP. The GNN structure is a fully connected and directed graph, in which each node represents a sub-policy associated with a slot and a directed edge between two sub-policies represents a message passing. We identify two roles for sub-policies: the general node as I-NODE associated to the slot-independent representation and the slot nodes denoted as S-NODE associated to the slot-dependent representations. Both representations were introduced in Section 3.1. We also identify the relations: I2S for I-NODE to S-NODE, S2I and S2S respectively (as presented in Figure 1).

We formally define the GNN structure as follows. Let n be the number of slots and L the number of layers. Let x be the dialogue state, $x_0 = \phi_0(x)$, $h_0 \forall l \in [0, L - 1]$ and y_0 be respectively the input, hidden and output I-NODE representations. Let the input, hidden and output S-NODE representations be respectively $\forall i \in [1, n], x_i = \phi_i(x), h_i^l \forall l \in [0, L - 1]$ and y_i. First, the GNN transforms inputs:

$$\forall i \in [0, n], \quad h_i^0 = \sigma^0(W_i^0 \phi_i(x) + b_i^0)$$

Then, at the l-th layer, it computes the hidden nodes representations by following message sending 2 (Eq. 2), message aggregation (Eq. 3) and representation update (Eq. 4). $\forall i, j \in [0, n]^2$:

$$m_{i-j}^l = M_{i-j}^l(h_{j}^{l-1}) = W_{i,j}^l h_{j}^{l-1} + b_{i,j}^l$$

$$m_i^l = A_{i}(m_{i-\cdot}^l) = \frac{1}{n} \sum_{j=0}^{n} m_{i-j}^l$$

$$h_i^l = U_i^l(m_i^l) = \sigma^l(m_i^l)$$

The message sending function M_{i-j}^l is a linear transformation with bias. The message aggregation function A_i^l is the average pooling function. The representation update function U_i^l compute the new hidden representation with ReLU activation function and dropout technique during learning stage. Finally, the GNN concatenates (\oplus symbol) all final nodes representations and computes the policy function with the Softmax activation function.

$$y = \sigma^l(\bigoplus_{i=0}^{n} W_i^l h_i^{L-1} + b_i^l)$$

2We omit the I2I relation because there is only one I-node.

2The notation $i \leftarrow j$ denotes a message sending from slot j to slot i. It also corresponds to the directed relation between the slots j and i. The notation $i \leftarrow \ast$ denotes all messages sending to slot i.
Figure 2: Policy and input data structures. Different levels of structure are presented from classical feed-forward neural network (FNN) to graph neural network (GNN). The prefix H- corresponds to a hierarchical policy and UH- corresponds to a unique sub-policy for all domains. For a FNN layer, the input data is the concatenation of all DIP slot representations. For a GNN layer, the input keeps its structure.

3.3 Structured Policies

We propose a wide range of dialogue policies to study the impact of the structure in sample efficiency. An ablation study progressively adds some notion of hierarchy to FNNs to approximate the structure of GNNs. Similarly, we analyse the advantage of sharing a generic GNN among several domains versus specialising a GNN to each domain. Therefore, we propose from the least to the most constrained:

- **Feed-forward Neural Network** (FNN) that is a classical feed-forward neural network with DIP parametrisation (Figure 2a).

- **Hierarchy of Feed-forward Neural Networks** (HFNN) that is a hierarchical policy with hand-crafted domain-selection and FNNs for each domain. Each domain has one corresponding FNN model (Figure 2b).

- **Hierarchy of Graph Neural Networks** (HGNN) that is a hierarchical policy with hand-crafted domain-selection and GNNs. Each domain has one corresponding GNN model (Figure 2c).

- **Hierarchy with Unique Graph Neural Network** (UHGNN) that is a HGNN with a unique GNN for all domains. Each domain shares the same GNN model (Figure 2d).

3.4 The Expert’s Nature

Since our goal is to learn on observed demonstrations delivered by an expert, we propose to focus on policies that learn from both simulated and human experts. For this purpose, we use the dataset MULTIWOZ (Budzianowski et al., 2018) to follow human experts and the hand-crafted policy of CONVLAB (Zhu et al., 2020) as the simulated expert.

Human expert The MULTIWOZ dataset is a large annotated and open-sourced collection of human-human chats that covers multiple domains and tasks. Nearly 10k dialogues have been collected by a Wizard-of-Oz set-up at relatively low cost and with a small time effort. However, different versions of this dataset corrected and improved the annotations (Eric et al., 2020; Zang et al., 2020; Han et al., 2021; Ye et al., 2021). In this work, we use the MULTIWOZ dataset integrated in CONVLAB with extended user dialogue act annotations.

