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Abstract

What are the events involved in a pandemic
outbreak? What steps should be taken when
planning a wedding? The answers to these
questions can be found by collecting many
documents on the complex event of interest,
extracting relevant information, and analyzing
it. We present a new approach1 in which
large language models are utilized to gener-
ate source documents that allow predicting,
given a high-level event definition, the specific
events, arguments, and relations between them
to construct a schema that describes the com-
plex event in its entirety. Using our model,
complete schemas on any topic can be gener-
ated on-the-fly without any manual data collec-
tion, i.e., in a zero-shot manner. Moreover, we
develop efficient methods to extract pertinent
information from texts and demonstrate in a
series of experiments that these schemas are
considered to be more complete than human-
curated ones in the majority of examined sce-
narios. Finally, we show that this framework is
comparable in performance with previous su-
pervised schema induction methods that rely
on collecting real texts and even reaching the
best score in the prediction task.

1 Introduction

Event processing refers to tracking, analyzing, and
drawing conclusions from streams of information
about events. This event analysis aims at identi-
fying meaningful events (such as opportunities or
threats) in real-time situations and responding ap-
propriately. Event processing can also be utilized
to gain a deep understanding of the specific steps,
arguments, and relations between them that are in-
volved in a complex event. The information above
can be consolidated into a graphical representation
called an event schema (Li et al., 2021). For in-
stance in Fig. 1, the graph representation of events

∗ Indicating equal contribution.
1https://cogcomp.seas.upenn.edu/page/

publication_view/995

and participants assists in gaining an understanding
of the complex event of kidnapping and could help
composing a reaction plan if needed.

The NLP community has devoted much effort to
understanding events that are described in a docu-
ment or in a collection of documents for this pur-
pose. These efforts include identifying event trig-
gers (Lu and Roth, 2012; Huang et al., 2018; Wad-
den et al., 2019; Han et al., 2019), extracting event
arguments (Punyakanok et al., 2008; Peng et al.,
2016; Lin et al., 2020; Zhang et al., 2021a), and pre-
dicting the relations between events, e.g., temporal,
coreferential, causal or hierarchical relations (Do
et al., 2012; Lee et al., 2012; Glavaš et al., 2014;
Ning et al., 2018; Wang et al., 2020; Zhang et al.,
2020a; Trong et al., 2022).

Previous works on event schema induction re-
lied on the information extracted from manually
collected documents to build the schema graph. For
instance, Li et al. (2020) learn an auto-regressive
language model (LM) over paths in the instance
graphs depicting events, arguments and relations of
instances of the complex events, and then construct
a schema graph by merging the top k ranked paths.
Their approach, however, requires access to many
documents on each topic of interest, which can be
extremely laborious and time consuming to obtain.

In this paper, our goal is to allow creating
schemas on-the-fly by taking as input only the
name of the complex event of interest (like a “pan-
demic outbreak” or an “armed robbery”). To avoid
manually collecting many documents on the topic
of the schema, we utilize pre-trained text genera-
tors, e.g., GPT-3 (Brown et al., 2020), to obtain
documents of diverse genres on the desired topic
(examples presented in Fig. 2). These documents
are then processed to extract pertinent informa-
tion from which a schema is constructed. The fact
that we do not collect any data makes our learning
framework zero-shot since we do not rely on any
human-collected articles or example schemas.
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Figure 1: An example schema for the event of Kidnapping. The regular arrows represent temporal relations and
the dashed arrows represent hierarchical relations (PARENT-CHILD).

In addition to eliminating the need to collect data,
we also made the information extraction process
faster by implementing new and efficient methods
for identifying temporal and hierarchical relations
between events mentioned in the text. These two
steps are the most time consuming in the process of
schema induction and could take up to 2 hours each
using state-of-the-art models proposed by Zhou
et al. (2021); Wang et al. (2021). Sending the whole
text as input instead of two sentences at each time,
our proposed model shortens the inference time
significantly to several minutes without enduring a
major loss in performance.

The process of generating texts is explained
in Section §3, and the process of extracting rele-
vant and salient information is described in Sec-
tion §4, then we introduce the construction of
schema graphs in Section §5. To evaluate our
zero-shot schema generator we conduct experi-
ments on a benchmark dataset for schema induc-
tion, LDC2020E25, and provide a new dataset for
further evaluation called Schema-11. Additionally,
we design a subject-matter expert Turing test, a.k.a.
Feigenbaum test (Feigenbaum, 2003), to determine
whether our algorithm could mimic experts’ re-
sponse. We also demonstrate that documents gen-
erated by GPT-3 are informative and useful for the
task of schema induction. The experiments and re-
sults are presented in Section §6. The contributions
of our work include:

1. Predicting an entire schema given the name
of a complex event without collecting data.

2. Implementing a novel and efficient One-Pass

approach for identifying temporal and hierar-
chical relations between events.

3. Presenting a method for automatically induc-
ing logical relations between events based on
temporal relations.

4. Offering a Feigenbaum test for evaluation on
a new schema dataset, Schema-11.

2 Related Work

Schema Induction: Early schema induction ef-
forts focused on identifying the triggers and partic-
ipants of atomic events without considering rela-
tions between atomic events that comprise com-
plex schemas (Chambers, 2013; Cheung et al.,
2013; Nguyen et al., 2015; Sha et al., 2016; Yuan
et al., 2018). More recent work focuses on induc-
ing schemas for pairs of events (Li et al., 2020)
and multiple events (Zhang et al., 2021b; Li et al.,
2021), but they require access to large corpora for
the induction process. In this work, we induce
schemas on-the-fly in a zero-shot manner. As is
standard in state-of-the-art (SOTA) works (Li et al.,
2020, 2021; Wen et al., 2021), we output all the es-
sential information about relations between events
and arguments extracted from the text, in addition
to logical and hierarchical relations not studied pre-
viously in schema induction.

