
Findings of the Association for Computational Linguistics: EACL 2023, pages 454–471
May 2-6, 2023 ©2023 Association for Computational Linguistics

Practical Takes on Federated Learning with Pretrained Language Models

Ankur Agarwal Mehdi Rezagholizadeh Prasanna Parthasarathi
Huawei Noah’s Ark Lab, Montréal

{ankur.agarwal1,mehdi.rezagholizadeh,prasanna.parthasarathi}@huawei.com

Abstract

Real-world applications of language models
entail data privacy constraints when learning
from diverse data domains. Federated learn-
ing with pretrained language models for lan-
guage tasks has been gaining attention lately
but there are definite confounders that warrants
a careful study. Specifically, understanding the
limits of federated NLP applications through
varying the effects of different aspects (such
as data heterogeneity, the trade-off between
training time and performance, the effect of
different data, and client distributions and sen-
sitivity of the shared model to learning local
distributions) is necessary to evaluate whether
language models indeed learn to generalize by
adapting to the different domains. Towards
that, we elaborate different hypotheses over the
components in federated NLP architectures and
study them in detail with relevant experiments
over three tasks: Stanford Sentiment Treebank-
2, OntoNotes-5.0 and GigaWord. The experi-
ments with different Transformer inductive bi-
ases on the variety of tasks provide a glimpse at
the understanding of federated learning at NLP
tasks. Specifically, the analysis suggests that
regularization due to the ensembling effect may
be masquerading as domain adaptation of feder-
ated learning in NLP with pre-trained language
models.

1 Introduction

The success of large pretrained language models
(Devlin et al., 2019; Liu et al., 2019; Radford et al.,
2019; Lewis et al., 2019) have demonstrated their
applicability in consumer-based natural language
processing (NLP) applications (Otter et al., 2020).
While there are such massive datasets(Kiela et al.,
2021; Wang et al., 2021), making models trained on
these datasets to reflect the data diversity is an im-
portant challenge towards building equitable NLP
systems. Hence, treating the distribution of data
over the users as non-IID (McMahan and Ramage,
2017; Xu et al., 2018; Liu and Mazumder, 2021) to

better emphasize the preferences of users as person-
alization gets naturally extended to the consumer
NLP applications.

But, recent studies highlight that pretrained lan-
guage models (PLMs) (Devlin et al., 2019) tend
to get their predictions skewed by the frequency
effects of tokens in the data distribution (Wei et al.,
2021), this is concerning from a privacy and person-
alization standpoint. Han and Eisenstein (2019);
Ramponi and Plank (2020); Carlini et al. (2022)
show that neural language models (even the large
pretrained architectures) have challenges in adapt-
ing to different data distributions on generative and
classification tasks alike.

Federated learning (FL) (McMahan and Ram-
age, 2017; Konečnỳ et al., 2016) has been gaining
popularity in machine learning as a practical way
to mitigate domain adaptation with the promise of
data privacy. FL as a learning paradigm focuses
on learning a shared model through training data
distributed over several clients. Such approaches
have only recently begun to focus on NLP applica-
tions (Mammen, 2021; Lin et al., 2021). Lin et al.
(2021) suggest that the success of federated algo-
rithms can be improved through adapting over the
client distribution that improves the generalization
performance across the client distributions.

However, the opaqueness of the pretraining rou-
tine — primarily, quantifying what, and how much
of that a language model has learnt from the pre-
training corpora (Zhu et al., 2015; Devlin et al.,
2019; Gao et al., 2020) cast a shadow on evaluating
the effectiveness of these architectures in learning
from diverse domains. Understanding the roles of
different inductive biases not limited to the architec-
ture, loss functions and data distribution becomes
imperative to carefully look at claims of “domain
adaptation” (Kouw and Loog, 2018). The repre-
sentation of texts guided by syntax and semantic
elements makes generalization to non-IID distribu-
tions in NLP more challenging if not the same when

454

compared to domains such as computer vision (Liu
et al., 2020; Luo et al., 2021; Zhuang et al., 2021;
Yang et al., 2021). Then, it becomes imperative
to understand the role of different constituents in
the federated learning in NLP setup to take steps
in the right direction. In that regard, we investigate
four major hypotheses detailing the confounding
variables in federated NLP systems: (1) role of
pretrained weights in FL’s domain adaptation, (2)
distribution of clients, (3) Data homogeneity, and
(4) robustness of personalizing to local distribu-
tion. Although the primary focus of the paper is
to generate discussions along these questions, we
support the discussions with relevant experiments
on 3 different NLP tasks on 2 large Transformer
architectures.

2 Background

Federated Learning Federated learning assumes
the set up of K clients {Ck}Kk=1 with different data
distributions and a single server model S. Each
client model, θCk

, is initialized by the server model
θS a dedicated copy of the server model and then
updated locally on the kth client data distribution
using an optimizer OptCk

. This distributed learn-
ing is repeated iteratively over R rounds. At each
round r, the client models, θCr

k
, are initialized with

the aggregated weights of all the client models from
the previous round (r−1), referred to as the central
server model, θrS . The rounds end with accumu-
lation and aggregation of gradients from all the
client models to update the server model with op-
timizer OptS and continued until convergence on
an unseen set (Dtest). FedOpt, a popular federated
learning algorithm is shown in Algorithm 1.

Algorithm 1 FedOpt Algorithm (Asad et al., 2020)

Input: θ0S ,OptCk
,OptS

for r = 1 to R do
for k = 1 to K in parallel do
θrCk
← θr−1

S

for e = 1 to E do
gCr

k
← ∇θ(θCr

k
| Dk)

θCr
k
← OptCk

(θCr
k
, gCr

k
)

end for
∆r

k ← θCr
k
− θr−1

S

end for
∆r ← 1

KΣK
k=0∆

r
k

θrS ← OptS(θ
r−1
S ,∆r)

end for

The Performance Gap Like in (Lin et al., 2021),
we compare the performance of federated server,
θS , with θcentral over a common unseen set, Dtest

as in Equation 1,

∆Perf = PerfS − Perfcentral (1)

where θcentral is trained over {Dk}Kk=1 until con-
vergence. Accuracy, F1, or Rouge score (Lin, 2004)
can be used for measuring Perf .