Simulated expert The CONVLAB framework has been proposed to automatically build, train and evaluate multi-domain multi-task oriented dialogue systems based on MULTIWOZ features. It implements both hand-crafted simulated user and policy. The latter has been shown to be nearly the optimal policy according to the CONVLAB evaluation setup of (Takanobu et al., 2020). Therefore we use it as the simulated expert.

4 Experiments

In this section we explain the experimental setup, the proposed models and the evaluation metrics.

4.1 Experiment Setup

We performed an ablation study by gradually adding different levels of structure from a baseline FNN to the proposed GNN (Subsection 4.2). On the one hand, we analyse the learning efficiency of our models in small training steps. On the other hand, we compare their generalisation ability in few shot learning.
Figure 3: Dialogue manager evaluation with simulated users. We present the success rate on $10 / 100 / 1000$ training dialogues as a function of the number of gradient descent steps in a short training scenario. Learning is based on simulated experts (Figures (a) up to (d)) or on human experts (Figures (e) up to (h)). The line plot represents the mean and the coloured area represents the 95% confidence interval over a sample of 10 runs.

To analyse the learning efficiency, we measure performance with respect to the number of gradient descent steps up to 1 000 iterations with a step size of 100 iterations. We compare learning curves based on randomly chosen 10, 100 and 1 000 training dialogues. We also measure performance as a function of the number of training dialogues available (randomly chosen) namely 10, 50, 100, 500 and 1000 when each training is performed up to 10 000 gradient descent steps. All the experiments were run on CONVLAB, restarted 10 times with random initialisation and the results estimated on 500 new dialogues.

4.2 Models
The FNN models have two hidden layers, both with 128 neurons. The GNN models have one first hidden layer with 64 neurons for both nodes (S-NODE and I-NODE). Then the second hidden layer is composed of 64 neurons for each relation (S2S, S2I and I2S). For training stage, we use the ADAM optimiser with a learning rate $lr = 0.001$, a dropout rate $dr = 0.1$ and a batch size $bs = 64$.

4.3 Metrics
We evaluate the performance of the policies for all tasks as in CONVLAB. Precision, recall and F-score, namely the inform rates, are used for the find task. Inform recall evaluates whether all the requested information has been informed while inform precision evaluates whether only the requested information has been informed. For the book task, the accuracy, namely the book rate, is used. It assesses whether the offered entity meets all the constraints specified in the user goal. The dialogue is marked as successful if and only if both inform recall and book rate are equal to 1. The dialogue is considered completed if it is successful from the user’s point of view.

5 Evaluation
First, we evaluate the dialogue manager performance when talking to a simulated user. Second, we evaluate the learned policies within the entire dialogue system both with simulated and with real users. The evaluations have been done within CONVLAB.

5.1 Dialogue Manager Evaluation
We analyse our models on the learning efficiency in small training steps and on the ability to generalise in a few-shot setting.

Efficiency We report in Figure 3 the results of the ablation study showing the ability of the models to succeed in a short training stage. First, when

³These values were chosen arbitrarily to give us an insight into the impact of the number of dialogues on the performance.

⁴A dialogue can be completed without being successful if the information provided is not the one objectively expected by the simulator.
learning from simulated demonstrations we notice in Figure 3a that the baseline (FNN) needs a large number of training dialogues (more than 100) to achieve a moderate performance (less than 40%). We show then in Figure 3b that hierarchical networks (HFNN) do improve learning efficiency up to 60% with 100 dialogues, up to 80% with 1 000 dialogues. Finally we show that graph neural network (HGNN in Figure 3c) and generic policy (UHGNN in Figure 3d) drastically improve the efficiency with few dialogues, more than 60% with 10 dialogues, and achieve remarkable performance above 80% with only 100 dialogues in 1 000 training steps. These observations confirm that hierarchical and generic GNNs allow efficient learning and collaborative gradient update in a short training stage.

Although standard or hierarchical policies (FNN in Figure 3e and HFNN in Figure 3f) are less efficient when learning from human demonstrations, they are still above baselines. It is worth noting that structured or generic GNN policies HGNN in Figure 3g and UHGNN in Figure 3h are able to reach more than 50% success rate.