Script Learning: Early script learning work con-
centrated on chains of events with a single pro-
tagonist (Chambers and Jurafsky, 2008, 2009;
Jans et al., 2012; Rudinger et al., 2015; Granroth-
Wilding and Clark, 2016) and later extended to
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multiple protagonists (Pichotta and Mooney, 2014;
Peng and Roth, 2016; Pichotta and Mooney, 2016;
Modi, 2016; Weber et al., 2018, 2020; Zhang et al.,
2020b). All of these works assume there exists a
single line of events that describes all occurrences
within a complex event. This work does not limit it-
self to generating single-chained schemas. We also
consider more complex graphs as schema outputs.
In addition, none of these works deal with zero-shot
scenarios that do not require training data.

Pre-Trained Generation Models: Large-scale
pre-trained text generation models such as GPT-2
(Radford et al., 2019), GPT-3 (Brown et al., 2020),
BART (Lewis et al., 2020), T5 (Raffel et al., 2020),
i.a. have been used in many NLP tasks. These
models are often seen as few-shot learners (Brown
et al., 2020) and therefore used as inference meth-
ods. However, these text generation models are not
explicitly trained to perform inference, but to pro-
duce the most likely sequence of words to proceed
a certain prompt, similar to language models. In
our work, we use these large pre-trained LMs as
text generators. The generated documents on a par-
ticular topic are leveraged as a corpus for extracting
the schema of the given topic. We rely on the in-
tuition that the generated text will include salient
and stereotypical information that is expected to
be mentioned in the context of the topic (e.g., for
the topic of “planning a wedding,” we assume most
documents will include “order catering”).

3 Data Generation

The schema induction process begins with generat-
ing texts using large LMs as text generation models.
These texts are joined to form a knowledge base
for the schema, including all of the potential infor-
mation that the schema may present. One could,
of course, create this knowledge base by crawling
the web for real news articles or Wikipedia entries
related to a certain topic.

We argue, however, that in addition to the obvi-
ous advantages of not having to rely on the avail-
ability of data online and not having to crawl the
entire web for relevant documents on each topic,
the generated data from these large generative mod-
els is more efficient in reporting salient events than
random events described in the news, i.e., gener-
ated texts are more likely to mention important
information than real documents do.

Our analysis shows that the generated stories
contain a higher percentage of relevant tokens than

Generated Text Real Text
# events / # tokens 12.52% 6.31%
# arguments / # tokens 5.45% 3.01%

Table 1: The ratio of relevant events and relevant argu-
ment roles identified in generated texts and real texts
for the scenario of IED attack.

real news articles that are used for schema induc-
tion. To demonstrate this phenomenon, we com-
pare manually collected documents with those that
are automatically generated using GPT-3 for the
event of Improvised Explosive Device (IED) At-
tack (Li et al., 2021). To identify salient events and
arguments concerning IED attacks, we adopt the
DARPA KAIROS Phase 1 (v3.0) ontology2 — a
fine-grained ontology for schema learning, with 24
entity types, 67 event types, and 85 argument roles.

We calculate the number of relevant event trig-
gers and arguments identified in the text, where a
relevant mention is one whose type appears in the
ontology. The results shown in Table 1 demonstrate
that the quality of the generated texts in terms of
conciseness and appearance of important details is
higher than that of real texts. For example, the ratio
of relevant events per token is more than twice as
high in generated texts as it is in real texts. Hence
we are able to not only generate a schema for every
given topic without putting any effort in searching
the web, but the information we generate is also
better suited for our end task of depicting all of the
important aspects of a complex event.

Given a topic for which we want to create a
schema, we generate multiple texts that discuss the
topic event using the OpenAI GPT-3 API3 with the
Davinci-instruct-beta-v3 model and we also experi-
ment with the Hugging Face GPT-2 API4. We use
three prompting methods to generate documents of
diverse genres as follows:

News Articles: We begin by generating a headline
using the prompt: “Write a news headline about
topic.” The output from this prompt is then used
in the following prompt: “Write a news story titled
headline.” The output from the second prompt is
added to the pool of generated texts. The process
is repeated 30 times. See example in Fig. 2b.

How-To Articles: We use the prompt: “Describe
how to topic.” to generate wikiHow-like instruction

2The full ontology definition can be accessed at this link:
https://bit.ly/3mIWJoN.

3https://openai.com/blog/openai-api/.
4https://huggingface.co/gpt2
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Prompt: What are the steps involved in holding a
summit meeting?
1.
Output:

1. Plan the agenda and objectives of the meeting.

2. Select a venue that is appropriate for the meet-
ing’s purpose and size.

3. Send out invitations and ensure all participants
have the appropriate information.

4. Prepare for the meeting by creating materials
and briefing the participants.

5. Hold the meeting and follow up on any action
items that are generated.

(a) Example generated text of steps involved in the
event of “holding a summit meeting”.

