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Abstract

Hierarchical text classification (HTC) aims to
assign the most relevant labels with the hier-
archical structure to an input text. However,
handling unseen labels with considering a label
hierarchy is still an open problem for real-world
applications because traditional HTC models
employ a pre-defined label set. To deal with
this problem, we propose a generation-based
classifier that leverages a Seq2Seq framework
to capture a label hierarchy and unseen labels
explicitly. Because of no available social media
datasets that target at HTC, we constructed a
new (Blog) dataset using pairs of social media
posts and their hierarchical topic labels. Exper-
imental results on the Blog dataset showed the
effectiveness of our generation-based classifier
over state-of-the-art baseline models. Human
evaluation results showed that the quality of
generated unseen labels outperforms even the
gold labels.

1 Introduction

Hierarchical text classification (HTC) aims to as-
sign the most relevant labels with their structure for
a given document. Because real-world applications
categorize documents into a structured class hier-
archy sequence (Silla and Freitas, 2011), such as
patent collections (Tikk et al., 2005), web content
collections (Dumais and Chen, 2000), and medical
record coding (Cao et al., 2020), it is needed to cap-
ture the label hierarchy for better categorization.

To solve the HTC task, recent work has focused
on enhancing label embeddings with a taxonomic
hierarchy (Cao et al., 2020; Zhou et al., 2020; Wang
et al., 2021) or considering a sequential classifica-
tion approach (Rivas Rojas et al., 2020; Yang et al.,
2018, 2019) that leverages a Seq2Seq framework
to capture the label hierarchy. Despite the previous
methods being successful, their approaches classify
labels sequentially by choosing them from the pre-
defined label set in the training dataset. It is still an
open problem for real-world applications to handle
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Figure 1: Different from previous Seq2Set (Rivas Rojas
et al., 2020), our Seq2Gen can handle unseen labels
with sub-word level generation.

unseen labels that do not appear in the pre-defined
label set from the training dataset (Banerjee et al.,
2019; Aly et al., 2019; Xu et al., 2021). Due to se-
vere deficiencies in annotating data for labels in a
hierarchy and handling unseen labels for real-world
applications (Liu et al., 2021), we need a general
modeling framework for handling unseen labels
while explicitly incorporating a label hierarchy to
overcome the restriction of the pre-defined label set
for the development of real-world text classification
applications.

For this purpose, we propose a generation-based
classifier that can generate unseen labels in sub-
word level. Our method can directly predict la-
bels within a hierarchical structure by considering
the label hierarchy as the order of the labels in a
sequence. Because all labels are represented as
sub-word strings in a shared vocabulary between
labels and words, our method can predict unseen
labels through generation (Sennrich et al., 2016).
To expand unseen labels considerably, we also pro-
pose a method to extract knowledge of hierarchical
labels from a pre-trained encoder-decoder by semi-
supervised learning.

Since there are no available social media datasets
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for HTC, we constructed a new blog dataset in
Korean that includes a hierarchical label structure.
The dataset contains up to three levels with a doc-
ument. To evaluate the treatment of unseen labels
in detail, we additionally constructed cross-lingual
datasets, consisting of Japanese and English so-
cial media posts from the Kyoto (Hashimoto et al.,
2011) and Reddit (Kim et al., 2019) datasets.

Comparisons between our generation-based and
traditional classifiers on the Blog dataset showed
that our method outperforms state-of-the-art mod-
els for both rank-based and ROUGE metrics. Hu-
man evaluation results showed that the quality
of our generated unseen labels outperforms even
the gold labels. In addition, we confirmed our
generation-based classifier can handle unseen la-
bels even on the cross-lingual datasets in a zero-
shot setting, that shows the potential for tagging
labels with considering a label hierarchy in unseen
languages.

2 Problem Formulation

We introduce the task of traditional HTC and for-
mulate how we solve it in our generation-based
framework. The traditional HTC has been for-
malized as choosing labels one-by-one from a pre-
defined label set in the training dataset, for example,
with a sequential classification method (Seq2Set).
However, handling unseen labels with considering
a label hierarchy is important in designing models
for real-world applications.