Few-Shot We extended the ablation study in a few-shot scenario focusing on the ability of the models to succeed on specific dialogue tasks as reported in Figure 4. In particular, we show the success rate in Figure 4a, the inform rate (recall) in Figure 4b and the book rate in Figure 4c when using simulated demonstrations and respectively in Figure 4d, Figure 4e and Figure 4f when using human demonstrations. The more structured the model, the greater the learning efficiency and the greater the data efficiency. Likewise, we notice that learning is more data-intensive when imitating human strategies. It appears that the booking task is more difficult to perform according to human demonstrations (when comparing Figure 4c and Figure 4f) or using a flat architecture (FNN gets null results). We therefore foresee that more high quality data is needed to learn on human dialogues.

5.2 Dialogue System Evaluation

We continue our analysis on the robustness of the studied models with the entire dialogue system facing both simulated and human users. The dialogue system utilises a BERT NLU (Devlin et al., 2019) and a hand-crafted NLG.

Simulated User Evaluation As in the previous subsection, we study the robustness of the models in a few-shot scenario as presented in Figure 5.
We observe that FNN (in blue) and HFNN (in orange) learning is collapsing when using simulated dialogues (see Figures 5a, 5b and 5c). On the opposite, HGNN (in green) and UHGNN (in red) performance appears more stable in the entire dialogue system even when using real dialogues (see Figures 5d, 5e and 5f). Therefore, these results confirm that behaviour cloning is easier from simulated than human experts. As observed before in Subsection 5.2, this can be explained by an large variability of human strategies (hence the need for more data to improve performance). Another explanation is that simulated dialogues are more in line with the artificial evaluator provided in the CONVLAB. In addition, it is important not to neglect the side effects of cascading errors due to successive NLU, DST, DM and NLG modules. In particular, the NLU BERT proposed by CONVLAB was pre-trained and evaluated on 7,372 user utterances with 14% of errors (F1 86.4%, precision 85.1%, recall 87.8%). This problem can therefore be exacerbated by cascading human errors, as confirmed in the next paragraph.

Finally, we present a detailed comparison table with the best structured policies UHGNN trained on simulated dialogues of CONVLAB noted MLE- UHGNN-HDC (HDC for hand-crafted policy) and trained on real dialogues of MULTIWOZ noted MLE-UHGNN-MW and the baselines of CONVLAB (see Table 1). In particular, the maximum likelihood estimator (MLE) proposed by CONVLAB is an implementation of FNN model trained on MULTIWOZ corpus in a very long training scenario (multiple passes on all 10^k dialogues). Our models show competitive results against CONVLAB’s baselines, confirming that the structured with supervised learning in few-shot settings is adapted to address the difficulties in multi-task multi-domain dialogues.

Human Evaluation We organised preliminary evaluation sessions, in which volunteers were invited to chat on-line with three dialogue systems that were randomly assigned. Subjects do not know which system they are evaluating. Each system returns one unique action per turn instead of a group of actions.

5Another difference is that our models returns one unique action per turn instead of a group of actions.