First prompt: Write a news headline about filing a patent.
Output: New Patent Filing Could Speed Up Drug Develop-
ment.
Second prompt: Write a news story titled "New Patent
Filing Could Speed Up Drug Development".
Output: The United States Patent and Trademark Office has
just published a new patent that could speed up the drug de-
velopment process. The patent, filed by a team of researchers
from the DPharm Institute, covers a new drug screening pro-
cess that could help identify potential new drugs much more
quickly. The new process, which is based on a computer
algorithm, is said to be up to 10 times faster than traditional
methods. It can identify potential new drugs by screening
through large databases of existing drugs and drug candi-
dates. The DPharm Institute is already in the process of
licensing the patent to several pharmaceutical companies,
and is planning to commercialize the technology over the
next few years.

(b) Example generation of news-like text for the event of
“filing a patent”.

Prompt: Describe how to 3D print an object?
Output: To 3D print an object, you need to first design the object in a 3D modeling program. Once the object
is designed, you need to export it as a 3D printable file format. Next, you need to choose a 3D printer and print
settings. Finally, you need to print the object.

(c) Example generation of How-To article for the event of “3D printing”.

Figure 2: Examples of generated texts using different prompting methods. The highlighted tokens display relevant
events that will be extracted in the information extraction step.

articles. The process is repeated 30 times. See
example in Fig. 2c.

Direct Step-by-Step Schema: We use the prompt:
“What are the steps involved in topic? 1.”5 to di-
rectly generate a schema. We run this process once.
See example in Fig. 2a.

Generating documents of various genres enables
our model to induce comprehensive schemas on
any given topics. Considering that some events are
more likely to be in the news (e.g., elections, pan-
demic outbreaks) while others are more technical
in nature and are hence less newsworthy (such as
earning a Ph.D. degree or planning a wedding), we
generate diverse texts and then use a ranking model
to choose the most relevant documents.

The ranking process includes embedding the
texts and the topic with the model proposed in
Reimers and Gurevych (2019), and then calculat-
ing the cosine similarity between each text and the
topic embeddings. Only the 30 texts closest to the
topic are selected, together with the output from the
direct step-by-step schema. The following section
describes the next step in generating a schema of
extracting relevant information from the texts.

5The “1.” in the prompt is for the LM to automatically
complete the steps.

4 Information Extraction

For each document, we extract event triggers, ar-
guments and relations between the events that are
important and relevant to the schema topic. We do
not work with a predefined ontology that defines
what events and arguments are salient in advance
because we allow generating a schema on any topic.
Instead, we employ a statistical approach by ex-
tracting all the information and later filter it down
to include just frequent items. Here are the steps
involved in our information extraction pipeline:

Semantic Role Labeling (SRL): We use the
SOTA SRL system6 trained on CoNLL12 (Prad-
han et al., 2012) and Nombank dataset (Meyers
et al., 2004) to extract both verb and nominal event
triggers and arguments.

Named Entity Recognition (NER): We employ
the SOTA NER model (Guo and Roth, 2021) to
extract and map entities (potential arguments of
events) into entity types defined in the CoNLL 2002
dataset (Tjong Kim Sang, 2002) and the LORELEI
project (Strassel and Tracey, 2016).

6 https://cogcomp.seas.upenn.edu/page/
demo_view/SRLEnglish
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Constituency Parsing: The arguments extracted
by SRL can be clauses and long phrasal nouns,
hence we employ the AllenNLP7 constituency pars-
ing model for argument head word extraction.

Coreference Resolution: We use the SOTA
model (Yu et al., 2022) for event and entity corefer-
ence resolution to identify within-document coref-
erential relations.

Temporal Relation Extraction: We first try to
use SOTA models (Ning et al., 2019; Zhou et al.,
2021) to predict the temporal relations8 between
all possible pairs of extracted events but since the
SOTA models accept two sentences containing
events as input, the inference time9 for an n-event
document is O(n2), making the schema induction
process several hours long.

One-Pass Model: We develop a One-Pass model
that takes the document as input and uses
the contextual representation of events to pre-
dict relations between them. A document D
is represented as a sequence of tokens D =
[t1, · · · , e1, · · · , e2, · · · , tn] where some of the to-
kens belong to the set of annotated event triggers,
i.e., ED = {e1, e2, · · · , ek}, whereas the rest are
other lexemes. We employ the transformer-based
language model Big Bird (Zaheer et al., 2020) to
encode a whole document and obtain the contex-
tualized representations for all the event mentions.
These representations are fed into a multi-layer per-
ceptron in a pairwise fashion and the cross-entropy
loss for each pair is calculated and accumulated for
a batch of documents. As shown in Tab. 2, the in-
ference time is shortened 63-186 times on average,
while the performance of the One-Pass model is
comparable to SOTA models.

Hierarchical Relation Extraction: The ex-
tremely long inference time of SOTA models for
predicting hierarchical relations (PARENT-CHILD,
CHILD-PARENT, COREF, NOREL) (Zhou et al.,
2020; Wang et al., 2021) also impairs the efficiency
of our schema induction system. Thus we use
the same One-Pass methodology to extract hier-
archical relations. We observe that the inference
time is greatly shortened, and the One-Pass model

7https://demo.allennlp.org/
constituency-parsing.

8The possible temporal relations (start-time comparison)
are: BEFORE, AFTER, EQUAL and VAGUE.

9The inference time is mostly spent on obtaining the con-
textual representation of events using large fine-tuned LMs.