To solve this problem, we formulate the task
as topic generation using a Seq2Seq model
(Seq2Gen), such as pre-trained BART (Lewis et al.,
2020). Figure 1 shows the Seq2Seq framework
to generate target labels. It generates labels for
an input text as a sequence of label tokens, and
thus the label hierarchy can be directly considered
through the Seq2Seq model. Because all the labels
are represented as sub-word strings in a shared vo-
cabulary between labels and words (Xiong et al.,
2021), our model is permitted to generate even
unseen labels, that are not included in the pre-
defined label set (Sennrich et al., 2016). Due to the
lack of diverse labels with considering their hierar-
chy in HTC datasets (Kowsari et al., 2017; Sinha
et al., 2018), we utilize semi-supervised learning to
draw the pre-trained knowledge in the pre-trained
Seq2Seq model.

Topic Label Hierarchical Template

L = {l1} l1 is a topic.
L = {l1, l2} l2 is a sub-topic of l1.

L = {l1, l2, l3} l2 is a sub-topic of l1 and l3 is a sub-topic of l2.

Table 1: Hierarchical template to map labels into a target
topic sequence.

3 Generation-based Classifier

Considering HTC as a language generation task,
we use a multi-lingual BART (mBART) (Liu
et al., 2020), which is an extended version of a
transformer-based pre-trained BART for multiple
languages, as our Seq2Seq framework.

3.1 Seq2Seq-based Model

Our generation-based classifier can directly con-
sider a label hierarchy. For learning, we append
“>” as a special symbol representing a hierarchy
between topics, L = {l1, l2, l3}, and concatenate
them as a target topic sequence. Let wi be the i-th
token in a document D = {w1, w2, ..., wn}. D is
fed into the encoder of the mBART, and then the
generated hidden representations with the previous
output token, ci−1, are fed into the i-th step of the
decoder. Finally, we use the cross-entropy loss be-
tween the decoder’s output and the label sequence
to fine-tune the model, as follows:

HEnc= Encoder(D), (1)

HDec= Decoder(HEnc, ci−1), (2)

Loss= −
∑

i∈m
log(Softmax(HDecW+ b)), (3)

where W and b indicate a learnable weight and bias,
respectively, and m indicates the target length.

To show the effectiveness of directly consider-
ing a label hierarchy, we additionally consider a
template-based Seq2Seq model. For learning, we
manually create a hierarchical template, which has
slots to map topic labels into a target topic se-
quence, instead of L. Table 1 shows the hierar-
chical template to map topics into slots.

3.2 Augmentation with Semi-supervision

Since BART is a pre-trained Seq2Seq model
learned with massive text corpora, we assume that
we can draw pre-trained knowledge (Petroni et al.,
2019) from BART to enhance the label hierarchy
and expand labels considerably for dealing with
unseen labels. For this purpose, we augment the
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Training Valid Test

13,705 (1,011) 761 (254) 761 (292)

Table 2: Statistics of Blog. The number in parentheses
indicates the number of different labels in each data.

dataset with a silver dataset, an automatically an-
notated dataset by using a model’s generation in
a manner of semi-supervised learning. As demon-
strated by He et al. (2020), we first train a model
only with the silver dataset, generated by a model
trained with the gold dataset, and then fine-tune it
with the gold dataset.

4 Blog Dataset

We created a new HTC dataset (Blog) by collect-
ing posts and their topic label sequences from
Naver blogs,1 that contain a large number of
different labels compared to the previous HTC
datasets (Kowsari et al., 2017; Sinha et al., 2018).
The topic label sequences contain up to three hierar-
chical topic levels. Extracted topic label sequences
can be noisy because a blogger can choose only
the topic (the top-level class) from 32 classes, and
the remaining topic sequence was automatically
generated by the Naver blog system. Therefore,
we hired experts on social media to annotate a rel-
evance score from 0 to 3 (3 is the best) for a post
and its topic label sequence. We filtered posts with
scores less than 2 to ensure high quality. Then, we
divided them into three parts (training: 90%, valid:
5%, and test: 5%). Table 2 shows the statistics of
the created dataset.

To evaluate unseen label generation in cross-
lingual few- and zero-shot settings, we additionally
created Japanese (Kyoto) and English (Reddit)
datasets from publicly available social media post
datasets (Hashimoto et al., 2011; Kim et al., 2019).
For Kyoto and Reddit, we extracted 249 and 500
posts, respectively. For each post, five human ex-
perts annotated a topic label sequence. After pre-
processing, we obtained 234 and 400 posts with
their label sequences for Kyoto and Reddit, respec-
tively, and divided them into three parts (training:
10%, valid: 5%, and test: 85%). Blog, Kyoto, and
Reddit are available upon request.2

1https://section.blog.naver.com/
2Detailed explanations for the datasets are in Appendix A.