Generalization Personalization trade-off Let
the best server generalization performance is mea-
sured over Dtest be P∗

server. The generalization
performance of the client model trained in r∗ is
measured on Dtest be P∗

clientk
. The performance

of the client model on Dk in round r∗ measured be
P̃clientk , which acts as a proxy to the personaliza-
tion on Dk. Then, we measure the difference in the
test loss for every client, k, between θC∗

k
and θ∗−1

S

as ∆P .

∆Pk (xi) = P∗
clientk

(xi)− P∗−1
server (xi) (2)

For every xi ∈ Dtest, the correlation between
∆Pk(xi) to that of P̃clientk measures the mutual
cost of personalization to Dk on the generalization
performance on Dtest. Also, we measure the aver-
age the empirical risk of θC∗

k
over Dk as ˜Pclientk :

P̃clientk =
1

| Dk |

|Dk|∑

j=0

Pclientk (xj) (3)

We now define the trade-off metric as the slope
between ∆Pk(xi) and P̃clientk over all x ∼ Dtest

and K. m∆P measures the unit increase in gener-
alization performance for adapting to Dk. Or m∆P

estimates the cost of personalizing over the client
distribution. Consequently, we make the interpreta-
tions for the metric m∆P — (a) positive slope (↗)
indicates that learning on local distribution aids in
better generalization, (b) negative slope (↘) indi-
cates that generalization inhibits the learning from
local distributions, or (c) neutral (−→) shows that
the model is unaffected by learning.

3 Related Work

Multi-Domain Learning Realtime applications
of most tasks have shown diverse distribution of
datapoints requiring domain adaptation strategies
(Daumé III, 2009; Dredze and Crammer, 2008).
The effect of such domain shift in NLP has been

455

a topic of study for a while (Blitzer et al., 2006;
Quiñonero-Candela et al., 2008; Blitzer, 2008; Ben-
David et al., 2010; Cui and Bollegala, 2019). The
general topic of domain adaptation in NLP shares
similarity with the topics of continual learning (Sun
et al., 2019), transfer learning (Devlin et al., 2019;
Radford et al., 2019), multi-task learning (Col-
lobert and Weston, 2008), and federated learning
(Lin et al., 2021). Federated learning however, is
different from the other paradigms since it empha-
sizes on the notion of preserving privacy of differ-
ent local data distributions. To that, sophisticated
approaches to aggregate the gradients to transfer
learning from clients to the shared model (e.g. Fed-
Prox (Li et al., 2020), FedAvg (McMahan et al.,
2017a), and FedOpt (Asad et al., 2020)) have show-
cased improvements in the generalization of the
shared parameters. On the other hand, due to the
many interactions of the clients with the server,
communication overhead is an important aspect,
and FedOpt (Asad et al., 2020) has been shown to
better address it over existing federated algorithms.

Overview of Federated Learning Federated
learning (McMahan and Ramage, 2017; Mammen,
2021) addresses the challenge of learning from pri-
vate data spanning over multiple clients. Although
the evaluation of such architectures prioritizes the
generalization of the shared model, Mendieta et al.
(2022) highlight that learning from the local distri-
butions is critical towards that. The key to such ef-
ficient learning in federated architectures has been
shaped by homogeneous and heterogeneous data or
model (Li and Wang, 2019) distribution in clients
(model architectures across clients have similar or
different parameters). Further, the emphasis on pri-
vacy of client data has also been mitigated through
the recent progress in knowledge distillation. How-
ever, systematic studies (Kairouz et al., 2021; Li
et al., 2021) over federated architectures have iden-
tified potential biases due to unbalanced data of
clients or diversity in the label distribution among
others. Chen et al. (2018) propose a meta learning
approach for federated learning that improves per-
sonlaizing to the non-IID client distributions. Also,
constraints on data privacy makes it difficult to im-
port approaches (Kirkpatrick et al., 2017; Rolnick
et al., 2019) that avoid catastrophic forgetting of
distributions in continual learning tasks.

Federated Learning for language tasks Dis-
tributed training on language tasks with federated

learning has been gaining some attention. McMa-
han et al. (2017b) trained a differentially private lan-
guage model over non-IID data distributions while
Ge et al. (2020) trained a recurrent + convolutional
architecture for medical named entity recognition
task. Recently, Lin et al. (2021) proposed a frame-
work that enables using modern pretrained lan-
guage models on different language understanding
tasks. Lin et al. (2021) discuss and hypothesizes
a gap between the performance of Transformer ar-
chitectures between the federated and centralized
setting with data heterogeneity. Dupuy et al. (2022)
analyze the effect of having clients with different
amounts of data gathered from Alexa devices and
suggest that non-uniform selection of devices im-
proves the performance of the shared model.

In this work, we attempt to investigate different
possible confounders for domain adaptation claims
of federated systems in NLP and elaborately ana-
lyze them in the language tasks of classification,
sequence tagging and sequence generation tasks
that are popularly used with Transformer architec-
tures.

4 Experiments

Models and Tasks We experiment with a focus
on the pretrain-finetune setup that is popular with
Transformer architectures on many language tasks.
Of the many, we pick three tasks— Stanford Sen-
timent Treebank 2 (SST-2) (Socher et al., 2013),
OntoNotes (v5.0) (Weischedel et al., 2013) and Gi-
gaword (Graff et al., 2003) that fall into the broad
categories of text classification, sequence tagging,
text-generation respectively. The data splits are
as used in (Lin et al., 2021), please refer §B for
details. As for the models1, we use BART-Base
(Lewis et al., 2019) for text generation and Distil-
BERT (Sanh et al., 2019) for the other two tasks.
In the experiments we use the models with ()
and without () pretrained weights23.

Centralized Training We use batch-wise gradi-
ent descent with AdamW (Loshchilov and Hutter,
2017) as the optimizer along with a linear learning
rate scheduler. We use cross-entropy for model
selection across the tasks. Also, in our analysis, we

1We use the transformer weights shared in huggingface:
‘distilbert-base-uncased’ and ‘facebook/bart-base’.

2Across the experiments the line style and the colour is
used to denote the corresponding model performances.

3The without pretrained weights setting trains the models
from scratch.