Metrics
Corpus Model F1 score Speed GPU Memory

HiEve
Zhou et al. (2020) 0.489 - -
Wang et al. (2021) 0.522 41.68s 4515MiB
One-Pass model 0.472 0.65s 2941MiB

MATRES
Ning et al. (2019) 0.767 30.12s 4187MiB
Zhou et al. (2021) 0.821 89.36s 9311MiB
One-Pass model 0.768 0.48s 2419MiB

Table 2: Performance comparison between the One-
Pass model and SOTA models for event temporal and
hierarchical relation extraction. We report F1 scores on
benchmark datasets (HiEve for hierarchical relations,
MATRES for temporal relations), speed (average infer-
ence time for 100 event pairs), and required GPU mem-
ory during inference. The One-Pass models are 63-186
times faster than SOTA models and take up only 26%-
65% of the GPU memory required by SOTA models.

achieves comparable results to previous models
while taking up less GPU memory (see Tab. 2).

After processing the data using the procedure
described above, we get a list of events, their ar-
guments, and relations between the events. We
concentrate on events and relations that frequently
appear in the generated texts since we assume those
are the most important to add to the schema (with-
out any other source of information that could iden-
tify what is salient). We describe the process of
building a schema in the following section.

5 Schema Induction

To consolidate the information extracted from the
previous step, we build a schema as follows:

Make a list of events and relations: To compare
similar event mentions in different texts, we com-
pare the event trigger itself (whether they are the
same verb or coreferential verbs10) and the NER
types of its arguments. For example, the trigger
“(take) precautions” appeared in 5 documents gen-
erated for the topic of Pandemic Outbreak. In two
documents the subject of the verb phrase “take pre-
cautions” was “residents”, in another two it was
“people” and in the last one, it was “public”. Nev-
ertheless, the NER type is identical in all cases
(PER), and thus we set the frequency of “(take)
precautions” to 5. Similarly, we calculate the fre-
quency of the temporal and hierarchical relations.
We only consider relations and events that appeared
in more than one document.

Construct timelines: We construct the longest
timelines from the list of temporal relations. This

10We only consider coreferential and hierarchical relations
if they appear in more than 2 documents.
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Figure 3: An example of integrating timelines and logical relations in the schema of Civil Unrest. The four upper
timelines are the ones extracted from the generated texts and the lower one is their merger into a single timeline
with logical relations.

warm up stretch play cool down

warm up stretch

warm up play cool down

stretch

Figure 4: Example of the procedure to amend a time-
line in the schema of “Sports Games”. The timeline
at the top that includes events from different levels
(“warm up” is the parent of “stretch”) is fixed below.
Gray arrows mark temporal relations, and dashed ar-
rows mark PARENT-CHILD.

list is a list of tuples (A,B), indicating that event A
happened before event B. To construct a timeline,
we search recursively for the longest chains of the
following form (A,B), (B,C), (A,C) and so on.

Fix timelines according to hierarchical rela-
tions: We build a hierarchy of the events using the
hierarchical relation list10 and change the timelines
so that they will only include events that appear in
the same level of hierarchy (see example in Fig. 4).

Add logical relations: The final step is to combine
the timelines and hierarchies into a single schema
graph using logical relations (AND/OR). When ob-
serving two timelines with discrepancies between
the order of events, we place a logical AND be-
tween them, since we interpret this discrepancy as

both events occurring at the same time or there is
no significance to the order between them. We use
a logical OR to mark events that can occur simulta-
neously but not necessarily. See Fig. 3 for example
of both logical relations.

The final output is a schema graph that contains
all the events, arguments, and temporal, hierarchi-
cal and logical relations between the events. It is
noteworthy that our proposed schema generation
model can be easily used to extend the scope of
existing schemas by further querying the model on
more specific topics. For example, the schema in
Fig. 1 does not cover the consequences of kidnap-
ping, probably because the LM did not attend to
this aspect. Hence an analyst can input another
topic (e.g., consequences of kidnapping) to fur-
ther develop the schema. Similarly, analysts can
generate schemas for very specific events (e.g., kid-
napping in a political setting). Next, we provide an
in-depth experimentation for the proposed schema
induction framework.

6 Experiments

6.1 Data

We conduct experiments on a dataset for general
schema learning released by LDC (LDC2020E25).
The corpus includes 84 types of complex events,
such as Cyber Attack, Farming and Recycling. This
dataset includes ground-truth schemas created by
LDC annotators. In addition, we also collected
human generated schemas for 11 newsworthy sce-
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narios11. The schemas were generated by four hu-
man experts who were instructed to write a schema
on each topic based on their commonsense knowl-
edge that includes a list of event triggers, event
arguments and their NER types12, and relations13.

6.2 Evaluation Protocols
We follow Li et al. (2021) to use instance coverage
and last event prediction to evaluate our method
on the LDC dataset. For the Schema-11 dataset,
we ask human testers to assess the completeness
and soundness of both human- and automatically-
generated schemas.

Coverage and Prediction A common evaluation
method in schema induction and script prediction
is to calculate the recall of events and relations
predicted by the model, assuming the human anno-
tations are gold labels (coverage), and to calculate
the accuracy in predicting the final outcome of a
scenario (prediction). For instance, the accuracy of
predicting the last event type of the LDC schemas
is reported in Li et al. (2021). Here we present
the results of predicting the last events using event
triggers instead of event types since our schemas
do not use an ontology of event types.