5 Experiments

5.1 Experimental Settings

Datasets: Blog, Kyoto, and Reddit were used
to compare our generation-based and previous
classification methods. To obtain silver data for
semi-supervised learning, we additionally extracted
21,520 Naver blog posts. We also evaluated our
models on the public HTC dataset, Web of Science
(WOS) (Kowsari et al., 2017). It contains 46,985
instances with two levels, where each level consists
of 7 and 134 different labels. We divided them into
three parts (training: 60%, valid: 20%, and test:
20%).
Evaluation Metrics: Previous studies used a short
ranked list of potentially relevant labels to evaluate
the classification quality: the precision at top k
(P@k) and the Normalized Discounted Cumulative
Gain at top k (NDCG@k), where k = 1, 2, 3 (Xun
et al., 2020; Zhang et al., 2021). However, these
rank-based evaluation metrics could not evaluate
the quality of a hierarchical label sequence, and
thus, we also used ROUGE-1-F and ROUGE-2-F,
that can evaluate the quality of hierarchical label
sequences by taking into account label n-grams.
Compared Methods: Our methods are as follows:
Template uses the proposed hierarchical templates
to generate a topic label sequence with mBART.3

Seq2Gen directly generates a topic label sequence
with mBART. Self-Template and Self-Seq2Gen
use Template and Seq2Gen by expanding unseen
labels with semi-supervised learning, respectively.

The baselines, which include state-of-the-art
models that employ a tree structure of labels, are
as follows: CorNet utilizes BERT (Devlin et al.,
2019) by incorporating a feed-forward layer to con-
sider a label hierarchy (Xun et al., 2020). MATCH
utilizes BERT by incorporating hypernymy regu-
larization in a loss function to consider hierarchi-
cal structures (Zhang et al., 2021).4 Seq2Set is
a variant of the state-of-the-art HTC model that
sequentially classifies a topic label sequence from
a pre-defined label set with mBART. We replaced
Bi-GRU with mBART for a fair comparison to our
Seq2Gen (Rivas Rojas et al., 2020).

3Results using different templates are in Appendix B.
4For both CorNet and MATCH, we used a multilingual

BERT instead of the original BERT for the cross-lingual set-
ting.

5The paired-bootstrap-resampling (Koehn, 2004) was used
(p < 0.05).
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Model P&N@1 P@2 P@3 N@2 N@3 R1-F R2-F Unseen

CorNet 77.79 50.72 36.88 70.03 72.76 47.77 8.76 -
MATCH 78.06 50.72 36.05 70.23 72.10 46.76 9.20 -
Seq2Set 92.38 64.72 43.58 88.36 88.23 81.61 35.50 -

Template 92.12 68.13† 46.25† 89.37 89.44 84.60† 43.17† 91
Seq2Gen 92.25 69.58† 47.39† 89.33 89.53 85.51† 45.42† 102

Self-Template 92.38 68.33 46.30 89.79 89.84 85.88 43.36 74
Self-Seq2Gen 92.77 69.84 47.48 90.23 90.36 87.69‡ 45.95 62

Table 3: Experimental results on Blog. Unseen indicates the number of different generated unseen labels on the test
data. † and ‡ indicate the improvement is significant over the underlined score, respectively.5

Model Kyoto Reddit

R1-F R2-F R1-F R2-F

Few-shot
CorNet 47.48 15.83 20.60 0.39

MATCH 48.88 18.08 19.64 0.20
Seq2Set 63.75 51.83 19.69 3.24
Seq2Gen 56.73 35.50 33.20 7.84

Zero-shot
Seq2Gen 41.12 13.83 17.48 4.61

Table 4: Results on Kyoto and Reddit.

Model P&N@1 P@2 N@2 R1-F R2-F Unseen

CorNet 78.76 53.89 59.52 53.89 16.78 -
MATCH 74.14 51.07 56.29 51.07 13.53 -
Seq2Set 91.23 85.94 87.14 85.94 80.55 -

Seq2Gen 91.43 86.32† 87.48 86.32† 81.11† 1

Table 5: Experimental results on WOS. The notations are
the same as in Table 3.