456

Dataset Model Metric Pretrained Cent. Fed. ∆(Perf) ∆ (Rel.%)

SST2 DistilBERT Accuracy
✓ 89.0±0.8 87.8±0.4 1.3 −
✗ 69.2±3.2 67.8±1.0 1.4 7.7 ▲

OntoNotes DistilBERT F1
✓ 85.9±0.1 84.4±0.1 1.5 −
✗ 65.1±0.3 55.3±0.3 9.8 550 ▲

Gigaword BART Rouge1
✓ 34.6±0.7 32.5±0.2 2.1 −
✗ 6.1±0.5 2.9±0.6 3.2 50 ▲

Table 1: Comparison between the ∆(Perf) of federated and corresponding centralized set up when using (✓) and
not using (✗) pretrained transformer weights. Across the 3 tasks it can be seen that the gap increases when not using
pretrained weights (▲) suggesting that the pretrained weights of transformer are possibly doing the heavy lifting in
domain adaptation of federated learning in language tasks.

use cross-entropy of samples in the test set to eval-
uate the relative performance of models compared.
The complete results of the experiments are in §F.

Federated Training For the federated experi-
ments, we partition the training dataset for the
clients and train them using the FedOpt algorithm
(Asad et al., 2020) to estimate the server parame-
ter updates. Further, we use AdamW with a linear
learning rate scheduler to estimate the gradients in
our experiments. The round with the best server
test loss is selected as the best round (For the com-
plete results please refer to §F; for their run-time
refer to §E).

Evaluation Metrics The metric of evaluation
(Perf) is accuracy for sentence classification, F1-
span for sequence tagging and ROUGE1 score for
text summarization.

4.1 Motivation
Federated NLP considers two powerful learning
paradigms— Federated algorithms aggregate the
gradient updates over clients trained with non-
identical data distributions while maintaining pri-
vacy, and PLMs trained over large corpora with a
generic objective that gives a better downstream
performance. Stickland and Murray (2019) and
Peng et al. (2020) show that PLMs are success-
ful in tasks that require domain adaptation. The
motivation primarily relies on verifying if feder-
ated algorithms and PLMs share a synergy in the
extreme domain adaptation scenario.

To that, we first study the role of pretrained
weights as a confounding variable in the feder-
ated setup. The null hypothesis being the feder-
ated learning not affected much by the pretrained
weights should be supported with ∆(Perf) remain-
ing similar in both cases. But, in Table 1 across
different tasks we see that ∆(Perf) increases when

not using pretrained weights. This suggests that the
pretrained weights may be supporting the perfor-
mance of federated learning in NLP applications.
The corollary to this observation could be that the
learning in a federated setting may not be happen-
ing from adapting to the client distributions. This
raises concerns on personalization that if at all the
federated NLP setup with PLM learns anything
from the client distribution.

4.2 Estimating the Confounding Variables

Pretraining and Federated Learning Towards
understanding the essence of the pretrained
weight’s semantic prior as a confounding role in the
success of FL for NLP, we continue to control for
it in the remainder of the experiments. Disentan-
gling such observations is necessary to objectively
analyze the federated algorithm for language tasks.

Contribution by Client size One major chal-
lenge in the realistic setting of federated learning
for data-driven tasks is the data imbalances that
naturally occur among the clients (Lin et al., 2021;
Dupuy et al., 2022). The distribution of number of
data samples that each client has creates two dis-
tinct classes of clients— major and minor players—
whose updates may affect the parameters of the
shared server model differently. Generalization
aside, ensuring personalization to the local distribu-
tion of data in the clients also becomes necessary
in different scenarios arisen from the diverse data
distributions. While extreme distributions may pro-
vide a regularization effect due to the ensemble
learning (Balaji et al., 2018; Kumar et al., 2020;
Stanton et al., 2021), the objective being able to
better generalize through adapting to different lo-
cal distributions require careful consideration of
the distribution of clients. Towards understanding
the limits of learning under the influence of clients

457

of different sizes, we evaluate the role of minor
clients by ablating clients smaller than a threshold
(τ) number of samples.

Client Personalization and Server General-
ization Personalization emphasizes the shared
model’s capacity to be representative of all clients’
distributions alike. But, training on the local distri-
bution may affect the generalized representation of
the shared model similar to the catastrophic forget-
ting in continual learning (Kirkpatrick et al., 2017)
or mode collapse in generative modeling (Salimans
et al., 2016). Using PLMs due to their robust
semantic representations could alleviate some of
these challenges. More specifically, we formulate
our questions as ablation experiments: (a) How are
personalization and generalization related across
different tasks and client distributions (b) Does
removing updates from minor players affect this
relation? We study these questions in experiments
with the help of m∆P metric.

Client data partitioning distribution General-
ization to unseen distribution, and how well the
local client distributions are personalized over the
federated learning rounds is also affected by the
distribution of samples over the clients. Towards
understanding the effect of the sample distribution
on the personalization-generalization relation we
compare the learning of the server model between
non-uniform distribution that is closer to real world
scenario, and a more controlled uniform distribu-
tion of samples among the clients to (a) evaluate
the effect of generalization by the shared model and
the personalization to local distribution by varying
the number of samples per client uniformly over
all the clients, and (b) we perform ablations on
the updates by thresholding the clients on hetero-
geneous data distribution set up to understand the
ideal scenarios in different language tasks.

4.3 Additional Setup

Dataset Partitioning Strategies For the study,
we use data selection for the clients using two dif-
ferent strategies. Please refer to §C for the choice
of hyper-parameters for the two methods.

Random partitioning samples data over {C}Kk=1

by sampling from a Dirichlet distribution over
the K clients with α = 0.1 (Lin et al., 2021).
For ablation on random distribution, we use
hyperparameter τ that denotes the minimum

number of samples in Ci for its parameters to
be aggregated.

Uniform partitioning distributes the data uni-
formly over {C}Ki=1, which is controlled by
a hyperparameter γ. Specifically, uniform dis-
tribution is constructed by sampling at least γ
samples from each class for each client in the
classification tasks. For the text summariza-
tion dataset, we cluster the SentenceBERT
embedding (Reimers and Gurevych, 2019)
and use KMeans++ 4(Arthur and Vassilvit-
skii, 2006) with 8 as the number of clusters,
and sample uniformly over them.

Distributional Similarity We use MAUVE score
(Pillutla et al., 2021) to measure the similarity be-
tween different text distributions in the experiments.
The score uses GPT-2 (Radford et al., 2019) esti-
mating the distributional similarity. Also, we use
mauve_scaling_parameter set to 20. The score
ranges between 0 and 1, where 1 indicates signifi-
cant overlap.

5 Results

Following our motivation in §4.1 and questions
raised for the confounders to the federated system
for NLP tasks in §4.2, we structure the results to
our investigation in this section.

