
Findings of the Association for Computational Linguistics: EACL 2023, pages 736–743
May 2-6, 2023 ©2023 Association for Computational Linguistics

It’s about Time: Rethinking Evaluation on Rumor Detection Benchmarks
using Chronological Splits

Yida Mu, Kalina Bontcheva, Nikolaos Aletras
Department of Computer Science, The University of Sheffield

{y.mu, k.bontcheva, n.aletras}@sheffield.ac.uk

Abstract

New events emerge over time influencing the
topics of rumors in social media. Current ru-
mor detection benchmarks use random splits as
training, development and test sets which typi-
cally results in topical overlaps. Consequently,
models trained on random splits may not per-
form well on rumor classification on previously
unseen topics due to the temporal concept drift.
In this paper, we provide a re-evaluation of
classification models on four popular rumor de-
tection benchmarks considering chronological
instead of random splits. Our experimental re-
sults show that the use of random splits can sig-
nificantly overestimate predictive performance
across all datasets and models. Therefore, we
suggest that rumor detection models should al-
ways be evaluated using chronological splits
for minimizing topical overlaps.

1 Introduction

Unverified false rumors can spread faster than news
from mainstream media, and often can disrupt
the democratic process and increase hate speech
(Vosoughi et al., 2018; Zubiaga et al., 2018). Au-
tomatic detection of rumors is an important task
in computational social science, as it helps prevent
the spread of false rumors at an early stage (Ma
et al., 2017; Zhou et al., 2019; Karmakharm et al.,
2019; Bian et al., 2020).

Current rumor detection approaches typically
rely on existing annotated benchmarks consisting
of social media data, e.g., Twitter 15 (Ma et al.,
2017), Twitter 16 (Ma et al., 2017), Weibo (Ma
et al., 2016), and PHEME (Zubiaga et al., 2016)
that cover a wide range of time periods. These
benchmarks use random splits for train, develop-
ment and test sets which entail some topical overlap
among them (see Table 1 for recent previous work).
However, the distribution of topics in various NLP
benchmarks (e.g., news, reviews, and biomedical)
can be significantly affected by time (Huang and

Paper Twitter 15 Twitter 16 PHEME Weibo
Tian et al. (2022) ✓ ✓ - ✓

Zeng and Gao (2022) - ✓ ✓ -
Sheng et al. (2022) - - - ✓

Mukherjee et al. (2022) - - ✓ -
Sun et al. (2022) ✓ ✓ ✓ -

de Silva and Dou (2021) ✓ ✓ - -
Ren et al. (2021) - - ✓ -
Wei et al. (2021) ✓ ✓ ✓ -
Li et al. (2021) - - ✓ -

Rao et al. (2021) ✓ ✓ - ✓

Lin et al. (2021) ✓ ✓ ✓ -
Farinneya et al. (2021) - - ✓ -

Sun et al. (2021) - - ✓ -
Qian et al. (2021) - - ✓ -
Song et al. (2021) ✓ ✓ ✓ -

Kochkina and Liakata (2020) ✓ ✓ ✓ -
Yu et al. (2020) - - ✓ -
Xia et al. (2020) - ✓ - ✓

Bian et al. (2020) ✓ ✓ - ✓

Lu and Li (2020) ✓ ✓ - -

Table 1: Recent work on rumor detection using random
splits.

Paul, 2018, 2019). This is the phenomenon of tem-
poral concept drift which can be induced by the
changes in real-world events. Specifically, this
also affects benchmarks on social media with new
events such as elections, emergencies, pandemics,
constantly creating new topics for discussion.

Gorman and Bedrick (2019) and Søgaard et al.
(2021) have showed that using different data split
strategies affects model performance in NLP down-
stream tasks. Previous work has demonstrated that
text classifiers performance significantly drops in
settings where chronological data splits are used
instead of random splits in various domains, e.g.,
hate speech, legal, politics, sentiment analysis, and
biomedical (Huang and Paul, 2018; Lukes and Sø-
gaard, 2018; Huang and Paul, 2019; Florio et al.,
2020; Chalkidis and Søgaard, 2022; Agarwal and
Nenkova, 2022; Zhao et al., 2022). To minimize
topical overlaps, a Leave-One-Out (LOO) evalu-
ation protocol has been proposed (Lukasik et al.,
2015, 2016). While this topic split strategy could
potentially mitigate temporal concept drift, it still
yields temporal overlaps between each subset and
is practically not applicable to most common ru-
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Dataset id Post Label Leven