5.2 Automatic Evaluation

Table 3 shows the results on Blog. Generating topic
labels using the mBART-based models consistently
outperformed classifying them using the mBERT-
based models. Specifically, the gain was large in
the ROUGE metrics. In addition, our generation-
based methods, Template and Seq2Gen, outper-
formed the sequential classifier Set2Set. The pro-
posed Seq2Gen outperformed Template, where the
improvement in R2-F was larger than that in R1-
F, that indicates Seq2Gen can capture a hierarchi-
cal sequence directly compared with the hierarchi-
cal template. Moreover, Self-Template and Self-
Seq2Gen, that use the silver dataset to fine-tune the
models, consistently improved the performances.
This is because we succeeded in enhancing the
label hierarchy with diverse unseen labels. For
21,520 posts in the silver dataset, our Seq2Gen

Model Relevance Taxonomy Best

Seq2Set 2.29 2.17 0
Self-Seq2Gen 2.59 2.56† 23

Gold 2.51 2.46 13

Table 6: Human evaluation results. The notations are
the same as in Table 3.

Input: Yoon Restaurant’s Kimchi pancake. How to make kimchi
pancake, recipe for kimchi pancake. It’s been a few days since spring
rain has been so moist, so the air is very fresh:) . . .
Gold: Cooking, Recipe
Self-Seq2Gen: Cooking, Recipe > Kimchi pancake

Input: I can’t go to the gym, I can’t exercise outside, watch diet
YouTube at home. . . . The problem with Home Training is that
all the exercise moves go by so quickly. . . .
Gold: Health, Medicine
Self-Seq2Gen: Sports > Home Training

Table 7: Examples of generated unseen labels from
Self-Seq2Gen in the Blog dataset.

could generate 4,385 different unseen labels.
Table 4 shows the cross-lingual results. The R2-

F scores for Seq2Gen, trained with Blog, in the
zero-shot setting show that it can generate even
cross-lingual unseen labels.6 Table 5 shows the
results on WOS. We can confirm that the generation-
based method outperformed the sequential classifi-
cation method. Thus, our Seq2Gen can work better
even for a smaller number of different labels. How-
ever, we think the improvements and the number of
generated unseen labels are smaller than the ones
on Blog due to the smaller number of different
labels.

5.3 Human Evaluation and Analysis

We conducted a human evaluation for 50 randomly
sampled posts that contain generated unseen labels
from our Self-Seq2Gen. Five human annotators
graded them with scores from 1 to 3 (3 is the best)

6Results including rank-based metrics are in Appendix C.

628



in terms of Relevance and Taxonomy.7 We ad-
ditionally asked the annotators to select the best
label sequence from Seq2Set, Self-Seq2Gen, and
Gold label sequences. Best indicates the number
of cases where the majority among the annotators
judged the best. Table 6 shows the human eval-
uation results. The generated unseen labels from
Self-Seq2Gen achieved a higher preference than
the Gold labels.

Table 7 shows example generated unseen labels
from Self-Seq2Gen. As we expected, our Self-
Seq2Gen frequently generated unseen labels with
considering the label hierarchy. In the first example,
the generated unseen label, “Kimchi pancake”, can
be considered as a sub-topic of “Cooking, Recipe”
because the “Kimchi pancake” is a food name. In
the second example, “Home training” can be con-
sidered as a sub-topic of “Sports”.

6 Conclusion

We proposed a generation-based classifier for HTC.
It could handle unseen labels with considering
their label hierarchy. In addition, we constructed
cross-lingual HTC datasets from social media
posts. Automatic evaluation results showed that
our generation-based classifier could outperform
state-of-the-art models. We confirmed our classifier
could handle unseen labels by human evaluation.

7 Ethical Considerations

We created the new datasets of Blog, Kyoto, and
Reddit for the HTC task. The created datasets
have been collected in a manner which is consis-
tent with the terms of use of any sources and the
intellectual property and privacy rights of the origi-
nal authors of the texts. Please note that we have
confirmed by our legal team and the datasets will be
available upon request for only research purpose.

8 Limitations

Although our Seq2Gen could generate unseen la-
bels on cross-lingual datasets in the zero-shot set-
ting, that shows the potential of tagging labels with
considering their label hierarchy, it was difficult to
outperform the few-shot setting. In the future, we
plan to incorporate cross-lingual label trees for the
zero-shot setting.

7Relevance and Taxonomy indicate how much the gener-
ated label sequences are related to the input context and the
quality of the label hierarchy, respectively.
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A 32 Topics for Naver blog System

Table 8 shows 32 topic classes (top-level) from
Naver blog system.