6Crowdsourcing was not used because of ethical concerns regarding the work conditions of collaborators. Volunteers from our research institution were invited to participate and they were aware of the scientific motivations behind the evaluation. In this sense, they were motivated to participate without any economic reward implying no pressure and without knowing the nature of the models they were evaluating, avoiding in this way any evaluation bias.
Table 1: Dialogue manager and system evaluations with simulated users. When evaluating the dialogue manager, the simulated user passes directly dialogue acts and vice-versa. Our tested configurations are evaluated and averaged on 10 run each with 250 dialogues. Configurations with † are taken from the GitHub of CONVLAB.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Avg Turn (succ/all)</th>
<th>Inform rate (%)</th>
<th>Book Complete Success (succ/all) Prec. / Rec. / F1 Rate (%)</th>
<th>Book Complete Success Rate (%)</th>
<th>Complete Success Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialogue Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDC</td>
<td>10.6/10.6</td>
<td>87.2 / 98.6 / 90.9</td>
<td>98.6</td>
<td>97.9</td>
<td>97.3</td>
</tr>
<tr>
<td>MLE-UHGNN-HDC (ours)</td>
<td>12.8/13.0</td>
<td>95.3 / 98.8 / 96.4</td>
<td>98.5</td>
<td>97.3 (-0.6)</td>
<td>95.4 (-1.9)</td>
</tr>
<tr>
<td>MLE-UHGNN-MW (ours)</td>
<td>16.5/20.7</td>
<td>94.3 / 90.7 / 91.6</td>
<td>76.7</td>
<td>81.4 (-16.5)</td>
<td>81.0 (-6.3)</td>
</tr>
<tr>
<td>Dialogue System (BERT NLU + hand-crafted NLG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDC</td>
<td>11.4/12.0</td>
<td>82.8 / 94.1 / 86.2</td>
<td>91.5</td>
<td>92.7</td>
<td>83.8</td>
</tr>
<tr>
<td>HDC†</td>
<td>11.6/12.3</td>
<td>79.7 / 92.6 / 83.5</td>
<td>91.1</td>
<td>90.5 (-2.2)</td>
<td>81.3 (-2.5)</td>
</tr>
<tr>
<td>MLE†</td>
<td>12.1/24.1</td>
<td>62.8 / 69.8 / 62.9</td>
<td>17.6</td>
<td>42.7 (-50.0)</td>
<td>35.9 (-47.9)</td>
</tr>
<tr>
<td>PG†</td>
<td>11.0/25.3</td>
<td>57.4 / 63.7 / 56.9</td>
<td>17.4</td>
<td>37.4 (-55.3)</td>
<td>31.7 (-52.1)</td>
</tr>
<tr>
<td>GDPL†</td>
<td>11.5/21.3</td>
<td>64.5 / 73.8 / 65.6</td>
<td>20.1</td>
<td>49.4 (-43.3)</td>
<td>38.4 (-45.4)</td>
</tr>
<tr>
<td>PPO†</td>
<td>13.1/17.8</td>
<td>69.4 / 85.8 / 74.1</td>
<td>86.6</td>
<td>75.5 (-17.2)</td>
<td>71.7 (-12.1)</td>
</tr>
<tr>
<td>MLE-UHGNN-HDC (ours)</td>
<td>14.0/15.4</td>
<td>89.3 / 93.0 / 90.2</td>
<td>84.8</td>
<td>90.0 (-2.7)</td>
<td>82.7 (-1.1)</td>
</tr>
<tr>
<td>MLE-UHGNN-MW (ours)</td>
<td>17.0/23.0</td>
<td>84.0 / 87.6 / 84.5</td>
<td>64.8</td>
<td>72.1 (-20.6)</td>
<td>68.1 (-15.7)</td>
</tr>
</tbody>
</table>

Table 2: Dialogue system evaluation with real users with a 95% confidence level for satisfaction rate.

<table>
<thead>
<tr>
<th>Dialogue System (BERT NLU + Rule NLG)</th>
<th>Avg Turn</th>
<th>Satisfaction Rate (%)</th>
<th>Nb of Dial.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDC</td>
<td>22.6</td>
<td>92.6 ± 9.87</td>
<td>27</td>
</tr>
<tr>
<td>MLE-UHGNN-HDC</td>
<td>25.6</td>
<td>50.0 ± 14.8</td>
<td>44</td>
</tr>
<tr>
<td>MLE-UHGNN-MW</td>
<td>17.3</td>
<td>36.7 ± 17.2</td>
<td>30</td>
</tr>
</tbody>
</table>

Conclusion

We investigated in this work the impact of policy structure and experts on success rate in few-shot learning for multi-domain multi-task dialogues. Promising results were obtained: hierarchical and generic GNN policies are able to achieve remarkable performance with few dialogues and few training iterations when following a simulated expert. This confirms the growing interest for these neural structures. We also present an important finding: the policy performance degrades in few-shot learning when using human demonstrations. This fact questions the alignment between dialogue evaluators and human strategies in state-of-the-art dialogue frameworks.
Limitations

The reduced performance when learning from human experts suggests that we shall concentrate the efforts in bridging the gap between automatic evaluators and high-quality human-human datasets. We also devise the use of curriculum learning (Bengio et al., 2009) strategies: starting from simple – simulated – dialogues then adding progressively more complex, human dialogues demonstrations.

It is also necessary to analyse the impact of GNN policies with neural NLU/NLG modules to study how to integrate such structures in end-to-end architectures.

We point out some limitations of CONV LAB. The detection of the active domain is sensitive to the output of the NLU and thus sensitive to ambiguous statements. Data representation restricts the DST to a deterministic view and must be adapted to a probabilistic representation to capture the uncertainties in the user’s input. Similarly, it may be worthwhile to improve the action space by adding more possibilities for human users, for instance to CONFIRM or DENY in a more flexible way.

Finally, the human evaluation was performed on a small scale and on models trained in a context with few training iterations. A more in-depth or supervised study could shed more light on the raised issues.

Acknowledgements

This work was performed using HPC resources from GENCI-IDRIS (Grant 20XX-AD011011407).

References

Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, and Hal Daumé III. 2018. Hierarchical imitation and reinforcement learning. In International conference on machine learning, pages 2917–2926. PMLR.