Feigenbaum Test We show human testers two
schemas on each topic in the Schema-11 dataset
(see example in Appx. §A). One schema is auto-
matically generated by our model, and the other is
randomly sampled from the Schema-11 corpus14.
Then, we ask the testers to determine which events
and relations are valid to appear in the schema
(soundness), and answer the following questions:
which schema is more complete in the sense of in-
cluding all the events needed to describe the topic,
and which schema, in their opinion, was generated
by a human expert (as opposed to a machine).

6.3 Results
Coverage We calculate the intersection between
events in the generated schemas and the gold

11The topics are: Bombing Attack, Business Change, Civil
Unrest, Disaster and Rescue, Elections, International Con-
flict, Kidnapping, Mass Shooting, Pandemic Outbreak, Sports
Games, and Terrorism Attack.

12The annotators are familiar with SRL annotations (e.g.,
ARG0, ARG1, etc.) and NER types (e.g., PER, ORG, etc.).
See additional details in App. C

13No restrictions were placed for the annotators. For ex-
ample, in one case, an annotator mentioned causal relations
that are not covered in our framework.

14In some cases we combine two randomly sampled
schemas because the length of the human schemas tend to
be shorter than the automatically generated ones.

schemas in two ways: (a) the matching of event
triggers, and (b) the matching of event triggers
and synonyms of the events in the gold schemas
(synonym coverage)15. We believe that synonym
coverage is a better evaluation metric to avoid er-
rors such as considering different verbs describing
the same action as different (e.g., “buy” and “ac-
quire”) than using a predefined ontology of event
types such as the one used in Li et al. (2021). The
reason is twofold: firstly, any predefined ontology
is limited to certain scenarios and it may impair the
variety of events extracted; and secondly the typing
mechanism may also inflict errors to the schema.
In the calculation of coverage of relations we only
take into account relations (a, b) where both events,
a and b, appear in the generated schema.

From the results in Table 3, we observe that de-
spite the difficulty of exact matching, our model
with GPT-3 covers 23.73% of the gold events,
showing that generated texts are useful. If we
use synonym coverage as our metric, we achieve a
promising coverage of 37.84% while the SOTA su-
pervised event graph model (Li et al., 2021) covers
54.84% using limited event types. In addition, we
calculated an average number of 26.19 additional
events that appeared in the generated schemas and
not in the LDC schema, pointing to the potential of
using generated documents for expending existing
schemas. With the high quality event representa-
tions obtained from the One-Pass model and the
proposed logical relation induction algorithm, our
method can successfully cover a high percentage
of multiple types of relations.

Prediction In the prediction task, our schemas
are able reach SOTA performance and predict the
final outcome in 63.1% of the cases for the LDC
schemas (see Tab. 4). This result is extremely im-
pressive when it is compared with Li et al. (2021)
since they predict event types instead of verbs,
which is a much easier task due to the fact that
the set of possible answers is limited.

Schema-11 In the soundness experiments, where
the testers are asked to decide which events and re-
lations are valid to appear in the schema, it turns out
that human-schemas contain 7.14% invalid events
and 15.4% invalid relations on average. For the
automatically-generated schemas, 6.06% of the
events and 22.9% of the relations are considered
to be invalid on average, meaning that the average

15Implemented using the NLTK WordNet Python package.
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GPT2 GPT3 Li et al. (2021)
Coverage Coverage (Syn) Coverage Coverage (Syn) Coverage

Event Match 14.88 29.55 23.73 37.84 54.84
Temporal Relations 10.80 33.31 31.07 49.99

-Hierarchical Relations 33.33 33.33 11.11 13.88
Logical Relations 4.16 24.99 43.76 49.81

Table 3: Coverage results for the LDC dataset. The first row presents the percentage of events that appeared in
both the LDC schemas and the automatically generated schemas (out of events in LDC schemas), and the three
bottom rows present the same metric for relations of different types.

Model Accuracy
Event Language Model 49.7
Sequential Pattern Mining 47.8
Human Schema 20.5
Event Graph Model 52.0
Zero-Shot Schema GPT2 25.0
Zero-Shot Schema Synonym GPT2 45.2
Zero-Shot Schema GPT3 35.7
Zero-Shot Schema Synonym GPT3 63.1

Table 4: Experimental results for last event prediction
in the LDC dataset. The top 4 results are from (Li et al.,
2021), and the metric is HITS@1 where the events are
typed based on a predefined ontology.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Human 4 0 1 1 1 2 1 1 0 3 1
Automatic 2 3 4 2 1 1 1 1 4 0 1

Table 5: Distribution of votes for which is the more
complete schema for Schema-11 dataset.

percentage of legitimate events is even higher in
machine-generated schemas. For the completeness
results presented in Tab. 5, in 4 cases the testers
agreed that the automatically generated schemas
are more complete; in 3 cases they claimed that the
human schemas are more complete; and a tie in the
remaining 4 cases. Hence our automatically gener-
ated schemas are of comparable quality to human
generated ones in the sense of completeness.

Finally, in the Feigenbaum test, where testers
are asked to decide whether a schema is gener-
ated by a human or a machine, eight out of eleven
times they correctly identify the human-generated
schema, one incorrectly, and two ties. Some of
the testers who succeeded in their guesses men-
tioned that it was easy to determine which schema
was automatically generated since it tends to be
longer and comprehensive. The full results from
the Feigenbaum test are shown in Appx. §B.