(a) SST2 (b) OntoNotes (c) Gigaword

Figure 1: We observe the effect of domain shift by
measuring the δ change in the loss over every sample in
the test set (Pclient−P∗−1

server) and drawing a correlation
with the average loss over the train distribution in the
clients (P̃client).

5.1 Effectiveness of Pretrained weights in
adapting to client data distributions

An ideal model is expected to not discount the
learning on the client distributions for better gener-

4We use the implementation in www.scikit-learn.org.

458

www.scikit-learn.org

(a) SST2-Random (b) OntoNotes-Random (c) Gigaword-Random

(d) SST2-Uniform (e) OntoNotes-Uniform (f) Gigaword-Uniform

Figure 2: By varying the number of trainable clients in the random setting across the tasks, we measure the sensitivity
of the shared model’s performance (Cent. − Fed.: ▽ indicates federated model performing better) to data removal
as high as ∼ 55% of training data (SST-2: ∼ 55%, OntoNotes: ∼ 33% and Gigaword: ∼ 20% with the smallest
number of clients).

alization performance. To verify whether such dis-
counting happens, we analyze the personalization-
generalization trade-off with the m∆P metric. In
Figure 1, across the datasets we observe that the
correlation stayed more neutral than positive, sug-
gesting that the pretrained model may not be learn-
ing much from the local distributions. We observe a
relatively positive m∆P value when trained without
the pretrained weights. This could be an anticipated
behaviour, as the model relies on the information
in the client distribution for generalization, unlike
the pretrained weights that come with a semantic
prior.

5.2 Client contributions to the metrics

We set up additional experiments to understand the
contribution of clients in more detail. Particularly,
we begin by studying our experiment of ablating up-
dates from the clients that are below threshold (τ)
on the random experiments. We hypothesize that as
the threshold value is increased, the server model is
restricted to learning from fewer client local distri-
butions and the generalization performance should
also decline as a result. On the contrary, we note in
Figure 2 (top row) that the performance of the with
pretrained model remained relatively unchanged
across the datasets. However, the MAUVE scores
estimated over the Ablated, Unablated and Test
(Unseen) distributions of data in Table 2 suggest
that the test distribution are not close to the ablated

Dataset U —A U —T A —T

SST2 0.52±0.06 0.48±0.07 0.47±0.07

OntoNotes 0.64±0.06 0.53±0.07 0.51±0.06

Gigaword 0.58±0.07 0.45±0.07 0.45±0.07

Table 2: The MAUVE score between the distribution of
data in ablated (A), unablated (U) and unseen (T) splits
with maximum value of τ in the random distribution set-
ting. The values indicate the maximal distance between
the distributions across the tasks.

or unablated clients’ distributions5. The perfor-
mance of the pretrained model in the federated
setup, still being little affected only suggests that
pretrained models may not be learning from the
local distributions that hurt the claims of personal-
ization to these distributions.

If not adapting to the local distributions, we fur-
ther investigate whether the pretrained models use
the updates from client distributions as regulariza-
tion. To that, we repeat the same experiments on
the same datasets with the more controlled uniform
distribution setting.

Do client sizes affect the gap To have a clearer
picture of the client size affecting the learning con-
tribution, we use the uniform distribution with γ
controlling the data partitioning size uniformly over
all the clients. In Figure 2 (bottom row), we ob-
serve a trend showing that the models' performance

5Scores closer to 1 indicate significant overlap

459

(a) SST2

(b) OntoNotes

(c) Gigaword

Figure 3: Impact of personalization of clients on gen-
eralization of server —m∆P

values depict the impact
in Random distribution strategy when ablating minor
clients over different τ values.

(pretrained or not) decreases drastically as the num-
ber of clients increases and the client partitioning
sizes progressively become smaller. Similar obser-
vation across the different tasks suggests that the
model requires a quorum of samples to minimize
the gap across (Equation 1) the different tasks in a
federated setup.

Do client sizes affect the trade-off Again here,
we adjust for τ in random setting, where the clients
with less than τ number of samples are restricted
from updating the server parameters. We measure
m∆P values for the varying τ values in Figure 3.
We observe that with updates primarily from more
minor clients (lower τ value), the generalization is
less affected by personalization. But, the gap being
lower as shown in Figure 2 suggests that the noisy
updates with fewer clients be acting as a regularizer
for the server updates. Further, as the value of τ
increases (Figure 3), the trade-off remains healthier
until a certain value of τ and then it drops. This
trend could be attributed to the fact that with a
higher τ value the number of clients updating the
server becomes lesser with more data points, which
provides better generalization but personalization
due to variance in the client distribution gets chal-

lenging.
To understand the impact of varying client dis-

tributions on the trade-off, we perform the same
analysis with uniform distribution shown in Fig-
ure 4. The pretrained model’s generalization re-
mains unaffected with more minor clients across
SST-2 and GigaWord tasks supporting the alternate
that updates from minor clients provide a regular-
ization effect as we also see the gap to remain the
same in Figure 2. On OntoNotes, while the m∆P

value stays the same the gap widens as observed in
Figure 2. The varying results do not provide con-
clusive evidence on whether the pretrained models
can learn to adapt to different domains in such ex-
treme settings. Answering this is non-trivial which
requires a careful consideration of the pretraining
datasets and characterization of domains based on—
task, topic, syntax, style etc.

(a) SST2

(b) OntoNotes

(c) Gigaword

Figure 4: Impact of personalization of clients on gener-
alization of server—m∆P

values depicting the impact
in Uniform distribution strategy with varying sizes of
clients.

Time-Performance trade-off with varying client
sizes The dropping of updates from the minor
clients could also provide acceleration in the num-
ber of rounds, R, as federated learning has a com-
munication overhead. We measure the performance
of server with pretrained weights, PerfS , over the
different tasks and the number of rounds (R) taken

460

(a) SST2-Random-Accuracy (b) OntoNotes-Random-F1 (c) Gigaword-Random-Rouge1

(d) SST2-Uniform-Accuracy (e) OntoNotes-Uniform-F1 (f) Gigaword-Uniform-Rouge1

Figure 5: We compare R taken to converge when varying the number of clients in the uniform and in the random
distribution settings with pretrained weights (✓). We also measure the corresponding PerfS of the server model in
the task.

by the set up to converge.