Twitter 15 407231* r.i.p to the driver who died with paul walker that no one cares about because he wasn’t famous. Rumor 3407236* r.i.p to the driver that died with paul walker that no one cares about because he wasn’t famous. Rumor

Twitter 16 594687* the kissing islands, greenland. URL Non-Rumor 0604628* the kissing islands, greenland. URL Non-Rumor

PHEME 498483* happening now in #ferguson URL Non-Rumor 9499402* Right now in #ferguson URL Non-Rumor

Weibo 349863* 【喝易拉罐一定要吸管】一妇女喝了罐饮料，被送进医院，离开了世界。研究显示罐上面的
毒菌很多请转给你关心的朋友。 Translation: Please forward to your friends you care about.

Rumor 10

350023* 【喝易拉罐一定要吸管】一妇女喝了罐饮料，被送进医院，离开了世界。研究显示罐上面的
毒菌很多！！这些你知道么 Translation: Do you know about this?

Rumor

Table 2: Four pairs of posts from train and test data with similar or identical text content sampled from four rumor
detection benchmarks. Post ids with close values indicate that two posts are published in the same period. Leven
denotes the Levenshtein distance (Levenshtein et al., 1966) on character-level between the two posts with the same
label (i.e., lower values indicate higher text similarity and vice versa).

mour detection benchmarks with a large number
of topics (e.g., Twitter 15, Twitter 16, Weibo, etc.).
We observe that the LOO protocol can be used for
a few specific rumor detection benchmarks, such
as (PHEME (Zubiaga et al., 2016)), where each
post is associated with a corresponding event, e.g,
Ottawa Shooting and Charlie Hebdo shooting.

Using random splits also results into posts with
almost identical textual content shared during the
same period. Table 2 displays four pairs of posts
with similar or identical text content sampled from
four different rumor detection benchmarks. This
potential information leakage, results in classifying
data almost identical to ones already being present
in the training set. For practical application rea-
sons, we believe that in order to evaluate a rumor
detection system, it is necessary to detect not only
long-standing rumors, but also emerging ones.

In this paper, we design a battery of controlled
experiments to explore the hypothesis that whether
temporality affects the predictive performance of
rumor classifiers. To this end, we re-evaluate mod-
els on popular rumor detection benchmarks using
chronological data splits i.e., by training the model
with earlier posts and evaluating the model perfor-
mance with the latest posts. Results show that the
performance of rumor detection approaches trained
with random data splits is significantly overesti-
mated than chronological splits due to temporal
concept drift. This suggests that rumor detection
approaches should be evaluated with chronological
data for real-world applications, i.e., to automati-
cally detect emerging rumors.

2 Methodology

2.1 Data

We use four most popular rumor detection bench-
marks, three in English and one in Chinese. Note

that most related work is currently evaluating their
rumor detection systems on two or three of these
four benchmarks. (see Table 1).

Twitter 15 and Twitter 16: These datasets con-
tain 1,490 and 818 tweets labeled into four cate-
gories including Non-rumor (NR), False Rumor
(FR), True Rumor (TR), and Unverified Rumor
(UR) introduced by Ma et al. (2017).

PHEME: This benchmark contains 5,802 veri-
fied tweets collected from 9 real-world breaking
news events (e.g., Ottawa Shootting, Ferguson Un-
rest, etc.) associated with two labels, i.e., 1,972 Ru-
mor and 3,830 Non-Rumor (Zubiaga et al., 2016).

Weibo: This dataset includes 4,664 verified posts
in Chinese including 2,313 rumors debunked by the
Weibo Rumor Debunk Platform1 and 2,351 non-
Rumors from Chinese media (Ma et al., 2016).

Data Pre-processing We opt for the binary setup
(i.e., re-frame all benchmarks as rumor detection)
to distinguish true/false information following Lu
and Li (2020); Rao et al. (2021). We pre-process
the posts by replacing @mention and hyperlinks
with @USER and URL respectively. We also low-
ercase the tweets from three Twitter benchmarks.

2.2 Data Splits

Standard Chronological Splits For Twitter 15
and PHEME, we first sort all posts chronologically
and then divide them into three subsets including
a training set (70% of the earliest data), a develop-
ment set (10% of data after train and before test),
and a test set (20% of the latest data). There is no
temporal overlap between the three subsets.