Wizard of Oz Experiment There seems to be
a discrepancy between the low event coverage re-
sults and the quality of generated texts that were
presented in Section §3. We, therefore, conducted

another experiment to identify if the problem stems
from the quality of the generated documents. In this
experiment, one of the authors sampled 10 complex
event names from the LDC dataset and generated,
using GPT-3 text davinci-002 model, 3 texts for
each scenario using the prompting methods pre-
sented in Section §3. Then, the author manually
extracted all relevant events and relations from each
document and built a schema based solely on those
events and relations.

This experiment, in which the author pretends
to be the IE and schema generator models, aims to
demonstrate that if we had perfect IE and schema
induction systems, then the texts generated by GPT-
3 would be sufficient and even superior to other cor-
pora collected manually. The macro-average cov-
erage of events in this experiment is 68% and the
micro-average is 74%. Furthermore, GPT-3 texts
generated schemas that included, on average, 6.5
additional events not mentioned in LDC schemas
but relevant to the scenario at hand. As a result,
we conclude that the generated texts from GPT3
contain much of the necessary information to gen-
erate schemas in a variety of topics, and can even
be used to enrich existing schemas generated by
other models or humans. Two example scenarios
and more details appear in Appx. §D.

7 Conclusion

We propose a method to generate schemas given
the sole input of a topic. We use GPT-3 to generate
texts of diverse genres and a pipeline of informa-
tion extraction tools to obtain relevant information
before inducing logical relations and integrating
the events and relations into a schema graph. To
improve the efficiency of the pipeline, we imple-
ment One-Pass models for identifying temporal
and hierarchical relations that achieve comparable
performances with SOTA models but require far
less inference time and memory space. To evalu-
ate our framework, we conduct experiments on a
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benchmark LDC dataset to show that our schemas
cover a decent amount of pertinent information
and display comparable ability for event prediction
with supervised approaches. We observe a high per-
centage of valid events and relations generated for
the Schema-11 dataset and the testers endorsed the
completeness of our machine-generated schemas.
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9 Limitations

The paper presents a method for building an event
schema without manually collecting documents
from sources such as news articles or Wikipedia.
In order to generate diverse and informative doc-
uments on any topic, we rely on large pre-trained
language models. Our model, which uses GPT-3,
generates schemas that are comparable to those
generated by manually searching the web for docu-
ments, however, when we use inferior LMs such as
GPT-2, we see a decline in performance (see Tab. 3
and Tab. 4).

Our assumption is that the quality of the gener-
ated schema depends on the quality of the LM and
the level of coverage of the selected topic in the LM
training data. If, for instance, we were to ask our
model to generate a schema for a unique topic such
as "conducting an archaeological dig in an unex-
plored territory" we doubt that the results would be
as useful to an archaeologist as if they were looking
for information themselves due to the low coverage
of this topic in the corpus the model was trained on.

Despite our model’s reliance on pre-trained LMs,
we believe the generated schemas can always serve
as a good basis for further development.

10 Ethical Consideration

The proposed schema induction method does not
present any direct societal implications. As is ob-
served in Abid et al. (2021), the text generated by
GPT-3 might include undesired social bias. Ex-
tracting events and relations from text with such
social bias might potentially propagate the bias to
the induced schemas. Besides, there are risks of
malicious or unintended harmful uses of the gen-
erated schemas, for instance, the system might be
used to inquire about making a bomb or contriving
a terrorist attacks. Yet we believe that the proposed
method can benefit various downstream NLP/NLU
tasks like event prediction, task-oriented dialogue
agents (Andreas et al., 2020) and risk detection
(Pohl et al., 2012).
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A Feigenbaum Test Details

The experiment took place online through filling a
Google Form and involved 11 volunteer annotators.
Each annotator got 3-4 scenarios to annotate. The
instructions for the survey appear in Figure 5. An
example scenario and the questions of the survey
are presented in Fig. 6, Fig. 7, Fig. 8, and Fig. 9.

B Feigenbaum Test Results

In this section we present all the results from the ex-
periments on the dataset Schema-11. Tab. 6 shows
the distribution of answers for the question “which
schema is more complete?” (same as depicted in
Tab. 5), Tab. 7 presents the distribution of answers
for the question "which schema was generated by
a human?" together with the correct answer written
in the bottom row, and Tab. 8 presents the percent-
age of invalid events and relations determined by
the majority vote of the annotators in the automatic
schema and the human schema.

C Details on Human Schema Curation

Here are the instructions that were given to the an-
notators that generated the human schemas for the
Schema-11 dataset. All the annotators are graduate
students that previously were involved in research
projects that include schema induction, SRL, NER
or other relevant tasks:

We are developing a system that generates
schemas automatically given a topic. We want
to compare our automatically-generated schema to
schemas derived by people using their common-
sense (without relying on texts). To do this, we
need expert human annotators and would appreci-
ate your assistance.