In Figure 5, we compare across the tasks with
random distribution and the uniform distribution of
samples with pretrained weights by varying the τ
and γ respectively. In the random distribution ex-
periments, as we are discarding parameter updates
from clients we observe a not-so-steep drop in the
PerfS of the server model in SST-2 and OntoNotes.
On the other hand, in Gigaword dataset experi-
ments the impact of dropping the clients did not
affect PerfS . With respect to R, τ value being in-
versely proportional to the number of clients, we
did not see a drastic acceleration to the number of
rounds as lesser clients also increased the difficulty
of the tasks.

In uniform setting, by varying the number of
clients without the data loss, we make two ob-
servations: (1) The PerfS is always better than
when compared with random setting, (2) the per-
formance saturates after a certain γ across the tasks,
and (3) the number of rounds taken by the models
to converge shows drastic decrease as the num-
ber of clients decreases. We hypothesize that with
only major clients the gradient updates are stable
to enable faster convergence. This contradicts with
the observation in (Lin et al., 2021) that shows a
wider gap in the performance when training pre-
trained transformer models in a federated set up,
which we observe only when not using pretrained
weights. Collectively, the results hint that the fed-
erated set up with PLMs suffer from personalizing

to the client distributions, and the generalization
on tasks may be a regularization of the distributed
set-up.

6 Conclusion

This work explores pertinent questions that require
a closer look at evaluating PLMs in the federated
setting. Through empirical observations, we find
that in federated learning, where the emphasis is
more on personalization while ensuring privacy
there could be a risk of pretrained models over-
looking the client distributions. We also evalu-
ated the effects of varying the client distributions
which suggested that the gap between centralized
and federated performance to be reduced when the
samples are uniformly distributed over the clients.
While that is ideal, the random distribution too
does not suffer significant performance loss with
pretrained weights. However, the critical aspect of
the questions stems from the need to investigate the
pretraining routine in identifying the right domain
adaptation challenges for pretrained models. The
gap being minimized while the personalization tak-
ing a toll calls for a deeper inspection to explore
the limits of domain adaptation in PLMs with an
appropriate evaluation framework (datasets, and
metrics) that controls for the leak in the pretraining
corpus.

461

Acknowledgements

We thank Guojun Zhang, and Xi Chen from the
federated learning team at Huawei Noah’s Ark Lab,
Montréal for the many interesting discussions. We
thank the anonymous reviewers for their insightful
comments to our work. We also want to reproduce
our results on Mindspore 6 in future, which is a
new deep learning computing framework.

Limitations

The study, though, considers sample tasks from
the different language tasks the downstream tasks
generally are smaller in the size, and not much di-
versity with respect to the task complexity is consid-
ered. Though there is motivation for using FedOpt
for training, the claims could have been further
supported by exploring other possible federated al-
gorithms. The scale of the experiments however
do not play in favour of such an exhaustive study.
Although the distributional similarity is measured
with MAUVE, other aspects of texts n-gram, topic
modelling could be explored to understand the do-
main shifts. Further, the study does not consider
language models with different other inductive bi-
ases. The different transformer models and the
effect of their respective pretraining datasets and
task remain unexplored for future work. In addition
to the above, the behaviour of different federated
algorithms in the hypotheses we frame would also
become interesting cases to scale our work.

Broader Impact

The trend of fine tuning transformer models for
downstream tasks as both time and cost-effective
solution for improving performance in downstream
tasks has been gaining enough popularity. With fed-
erated algorithms giving access to learning from
more public data while tackling the privacy con-
cerns, it becomes worthwhile to use pretrained lan-
guage models for language applications. Thus, un-
derstanding the adjustments to this federated lan-
guage task learning with pretrained transformers on
the claims of personalization-generalization trade-
off becomes necessary. Knowledge and role of
variables like client sizes and their distribution on
the federated performance help identifying better
decisions on setting up an appropriate domain for
learning in downstream NLP tasks.

6https://www.mindspore.cn/

References

David Arthur and Sergei Vassilvitskii. 2006. k-
means++: The advantages of careful seeding. Tech-
nical report, Stanford.

Muhammad Asad, Ahmed Moustafa, and Takayuki Ito.
2020. Fedopt: Towards communication efficiency
and privacy preservation in federated learning. Ap-
plied Sciences, 10(8):2864.

Yogesh Balaji, Swami Sankaranarayanan, and Rama
Chellappa. 2018. Metareg: Towards domain gen-
eralization using meta-regularization. Advances in
neural information processing systems, 31.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. 2010. A theory of learning from different
domains. Machine learning, 79(1):151–175.

John Blitzer. 2008. Domain adaptation of natural lan-
guage processing systems. Ph.D. thesis, University
of Pennsylvania.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 con-
ference on empirical methods in natural language
processing, pages 120–128.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and
Xiuqiang He. 2018. Federated meta-learning with
fast convergence and efficient communication. arXiv
preprint arXiv:1802.07876.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine
learning, pages 160–167.

Xia Cui and Danushka Bollegala. 2019. Self-adaptation
for unsupervised domain adaptation. Proceedings-
Natural Language Processing in a Deep Learning
World.

Hal Daumé III. 2009. Frustratingly easy domain adap-
tation. arXiv preprint arXiv:0907.1815.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

462

Mark Dredze and Koby Crammer. 2008. Online meth-
ods for multi-domain learning and adaptation. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 689–
697.

Christophe Dupuy, Tanya G Roosta, Leo Long, Clement
Chung, Rahul Gupta, and Salman Avestimehr. 2022.
Learnings from federated learning in the real world.
In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8767–8771. IEEE.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Suyu Ge, Fangzhao Wu, Chuhan Wu, Tao Qi, Yongfeng
Huang, and Xing Xie. 2020. Fedner: Privacy-
preserving medical named entity recognition with
federated learning. arXiv preprint arXiv:2003.09288.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consor-
tium, Philadelphia, 4(1):34.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsu-
pervised domain adaptation of contextualized em-
beddings for sequence labeling. arXiv preprint
arXiv:1904.02817.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and
open problems in federated learning. Foundations
and Trends® in Machine Learning, 14(1–2):1–210.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, et al. 2021. Dynabench: Rethinking benchmark-
ing in nlp. arXiv preprint arXiv:2104.14337.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. 2016. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492.

Wouter M Kouw and Marco Loog. 2018. An intro-
duction to domain adaptation and transfer learning.
arXiv preprint arXiv:1812.11806.