1https://service.account.weibo.com/
?type=5&status=4
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Benchmarks Twitter 15 Twitter 16 PHEME Weibo
Splits Subsets Train Dev Test Train Dev Test Train Dev Test Train Dev Test

# of Rumors 285 35 52 - - - 1,420 72 480 - - -Standard Chronological # of Non-Rumors 234 40 96 - - - 2,641 508 681 - - -
# of Rumors 260 37 75 144 21 40 1,380 197 394 1,645 235 470Stratified Chronological # of Non-Rumors 259 37 74 144 21 40 2,681 383 766 1,619 231 463
# of Rumors 260 37 75 144 21 40 1,380 197 394 1,645 235 470Random Splits # of Non-Rumors 259 37 74 144 21 40 2,681 383 766 1,619 231 463

Table 3: Statistics of subsets. Note that using random splitting yields the same percentage of examples in each
category as in the stratified chronological splits.

Stratified Chronological Splits On the other
hand, we observe that there is no temporal overlap
between rumors and non-rumors in Twitter 16 and
Weibo datasets. This suggests that it is not possible
to use standard chronological splits as in Twitter
15 and PHEME.

Therefore, we apply a stratified chronological
split strategy for all benchmarks. We first split ru-
mors and non-rumors separately in chronological
order. We then divide them into three subsets (a
total of six subsets), i.g., all rumors are split into a
training set (70% of the earliest rumors), a develop-
ment set (10% of data after train and before test),
and a test set (20% of the latest rumors). Finally,
we merge the six subsets into the final three train,
development and test sets. Note that this approach
will result in no temporal overlap for each label
(i.e., rumor or non-rumor) among the three final
sets. We show the number of each split in Table 3.

Random Splits Following standard practice (e.g.,
Bian et al. 2020; Lin et al. 2021; Rao et al. 2021),
we randomly split data using a 5-fold cross-
validation. Note that these splits are made by pre-
serving the percentage of posts in each category.
Each split contains a training set (70%), develop-
ment set (10%) and a test set (20%) with the same
ratio as in our chronological splits.

Leave-One-Out (LOO) Splits For reference, we
also provide the results of using the LOO evalua-
tion protocol on PHEME dataset (see Table 5).

2.3 Models

The main purpose of our experiments is to improve
model evaluation by investigating the effects of
temporal drifts in rumor detection by providing
an extensive empirical study. Therefore, we opted
using strong text classifiers that are generic and can
be applied to all of our benchmarks:

• LR We train a LR classifier using BOW to
represent posts weighted by TF-IDF using a
vocabulary of 5,000 n-grams.

• BERT We directly fine-tune the BERT base
model by adding a linear prediction layer on
the top of the 12-layer transformer architec-
ture following (Devlin et al., 2019).

• BERT+ (BERTweet and ERNIE) We also
experiment with two domain specific models:
BERTweet (Nguyen et al., 2020) and ERNIE
(Sun et al., 2020) pre-trained on social media
data using the same fine-tune strategy as the
original BERT model.

2.4 Hyperparameters and Implementation
Details

We train the model on the training set, perform
model tuning and selecting on the development
set, and evaluate performance on the test set. To
evaluate the chronological data splits, we run the
model five times with different random seeds for
consistency. All chronological splits are available
for reproducibility.2

For logistic regression, we use word-level and
character-level tokenizers for Twitter and Weibo
datasets respectively and only consider uni-gram,
bi-grams, and tri-grams that appear in more than
two posts for each dataset. For BERT, we set learn-
ing rate lr = 2e− 5, batch size bs = 32, and max-
imum input length as 256 covering the max tokens
of all posts. All BERT-style models are trained for
10 epochs using the early stopping method based
on the loss on the development set. The best check-
point model is saved for evaluation on the test set.
The average run time of 10 epochs for the BERT
model is less than 2 minutes. We employ Bert-
Base-Uncased, Bertweet-Base and Chinese-Bert-
WWM, Ernie-1.0 models from the HuggingFace
library (Wolf et al., 2020). All experiments are
conducted on a single NVIDIA V100 GPU with
32GB memory.