A schema is defined as a list of events with their
argument types, and the relationships between the
events. For example, here is a schema I wrote that
describes the event of "armed robbery":

List of events and arguments:

• intend: arg0 - perpetrator [PER], arg1 - com-
mit a felony

• acquire: arg0 - perpetrator [PER], arg1 -
weapon [WEA]

• arrive: arg0 - perpetrator [PER], arg-loc -
crime scene [LOC]

• assault: arg0 - perpetrator [PER], arg1 - [PER]

• threaten: arg0 - perpetrator [PER], arg1 -
[PER]

• get: arg0 - perpetrator [PER], arg1 - money or
goods

• injure: arg0 - perpetrator [PER], arg1 - [PER]

• kill: arg0 - perpetrator [PER], arg1 - [PER]

• flee: arg0 - perpetrator [PER], arg-loc - crime
scene [LOC]

• call: arg0 - [PER], arg1 - police [ORG]

• chase: arg0 - police [ORG], arg1 - perpertra-
tor[PER]

• catch: arg0 - police [ORG], arg1 - perpertra-
tor[PER]

• manage to escape: arg0 - perpertrator[PER]

Temporal and logical relations (in the form of a
timeline):

• a perpetrator (PER) intent to commit a felony
->

• the perpetrator (PER) acquires weapon
(WEA) ->

• the perpetrator (PER) arrives at the scene
(LOC) ->

• perpetrator (PER) assault victim (PER) with
weapon (WEA) at the scene (LOC) OR perpe-
trator (PER) threatens a person (PER) with
the weapon (WEA) at the scene (LOC) ->

• perpetrator (PER) gets money or goods from
the person (PER) OR victim injured OR vic-
tim killed ->

• perpetrator flees the scene of the crime (LOC)
AND someone (PER) calls the police (ORG)
->

• the police (ORG) are chasing the criminal
(PER) ->

• the police (ORG) catches the perpetrator
(PER) XOR the criminal (PER) manages to
escape.

The complex events we are interested in are the
following: (1) Disease Outbreak (2) IED Bombing
(3) Civil Unrest (4) International Invasion (5) Disas-
ter and Rescue (6) Terrorism Attacks (7) Election
(8) Kidnapping (9) Business Change (10) Mass
Shooting.
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Figure 5: Instructions for the Feigenbaum test.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Human 4 0 1 1 1 2 1 1 0 3 1
Automatic 2 3 4 2 1 1 1 1 4 0 1

Table 6: Completeness results. The table presents the number of votes that were recorded for which schema is more
complete - the human generated schema or the automatically generated schema. The majority vote is highlighted
in yellow.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
A 1 1 3 0 0 2 0 2 2 1 1
B 5 2 2 3 2 1 2 0 2 2 1
Correct Answer B B B B B A B A A B B

Table 7: Feigenbaum test results. The annotators guesses which schema (A or B) was generated by humans. The
number of votes for each option appear along with the correct answer in the bottom row. The correct majority
guesses are marked with green and incorrect with red.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Invalid Events (Auto.) 0 0 0 0 0 8.33 0 7.69 0 14.28 0
Invalid Relations (Auto.) 46.15 16.66 25 25 0 23.52 0.4 11.76 12.5 22.22 46.15
Invalid Events (Human) 0 0 14.28 14.28 0 0 0 0 0 0 0
Invalid Relations (Human) 7.69 50 15.38 15.38 0 6.25 0 11.11 0 10 7.69

Table 8: Invalidity results. The table presents the percentage of invalid events and relations determined by the
human annotators for each schema and scenario.
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Figure 6: An example schema in the topic of Terrorism Attack. This schema was generated automatically (infor-
mation that was unknown to the annotators).
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Figure 7: An example schema in the topic of Terrorism Attack. This schema was generated by a human (informa-
tion that was unknown to the annotators).
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Figure 8: Questions that were asked about the completeness of the schemas and the generator of the schema.

Figure 9: Questions about the validity of the events appearing in one of the schemas. This question was asked on
both schemas and on the relations appearing in the schemas too.

722



D Wizard of Oz Experiment

Two examples of the Wizard of Oz experiment for
the events of invasion and remodel a facility. The
examples show the three generated texts using the
three prompting methods, the schema created by
the author, and the LDC schema together with a
matching between the events in the two schemas.
The entire list of sampled topics is: print a 3D
object, cyber attack, make a website, religious con-
version, invasion, shipping and mailing, remodel
a facility, obtain and provide medical treatment,
build a drone, and nonviolent protest march.

D.1 Example 1: Invasion

Prompts and Outputs:

1. Prompt: describe how to perform an invasion.
Output: 1. Choose a target: Identify a target
population that you want to invade. This target
population can be a group of people, a city, or
a country. 2. Prepare your troops: Assemble
your troops and supplies in preparation for
the invasion. 3. Launch your attack: Attack
the target population using whatever means
necessary to take control. 4. Consolidate your
power: Once you have taken control of the
target population, consolidate your power by
establishing your authority and eliminating
any resistance.

2. Prompt: what are the steps involved in an in-
vasion?
Output: 1. The first step in an invasion is
to gather intelligence about the enemy. This
includes learning about their strengths, weak-
nesses, and their territory. 2. The next step is
to plan the invasion. This includes deciding
what resources will be needed and how they
will be used. 3. The third step is to launch
the invasion. This is when the actual fighting
begins. 4. The fourth step is to consolidate the
gains. This is when the invading force secures
their position and prepares for the next phase
of the operation.

3. Prompt: write a news headline about invasion.
Output: U.S. troops invade Canada in surprise
attack.
Prompt: write a news article titled: “U.S.
troops invade Canada in surprise attack.”
Output: In a stunning move, the United States
has invaded Canada in a surprise attack. The

troops came across the border early this morn-
ing, catching the Canadians by surprise. The
Canadians are currently fighting back, but it is
unknown how long they will be able to hold
out against the might of the United States mil-
itary. This is a developing story, and more
details will be released as they become avail-
able.