Ananya Kumar, Tengyu Ma, and Percy Liang. 2020. Un-
derstanding self-training for gradual domain adapta-
tion. In International Conference on Machine Learn-
ing, pages 5468–5479. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Daliang Li and Junpu Wang. 2019. Fedmd: Heteroge-
nous federated learning via model distillation. arXiv
preprint arXiv:1910.03581.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng
He. 2021. Federated learning on non-iid data
silos: An experimental study. arXiv preprint
arXiv:2102.02079.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. 2020.
Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems,
2:429–450.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin
Wang, Yufen Huang, Mahdi Soltanolkotabi, Xiang
Ren, and Salman Avestimehr. 2021. Fednlp: A re-
search platform for federated learning in natural lan-
guage processing. arXiv preprint arXiv:2104.08815.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Bing Liu and Sahisnu Mazumder. 2021. Lifelong and
continual learning dialogue systems: learning during
conversation. Proceedings of AAAI-2021.

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi
Liu, Yuanyuan Chen, Lican Feng, Tianjian Chen,
Han Yu, and Qiang Yang. 2020. Fedvision: An
online visual object detection platform powered by
federated learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang,
and Jiashi Feng. 2021. No fear of heterogeneity:
Classifier calibration for federated learning with non-
iid data. Advances in Neural Information Processing
Systems, 34:5972–5984.

Priyanka Mary Mammen. 2021. Federated learn-
ing: Opportunities and challenges. arXiv preprint
arXiv:2101.05428.

463

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017a.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Brendan McMahan and Daniel Ramage. 2017. Feder-
ated learning: Collaborative machine learning with-
out centralized training data. Google Blog.

H Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2017b. Learning differentially pri-
vate recurrent language models. arXiv preprint
arXiv:1710.06963.

Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo
Lee, Zhengming Ding, and Chen Chen. 2022. Local
learning matters: Rethinking data heterogeneity in
federated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 8397–8406.

Daniel W Otter, Julian R Medina, and Jugal K Kalita.
2020. A survey of the usages of deep learning for
natural language processing. IEEE transactions on
neural networks and learning systems, 32(2):604–
624.

Yifan Peng, Qingyu Chen, and Zhiyong Lu. 2020.
An empirical study of multi-task learning on
bert for biomedical text mining. arXiv preprint
arXiv:2005.02799.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816–4828.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D Lawrence. 2008. Dataset
shift in machine learning. Mit Press.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog.

Alan Ramponi and Barbara Plank. 2020. Neural unsu-
pervised domain adaptation in nlp—a survey. arXiv
preprint arXiv:2006.00632.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. Advances in Neural
Information Processing Systems, 32.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. Advances in
neural information processing systems, 29.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko,
Alexander A Alemi, and Andrew G Wilson. 2021.
Does knowledge distillation really work? Advances
in Neural Information Processing Systems, 34:6906–
6919.

Asa Cooper Stickland and Iain Murray. 2019. Bert and
pals: Projected attention layers for efficient adapta-
tion in multi-task learning. In International Con-
ference on Machine Learning, pages 5986–5995.
PMLR.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. arXiv preprint arXiv:1909.03329.

Zijie J Wang, Dongjin Choi, Shenyu Xu, and Diyi
Yang. 2021. Putting humans in the natural lan-
guage processing loop: A survey. arXiv preprint
arXiv:2103.04044.

Jason Wei, Dan Garrette, Tal Linzen, and Ellie Pavlick.
2021. Frequency effects on syntactic rule learning in
transformers. arXiv preprint arXiv:2109.07020.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. OntoNotes Release 5.0.
Abacus Data Network.

Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2018.
Lifelong domain word embedding via meta-learning.
arXiv preprint arXiv:1805.09991.

Dong Yang, Ziyue Xu, Wenqi Li, Andriy Myronenko,
Holger R Roth, Stephanie Harmon, Sheng Xu, Baris
Turkbey, Evrim Turkbey, Xiaosong Wang, et al. 2021.
Federated semi-supervised learning for covid region
segmentation in chest ct using multi-national data
from china, italy, japan. Medical image analysis,
70:101992.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

464

https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai
Zhang, and Shuai Yi. 2021. Collaborative unsuper-
vised visual representation learning from decentral-
ized data. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4912–
4921.

465

A Reproducibility Checklist

A.1 For all reported experimental results:
1. A clear description of the mathematical set-

ting, algorithm, and/or model: We define the
details of our experimental setup in §4.

2. Description of computing infrastructure used:
We use multiple servers equipped with 8
NVIDIA V100 (32 GB) GPUs and 72 cores
CPU (754 GB) for running our experiments.

3. The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or es-
timated energy cost and number of parame-
ters in each model: The details of the run-
time costs per experiment and the model have
been reported in Table 8. The experiment runs
have been tabulated in Table 9, Table 10 &
Table 11.

4. Corresponding validation performance for
each reported test result: Not applicable.

5. Explanation of evaluation metrics used, with
links to code: This is specified with references
in paragraph titled ‘Evaluation’ in §2.

A.2 For all experiments with hyperparameter
search:

1. The exact number of training and evaluation
runs: We run all centralized and random distri-
bution on 3 seeds while the uniform distribu-
tion experiments are run on a single seed. The
random distribution leads to different client
size distributions while the uniform distribu-
tion has all clients of similar size.

2. Bounds for each hyperparameter: The tunable
hyperparameters were batch size and learning
rate in both centralized and federated training.
For each dataset in both cases of fine-tuning
and training from scratch, we find the best
learning rate in the range [0.01, 0.000001] for
centralized and federated training by tuning
on the exponent scale. For federated training
we find the best hyperparameters in random
distribution setting which we continue to use
in other variants of our experiments. For the
batch size, we explore in the set 8, 16, 32, 64.

3. Hyperparameter configurations for best-
performing models: The Table 4, Table 5,
Table 6 & Table 7 records the best hyperpa-
rameters in use.

4. Number of hyperparameter search trials: The
best hyperparameters are chosen over 3 seeds.

5. The method of choosing hyperparameter val-
ues (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among
them (e.g., accuracy) The best test loss re-
sulting combination of hyperparameters is se-
lected. The grid search method is used.

6. Summary statistics of the results (e.g., mean,
variance, error bars, etc.) The tabulated re-
sults show mean and standard deviation re-
sults while the line plots are created using me-
dian as an estimator. The plots involving test
or train loss account the evaluations done on a
sample level. The plots using Perf evaluations
use set of experiment level values.

A.3 For all datasets used:
1. Relevant details such as languages, and num-

ber of examples and label distributions: The
datasets used are SST2, OntoNotes and Giga-
word which are all in the English language.