2https://github.com/YIDAMU/Rumor_
Benchmarks_Temporality
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Twitter15 PHEMEModel Strategy P R F1 P R F1
Random 86.7 ± 2.1 85.2 ± 1.8 85.0 ± 1.8 84.1 ± 1.2 79.3 ± 1.0 80.9 ± 1.0

Standard Chronological 56.6 ± 0.8 56.3 ± 0.7 56.4 ± 0.7 67.3 ± 0.1 64.0 ± 0.1 63.9 ± 0.1LR
Stratified Chronological 56.3 ± 2.5 51.9 ± 0.7 41.4 ± 0.4 64.5 ± 0.2 63.0 ± 0.3 63.5 ± 0.3

Random 88.2 ± 2.4 87.9 ± 2.2 87.9 ± 2.2 84.8 ± 0.5 84.8 ± 1.2 84.8 ± 0.8
Standard Chronological 54.8 ± 4.0 55.1 ± 4.3 52.9 ± 3.6 74.8 ± 1.1 75.1 ± 0.8 73.7 ± 0.4BERT
Stratified Chronological 58.2 ± 7.3 56.1 ± 4.5 52.8 ± 5.6 75.5 ± 0.6 77.7 ± 0.5 75.7 ± 1.1

Random 90.8 ± 1.2 90.4 ± 1.2 90.4 ± 1.2 84.6 ± 1.0 85.5 ± 0.9 85.0 ± 0.8
Standard Chronological 58.6 ± 1.9 58.8 ± 2.1 57.4 ± 2.5 76.1 ± 1.1 74.8 ± 1.5 71.6 ± 2.2BERT+
Stratified Chronological 61.8 ± 6.5 57.9 ± 2.4 55.2 ± 1.5 75.3 ± 0.9 76.9 ± 2.1 71.0 ± 3.5

Twitter16 WeiboModel Strategy P R F1 P R F1
Random 89.9 ± 1.2 89.3 ± 1.5 89.3 ± 1.5 90.1 ± 0.9 90.1 ± 0.9 90.1 ± 0.9LR Stratified Chronological 62.1 ± 6.9 55.8 ± 4.7 48.7 ± 11.4 79.1 ± 0.1 78.1 ± 0.1 77.9 ± 0.1
Random 91.9 ± 1.0 91.5 ± 0.8 91.5 ± 0.8 92.3 ± 1.2 92.2 ± 1.2 91.2 ± 1.2BERT Stratified Chronological 61.0 ± 11.2 54.3 ± 4.3 47.2 ± 3.5 89.0 ± 2.5 87.6 ± 2.6 87.5 ± 2.6
Random 89.8 ± 2.8 89.3 ± 3.2 89.3 ± 3.3 92.5 ± .4 92.5 ± .4 92.5 ± .4BERT+ Stratified Chronological 49.8 ± 1.7 49.9 ± 0.9 45.1 ± 2.9 88.1 ± 2.5 87.6 ± 1.4 88.5 ± 1.5

Table 4: Rumor detection prediction results across different data split methods. Green cells indicate that the
model trained on random splits performs significantly better than both standard chronological splits and stratified
chronological splits (p < 0.05, t-test).

PHEMEModel P R F1
LR 68.3 ± 3.8 65.1 ± 6.3 63.2 ± 6.3
BERT 73.4 ± 3.1 71.9 ± 6.1 70.7 ± 4.9
BERT+ 75.3 ± 2.2 72.6 ± 8.1 71.4 ± 7.0

Table 5: Leave-One-Out evaluation protocol on PHEME
dataset.

2.5 Evaluation Metrics
For all tasks, we report the averaged macro Preci-
sion, Recall and F1 values across five runs using
different random seeds.

3 Results

Random Splits vs. Chronological Splits Table 4
shows the experimental results across all models
and rumor detection benchmarks using chrono-
logical splits and random 5-fold cross-validation.
Overall, we observe that the use of random splits
always leads to a significant overestimation of per-
formance compared to chronological splits (t-test,
p < 0.05) across all models. Our results cor-
roborate findings from previous work on study-
ing temporal concept drift (Huang and Paul, 2018;
Chalkidis and Søgaard, 2022). This suggests that
chronological splits are necessary to more realisti-
cally evaluate rumor detection models.

We also note that the effect of temporality varies
in datasets of different size. For both data splitting
strategies, we observe that the difference in per-
formance is 50% higher for the two datasets with
hundreds of posts (e.g., Twitter 15 and Twitter 16)
and around 10% in ones with thousands of posts
(e.g., PHEME and Weibo). For rumor detection

tasks, temporality may have a greater impact on
small-scale benchmarks than on large-scale bench-
marks. For Twitter 16 and Weibo, the use of strati-
fied chronological splits demonstrates significant
performance drops compared to random splits due
to the temporal concept drift.