Schema generated based on the three outputs

1. Choose target.

2. Gather intelligence on target: learn strengths
and weaknesses and territory.

3. Plan invasion: decide on resources and how
the resources will be used.

4. Prepare troops: Assemble troops and supplies.

5. Launch attack: come across the border.

6. Fight or use whatever means possible.

7. Take control.

8. Consolidate power: establish authority and
eliminate resistance.

9. Prepare for the next phase of operation.

LDC Schema

1. Step 1: PlanInvasion: Plan[3] for the invasion.

(a) Step 1.1: IdentifyTargets[1]: Leadership
builds a list of entry points for the in-
vasion and selects one or more as the
target(s) of the initial invasion.

(b) Step 1.2: DevelopPlan[3]: A team de-
velop a master invasion plan.

(c) Step 1.3: OrderDissemination [not
matched]: Planners send out detailed in-
structions to military forces about the in-
vasion plan.

2. Step 2: DeployTroops[4]: Amass and deploy
troops for invasion.

3. Step 3: Invasion[5]: Military force launch the
invasion and enter the target territory.

4. Step 4: DisperseTroops[6]: Dispersion of in-
vading troops across territory.
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Results: The GPT3 schema covers 6 out of 7
events that are mentioned in the LDC schema. The
matching between LDC events and schema events
are marked in [] next to the event on the LDC
schema. GPT3 schema has 7 additional events:
gather intelligence, learn strengths, decide on re-
sources, assemble troops and supplies, come across
border, take control, consolidate power, establish
authority, eliminate resistance, prepare for next
phase.

D.2 Example 2: Remodel A Facility
Prompts and Outputs:

1. Prompt: describe how to remodel a facility.
Output: There is no one-size-fits-all answer
to this question, as the best way to remodel
a facility depends on the specific needs and
goals of the organization. However, some
tips on how to remodel a facility include: 1.
Define the scope of the project. 2. Create a
budget and timeline. 3. Hire an experienced
architect or designer. 4. Work with a reputable
contractor. 5. Use high-quality materials. 6.
Follow building codes and regulations. 7. Get
input from stakeholders. 8. Test the new space
before moving in.

2. Prompt: what are the steps involved in remod-
eling a facility?
Output: 1. The first step in remodeling a fa-
cility is to develop a plan. This plan should
include the goals of the remodel, the budget,
the timeline, and the scope of work. 2. The
next step is to obtain the necessary permits.
Depending on the scope of work, this may
require a building permit, a zoning permit,
and/or a permit from the local health depart-
ment. 3. Once the permits are obtained, the
next step is to select a contractor. The contrac-
tor should be licensed and insured, and should
have experience with the type of work that
needs to be done. 4. The contractor will then
begin the work, which may include demoli-
tion, construction, painting, and/or installation
of new fixtures and appliances. 5. Once the
work is completed, the facility will need to be
inspected to ensure that it meets all applicable
codes and regulations. 6. Finally, the facility
can be reopened to the public.

3. Prompt: write a news headline about remodel-
ing a facility.

Output: Facility Remodeling Underway
Prompt: write a news article titled: "Facility
Remodeling Underway"
Output: In an effort to better serve the needs
of the community, the local library is under-
going a remodel. The project is expected to
take several months to complete, but the end
result will be a more user-friendly space that
meets the needs of today’s patrons. Some of
the changes include a new layout for the adult
fiction section, additional study rooms, and
updated furniture throughout the facility. The
children’s area will also be expanded to cre-
ate a more inviting and interactive space. The
library staff is excited about the changes and
can’t wait to see the finished product. They
are confident that the updates will make the
library a more popular destination for both
residents and visitors.

Schema generated based on the three outputs

1. Develop a plan: define scope and goals and
create budget and timeline.

2. Hire an architect or designer and obtain nec-
essary permits.

3. Select a contractor (preconditions: contractor
licensed, insured, have experience).

4. Contractor works: use high quality materials
AND follow building code and regulations
and demolition or construction or painting or
installation.

5. Get input from stakeholders.

6. Inspect facility.

7. Test space.

8. Reopen facility.

9. Facility is user-friendly and meets needs of
patrons.

LDC Schema

1. Step 1: Acquisition [not matched]: Acquire
facility.

2. Step 2: Planning[1]: Research and plan ex-
pected usage, budget, changes, legal issues,
dependencies.
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3. Step 3: Labor[2,3]: Arrange for skills, or la-
borers, or both.

(a) Step 3.1: AcquireSkills [not matched]:
Acquire skills or knowledge required for
remodeling.

(b) Step 3.2: HireLaborers[2,3]: Hire skilled
person or organization to perform remod-
eling work.

4. Step 4: AcquireMaterials[4.1]: Acquire mate-
rials and tools.

5. Step 5: Remodel[4]: Facility is remodeled.

(a) Step 5.1: Demolition[4.2]: Deconstruc-
tion or demolition of portions of building
and/or equipment installations.

(b) Step 5.2: DebrisRemoval [not matched]:
Hauling away/dumping of debris.

(c) Step 5.3: Modification[4.2]: Modifica-
tion, addition, or installation of building
or systems/equipment in building.

6. Step 6: Inspection[6,7]: Inspect and/or test
new portions of facility and/or new systems of
facility for functionality and compliance with
laws and regulations.

Results: The GPT3 schema covers 8 out of 11
events that are mentioned in the LDC schema. The
matching between LDC events and schema events
are marked in [] next to the event on the LDC
schema. GPT3 schema has 9 additional events:
contractor works, follow building code and regula-
tions, preconditions on contractor, painting, instal-
lation, construction.
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