2. Details of train/validation/test splits: This can
be found tabulated in Table 3.

3. Explanation of any data that were excluded,
and all pre-processing steps: For the task of
text classification we use the complete sen-
tences as samples instead the parsed phrases.

4. A zip file containing data or link to a down-
loadable version of the data: The references
to the datasets are provided in §4.

5. For new data collected, a complete descrip-
tion of the data collection process, such as
instructions to annotators and methods for
quality control. Not applicable.

466

B Dataset Splits

Dataset Train set Test set Labels
SST2 6, 920 1, 821 2

OntoNotes 59, 924 8, 262 37

Gigaword 10, 000 2000 N.A.

Table 3: Statistics for the 3 different dataset used.

C Client Data Distribution

During the gradient accumulation, we normally use uniform weightage. For sanity check if uniform
weighting is the best choice, we made comparison of the random distribution with SST2 dataset using
weighted aggregation where the client gradients are weighted to their size proportions. We did not see any
advantage and hence continued using the uniform weightage. The comparison in performance can be seen
in Table 9.

C.1 Random Distribution

Dataset Clients τ

SST2 3-100 {0, 100, 300, 500}
OntoNotes 4-54 {0, 40, 120, 700, 4000}
Gigaword 7-63 {0, 18, 34, 126, 750, 1200}

Table 4: Statistics for random distribution strategy experiments. The number of clients are effected by the ablation
threshold for minor clients (τ).

C.2 Uniform Distribution

Dataset Clients γ

SST2 5-173
{600, 500, 485, 460,
320, 190, 80, 40, 20}

OntoNotes 6-54
{1300, 630, 420, 321,

252, 209, 180, 159, 139}

Gigaword 7-63
{180, 90, 60, 45,

36, 30, 26, 22, 20}

Table 5: Statistics for uniform distribution strategy experiments. The client count increases as the number of samples
per label in a client (γ) decreases.

467

D Hyperparameters

The experiments on random distribution for all the datasets were carried out with 3 different seeds.
However, for the uniform distribution we use only a single seed for OntoNotes and Gigaword datasets.
Unlike the random distribution where the sampled client sizes keeps varying dramatically, the uniform
distribution has all clients with almost the same number of data samples. Thus, we relax the need for
repeating experiments with multiple seeds in the uniform distribution.

Dataset Pretraining Epochs Batch size L.R.

SST2
✓ 10 8 1.00E-05
✗ 10 8 1.00E-05

OntoNotes
✓ 5 8 2.00E-05
✗ 5 32 2.00E-04

Gigaword
✓ 5 8 3.00E-05
✗ 5 8 3.00E-05

Table 6: The hyperparameters used for the centralized training experiments.

Dataset Pretraining Rounds Batch size L.R.

SST2
✓ 30 64 1.00E-05
✗ 50 64 1.00E-05

SST2 (Weighted Aggregation)
✓ 30 64 1.00E-04
✗ 50 64 1.00E-04

OntoNotes
✓ 30 64 2.00E-05
✗ 50 64 2.00E-05

Gigaword
✓ 10 8 3.00E-05
✗ 15 8 3.00E-05

Table 7: The hyperparameters used for the federated training experiments.

E Runtime of the experiments

Dataset Model (parameters) Experiment Pretrained GPUs Runtime (Hrs)

SST2 distilbert-base-uncased (66.9M)

Centralized Training ✓ 1 ∼0.5
✗ ∼0.5

Random Distribution ✓ 8 5-6
✗ 8-10

Uniform Distribution ✓ 8 9-12
✗ 15-20

OntoNotes distilbert-base-uncased (66.4M)

Centralized Training ✓ 1 ∼1
✗ ∼1

Random Distribution ✓ 8 4-5
✗ 6.5-7.5

Uniform Distribution ✓ 8 6-27.5
✗ 10-46

Gigaword facebook/bart-base (139.4M)

Centralized Training ✓ 1 ∼1
✗ ∼1

Random Distribution ✓ 8 2-15
✗ 3-22.5

Uniform Distribution ✓ 8 3.5-17.5
✗ 5-26.5

Table 8: Time and resource costs per experiment run for the different datasets. The GPU refers to the NVIDIA
V100 (32 GB) in a server having 8 of them.

468

F Master Results Tables

F.1 SST2

Centralized learning
Pretraining Test Accuracy (%) Epochs

✓ 89.02 ± 0.83 4.33 ± 2.87
✗ 69.19 ± 3.2 5.33 ± 2.62

Random distribution (τ=0, 100 clients) (Weighted Aggregation)
Pretraining Test Accuracy (%) Rounds

✓ 86.84 ± 0.1 30.0 ± 0.0
✗ 52.99 ± 2.39 49.67 ± 0.47

Random distribution (τ=0, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 87.77 ± 0.4 28.67 ± 1.89
✗ 67.78 ± 1.04 50.0 ± 0.0

Random distribution (τ=100, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 85.89 ± 1.08 30.0 ± 0.0
✗ 64.34 ± 1.05 49.67 ± 0.47

Random distribution (τ=300, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 86.44 ± 0.39 30.0 ± 0.0
✗ 62.84 ± 0.5 50.0 ± 0.0

Random distribution (τ=500, 100 clients)
Pretraining Test Accuracy (%) Rounds

✓ 84.79 ± 1.42 30.0 ± 0.0
✗ 61.14 ± 1.46 50.0 ± 0.0

Uniform distribution (γ=20, 173 clients)
Pretraining Test Accuracy (%) Rounds

✓ 88.05 ± 0.32 29.67 ± 0.47
✗ 66.68 ± 1.17 50.0 ± 0.0

Uniform distribution (γ=40, 87 clients)
Pretraining Test Accuracy (%) Rounds

✓ 88.61 ± 0.23 30.0 ± 0.0
✗ 72.29 ± 0.4 49.33 ± 0.47

Uniform distribution (γ=80, 44 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.07 ± 0.13 29.33 ± 0.94
✗ 74.32 ± 0.64 48.67 ± 0.94

Uniform distribution (γ=190, 19 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.2 ± 0.2 23.67 ± 1.7
✗ 78.0 ± 0.4 47.67 ± 1.7

Uniform distribution (γ=320, 11 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.11 ± 0.32 18.0 ± 1.41
✗ 79.06 ± 0.42 41.0 ± 2.94

Uniform distribution (γ=460, 8 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.38 ± 0.09 16.33 ± 0.47
✗ 79.7 ± 0.14 34.33 ± 1.7

Uniform distribution (γ=485, 8 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.35 ± 0.68 18.0 ± 2.94
✗ 79.64 ± 1.05 32.33 ± 2.87

Uniform distribution (γ=500, 7 clients)
Pretraining Test Accuracy (%) Rounds

✓ 89.64 ± 0.13 16.0 ± 0.82
✗ 79.75 ± 0.32 31.33 ± 1.25

Uniform distribution (γ=600, 6 clients)
Pretraining Test Accuracy (%) Rounds

✓ 88.96 ± 0.12 13.67 ± 0.94
✗ 79.33 ± 0.39 28.33 ± 2.05

Table 9: Results of all experiments on SST2 dataset after model selection on the best server test loss.