For Kyoto and Reddit, to establish the same set-
ting as for Blog, the experts first annotated the topic
label (the top-level class) from given 32 classes.
Then, they annotated hierarchical label sequences
up to three-levels if they consider subsequent labels
are required. We deleted posts with no majority for
the topic label. We obtained 234 and 400 posts with
their label sequences for Kyoto and Reddit, respec-
tively, and divided them into three parts (training:
10%, valid: 5%, and test: 85%).

For Reddit and Kyoto, each input text is not one-
to-one matching for target labels, which is different
from the Blog dataset. For training, we consid-
ered all different target label sequences. For the
evaluation, we selected maximized scores by re-
grading them as multiple references. To assess the
agreement between the participants for the datasets,
we used Fleiss’ Kappa (L. Fleiss, 1971). We ob-
tained Kappa scores of 0.55 for Kyoto and 0.23 for
Reddit, indicating moderate and fair agreements,
respectively.

B Results using different templates.

We study the various manually created hierarchical
templates using valid Blog because different hier-
archical templates can express the same meaning.
Table 9 shows the performance using different tem-
plates. On the basis of the valid results in terms of
average ROUGE-F scores, we use the top perform-
ing template in our experiments.

C Results on Kyoto and Reddit datasets

Table 10 includes both rank-based and ROUGE
metrics on Kyoto and Reddit.

Topic

1 Literature, Book
2 Movie
3 Art, Design
4 Performance, Exhibition
5 Music
6 Drama
7 Star, Celebrity
8 Cartoon, Anime
9 Broadcast

10 Everyday, Thoughts
11 Parenting, Marriage
12 Pet, Companion animal
13 Good article, Image
14 Fashion, Beauty
15 Interior, DIY
16 Cooking, Recipe
17 Product review
18 Horticulture, Cultivation
19 Game
20 Sports
21 Picture
22 Car
23 Hobby
24 Domestic travel
25 World travel
26 Restaurant
27 IT, Computer
28 Society, Politics
29 Health, Medicine
30 Business, Economy
31 Language, Foreign language
32 Education, Academic

Table 8: 32 topics from Blog datasets.
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Topic Label Hierarchical Template R1-F R2-F Avg R-F

L = {l1} l1 is a topic.
L = {l1, l2} l2 is a sub-topic of l1. 86.92 45.90 66.41

L = {l1, l2, l3} l2 is a sub-topic of l1 and l3 is a sub-topic of l2.

L = {l1} l1 is a topic.
L = {l1, l2} l1 is a topic and l2 is a sub-topic of l1. 86.72 44.88 65.80

L = {l1, l2, l3} l1 is a topic, l2 is a sub-topic of l1, and l3 is a sub-topic of l2.

L = {l1} l1 is a topic.
L = {l1, l2} l1 is a parent topic of l2. 87.31 43.82 65.57

L = {l1, l2, l3} l1 is a parent topic of l2 and l2 is a parent topic of l3.

L = {l1} l1 is a topic.
L = {l1, l2} l1 is a topic and l1 is a parent topic of l2. 85.87 44.20 65.04

L = {l1, l2, l3} l1 is a topic, l1 is a parent topic of l2, and l2 is a parent topic of l3.

Table 9: Results using different hierarchical templates.

Model Kyoto Reddit

P&N@1 P@2 P@3 N@2 N@3 R1-F R2-F P&N@1 P@2 P@3 N@2 N@3 R1-F R2-F

Few-shot
CorNet 54.50 56.50 41.67 55.66 54.61 47.48 15.83 35.59 22.79 17.25 27.03 26.59 20.60 0.39

MATCH 57.50 56.75 43.00 56.92 56.65 48.88 18.08 29.71 20.44 15.78 24.02 25.68 19.64 0.20
Seq2Set 64.00 69.75 46.50 68.45 67.93 63.75 51.83 37.06 21.91 14.71 26.82 26.10 19.69 3.40
Seq2Gen 65.50 62.50 46.50 62.92 60.22 56.43 35.08 51.18 36.76 24.71 41.70 40.01 33.20 7.84

Zero-shot
Seq2Gen 28.00 42.00 28.00 41.73 41.73 41.12 13.83 22.53 15.29 10.20 21.58 21.58 17.48 4.61

Table 10: Evaluation results on the Kyoto and Reddit datasets.
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