For chronological splits, we observe that pre-
trained language models (i.e., BERT and BERT+)
significantly outperform (t-test, p < 0.05) logistic
regression in all benchmarks. This is due to the
fact that BERT-style models (i) outperform sim-
pler linear models by a large margin in various
NLP tasks (Devlin et al., 2019); and (ii) have been
trained after the development of these four bench-
marks implying some information leakage.

Standard vs. Stratifield Chronological Splits
Note that dividing the datasets into standard chrono-
logical splits results in subsets that do not preserve
the sample percentages for each category (see Ta-
ble 3). The upper part of Table 4 displays the differ-
ence in model performance between two types of
chronological splits on Twitter 15 and PHEME.
We observe that using both standard and strati-
fied chronological splits results in similar model
predictive performance (t-test, p > 0.05). Even
though stratified chronological splits contain tem-
poral overlap, it is still not sufficient to improve
model performance compared to random splits.
This suggests that the temporal drift affects par-
ticular classes rather than the entire data set.

4 Error Analysis

Finally, we perform an error analysis to further
investigate the type of errors made by BERT us-
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Bechmark Twitter 15 Twitter 16 PHEME Weibo
Splits Test set total # % total # % total # % total # %

all posts 148 3 2% 82 6 7% 1161 39 3% 933 41 4%
# of wrong predictions 63 2 1% 34 2 2% 301 5 <1% 99 7 <1%Chrono.
# of correct predictions 85 1 1% 48 4 5% 860 34 3% 834 34 4%
all posts 149 35 23% 83 26 30% 1161 181 16% 933 129 14%
# of wrong predictions 12 0 0% 5 1 1% 150 14 1% 65 4 <1%Random
# of correct predictions 137 35 23% 78 25 30% 1011 167 14% 868 125 14%

Table 6: Error Analysis for all benchmarks. # denotes the number of posts that are similar to posts from training set,
i.e., known data. % denote the percentage of similar posts in the test set. We set the threshold value to 20, which
indicates that there are two or three different words between the two tweets.

Example Test Train Correct Wrong
Twitter 15 #rip to the driver who died with #paulwalker that no one cares about because he wasn’t famous. 4 6 4 0
Twitter 16 steve jobs was adopted. his biological father was abdulfattah jandali, a syrian muslim 2 13 2 0
PHEME Police are leaving now . #ferguson HTTPURL 4 11 4 0

Weibo
【交通新规】2013年1月1日施行:1... 扩散给大家! 「广州日报」
Translation: [New driving laws] From 1 Jan 2013: Running a red light will result in a fine of
100 RMB and 6 points. ... Spread the news to everyone! [Guangzhou Daily]

2 6 2 0

Table 7: Four examples of correct predictions using random splits, which artificially removes temporal concept drift.
For example, in Twitter 15, there are 4 and 6 similar posts about rumors related to Paul Walker in the test set and the
training set respectively.

ing both random and chronological splits. Table 6
shows the number of correct and wrong predictions
for each of the two data splitting strategies. We
also use the Levenshtein distance3 to calculate the
quantity of posts in the test set that are similar to
posts in the corresponding train set.

• We first observe that the temporal concept
drift is evident in all rumor detection bench-
marks. Most of the rumors on the same topic
are posted in a very short time span.

• In addition, long-standing rumors are only a
small part of the data (less than 5%). Sec-
ond, we note that using random splits leads to
topical overlap between the training and test
sets (see Table 7) resulting in higher model
performance.

• Finally, for both random and chronological
splits, most of the posts in the test set with
overlapping topics in the training set are pre-
dicted correctly. In contrast, wrong predic-
tions are often posts with emerging or differ-
ent topics compared to the posts in the train
set.

5 Conclusion

We have shed light on the impact of temporal drift
on computational rumor detection. Results from
our controlled experiments show that the use of
chronological splits causes substantially drops in
predictive performance across widely-used rumor

3We set the threshold value to 20.

detection benchmarks. This suggests that random
splits rather overestimate the model predictive per-
formance. We argue that the temporal concept drift
needs to be considered when developing real-world
rumor detection approaches. In the future, we plan
to study the impact of temporal concept drift on
other NLP tasks, such as detecting user reactions to
untrustworthy posts on social media (Glenski et al.,
2018; Mu and Aletras, 2020; Mu et al., 2022).

Limitations

We provide the first re-evaluation of four standard
rumor detection benchmarks in two languages (En-
glish and Chinese) from two platforms (Twitter and
Weibo). We acknowledge that further investigation
is needed in rumor detection datasets in other lan-
guages. We provide an error analysis in Section 4.
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