469

F.2 OntoNotes

Centralized learning
Pretraining Test F1 (%) Epochs

✓ 85.93 ± 0.13 3.33 ± 1.7
✗ 65.1 ± 0.29 1.0 ± 0.0

Random distribution (τ=0, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.44 ± 0.05 29.67 ± 0.47
✗ 55.31 ± 0.27 49.67 ± 0.47

Random distribution (τ=40, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.49 ± 0.05 30.0 ± 0.0
✗ 55.41 ± 0.26 50.0 ± 0.0

Random distribution (τ=120, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.48 ± 0.1 29.67 ± 0.47
✗ 55.4 ± 0.16 50.0 ± 0.0

Random distribution (τ=700, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 84.27 ± 0.25 29.67 ± 0.47
✗ 55.08 ± 0.18 49.67 ± 0.47

Random distribution (τ=4000, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 83.98 ± 0.32 30.0 ± 0.0
✗ 53.07 ± 1.23 50.0 ± 0.0

Uniform distribution (γ=139, 54 clients)
Pretraining Test F1 (%) Rounds

✓ 77.7 30.0
✗ 52.67 50.0

Uniform distribution (γ=159, 48 clients)
Pretraining Test F1 (%) Rounds

✓ 79.86 30.0
✗ 54.0 50.0

Uniform distribution (γ=180, 42 clients)
Pretraining Test F1 (%) Rounds

✓ 82.05 30.0
✗ 55.72 50.0

Uniform distribution (γ=209, 36 clients)
Pretraining Test F1 (%) Rounds

✓ 83.43 29.0
✗ 57.38 50.0

Uniform distribution (γ=252, 30 clients)
Pretraining Test F1 (%) Rounds

✓ 84.61 30.0
✗ 60.26 50.0

Uniform distribution (γ=321, 24 clients)
Pretraining Test F1 (%) Rounds

✓ 83.99 29.0
✗ 63.2 50.0

Uniform distribution (γ=420, 18 clients)
Pretraining Test F1 (%) Rounds

✓ 85.16 29.0
✗ 65.22 48.0

Uniform distribution (γ=630, 12 clients)
Pretraining Test F1 (%) Rounds

✓ 84.79 23.0
✗ 67.61 45.0

Uniform distribution (γ=1300, 6 clients)
Pretraining Test F1 (%) Rounds

✓ 84.49 16.0
✗ 66.14 28.0

Table 10: Results of all experiments on OntoNotes dataset after model selection on the best server test loss.

470

F.3 Gigaword

Centralized learning
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Epochs

✓ 34.57 ± 0.66 15.92 ± 0.36 32.35 ± 0.59 3.0 ± 1.41
✗ 6.07 ± 0.51 0.36 ± 0.08 5.86 ± 0.5 3.0 ± 1.63

Random distribution (τ=0, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 32.48 ± 0.22 14.28 ± 0.02 30.61 ± 0.19 10.0 ± 0.0
✗ 2.89 ± 0.56 0.05 ± 0.02 2.89 ± 0.54 15.0 ± 0.0

Random distribution (τ=18, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.72 ± 0.25 15.57 ± 0.08 32.25 ± 0.16 10.0 ± 0.0
✗ 1.87 ± 0.3 0.01 ± 0.01 1.83 ± 0.33 14.33 ± 0.94

Random distribution (τ=34, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.46 ± 0.54 15.48 ± 0.22 32.07 ± 0.36 10.0 ± 0.0
✗ 2.0 ± 0.3 0.03 ± 0.01 1.96 ± 0.32 14.33 ± 0.94

Random distribution (τ=126, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 32.86 ± 0.97 14.45 ± 0.61 30.88 ± 0.82 10.0 ± 0.0
✗ 1.54 ± 0.24 0.02 ± 0.01 1.51 ± 0.26 14.33 ± 0.47

Random distribution (τ=750, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 32.8 ± 1.73 14.54 ± 0.91 30.9 ± 1.39 8.33 ± 1.7
✗ 3.29 ± 1.74 0.01 ± 0.01 3.22 ± 1.68 13.67 ± 1.89

Random distribution (τ=1200, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.17 ± 0.38 15.41 ± 0.23 32.09 ± 0.26 9.33 ± 0.47
✗ 4.71 ± 0.98 0.0 ± 0.0 4.67 ± 0.97 11.33 ± 1.25

Uniform distribution (γ=20, 63 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 33.05 14.56 31.04 10.0
✗ 2.41 0.0 2.4 15.0

Uniform distribution (γ=22, 57 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 33.36 14.89 31.35 10.0
✗ 1.58 0.04 1.56 15.0

Uniform distribution (γ=26, 49 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 33.68 15.03 31.66 10.0
✗ 2.07 0.0 2.09 15.0

Uniform distribution (γ=30, 42 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 34.44 15.43 32.32 10.0
✗ 2.06 0.0 2.06 15.0

Uniform distribution (γ=36, 35 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.09 15.88 32.68 10.0
✗ 2.18 0.0 2.17 15.0

Uniform distribution (γ=45, 28 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.48 16.19 33.13 10.0
✗ 5.59 0.11 5.38 15.0

Uniform distribution (γ=60, 21 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.39 16.38 33.11 10.0
✗ 6.44 0.17 6.23 15.0

Uniform distribution (γ=90, 14 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.43 16.32 33.15 10.0
✗ 2.73 0.1 2.69 15.0

Uniform distribution (γ=180, 7 clients)
Pretraining Test Rouge1 (%) Test Rouge2 (%) Test RougeL (%) Rounds

✓ 35.8 15.99 33.2 10.0
✗ 10.68 1.65 10.2 15.0

Table 11: Results of all experiments on Gigaword dataset after model selection on the best server test loss.

471

