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Abstract

Recent research in cross-lingual learning has
found that combining large-scale pretrained
multilingual language models with machine
translation can yield good performance (Phang
et al., 2020; Fang et al., 2021). We explore this
idea for cross-lingual event extraction with a
new model architecture that jointly encodes a
source language input sentence with its trans-
lation to the target language during training,
and takes a target language sentence with its
translation back to the source language as input
during evaluation. However, we observe signif-
icant representational gap between the native
texts and translated texts, both in the source
language and the target language. This repre-
sentational gap undermines the effectiveness
of cross-lingual transfer learning for event ex-
traction with machine-translated data. In order
to mitigate this problem, we propose an adver-
sarial training framework that encourages the
language model to produce more similar rep-
resentations for the translated text and the na-
tive text. To be specific, we train the language
model such that its hidden representations are
able to fool a jointly trained discriminator that
distinguishes translated texts’ representations
from native texts’ representations. We conduct
experiments on cross-lingual event extraction
across three languages. Results demonstrate
that our proposed adversarial training can ef-
fectively incorporate machine translation to im-
prove event extraction, while simply adding
machine-translated data yields unstable perfor-
mance due to the representational gap.1

1 Introduction

There are over 6,000 living languages in the world,
and for many of them, too little appropriate data
exists to build natural language processing (NLP)
models. Cross-lingual learning has been proposed
to leverage resources in data-rich languages to
train NLP models for data-scarce languages (Ruder

1Code at https://github.com/Perfec-Yu/CrossIE

et al., 2019). There are two main strategies for
building cross-lingual models: (1) train models
with multilingual language models and language-
universal features that are transferable to the target
language (Huang et al., 2019; Hsu et al., 2019; Hu
et al., 2020a; Luo et al., 2020; Wei et al., 2021;
Ouyang et al., 2021; Liu et al., 2019; Subburathi-
nam et al., 2019; M’hamdi et al., 2019; Ahmad
et al., 2021); (2) use machine translation models in
a pipeline, either by transforming annotated train-
ing data into the desired target language to build
target-language models, or by translating data at in-
ference time into the source language and applying
source-language models (Cui et al., 2019; Hu et al.,
2020a; Yarmohammadi et al., 2021). The first ap-
proach relies on the quality of the constructed mul-
tilingual semantic space; the discrepancy between
source-language training data and target-language
evaluation data may cause overfitting. The second
approach does not require a perfect multilingual
semantic space since models can be trained in a
monolingual fashion, but it depends on the quality
of machine translation.

A combination of both approaches showed good
performance on a variety of tasks such as natural
language inference and question answering (Phang
et al., 2020; Fang et al., 2021), but is underexplored
for event extraction. Compared with previous
research in cross-lingual event extraction mainly
adopting the first approach (Liu et al., 2019; Subbu-
rathinam et al., 2019; M’hamdi et al., 2019; Ahmad
et al., 2021), we explore the idea of combining both
machine translations and language-universal rep-
resentations for cross-lingual event extraction in
this work. We perform translation by extending the
previous effort on cross-lingual reading comprehen-
sion (Hsu et al., 2019) and question answering (Hu
et al., 2020a) by adding special tags around the
trigger and entity spans to translate the annotations.
We use a multilingual language model to simulta-
neously encode a sentence and its corresponding
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Figure 1: Overall cross-lingual information extraction framework

translation as shown on the left side of Figure 1. For
example, in an English-to-Chinese cross-lingual
learning setting, we would train a model with En-
glish sentences with their Chinese translations as
training data, and evaluate our model with Chinese
sentences and their English translations as inputs.
Since our work includes both cross-lingual learning
and machine translation, to avoid ambiguity, we
will use “source” language as the one we perform
cross-lingual learning from, and “target” language
as the one we perform cross-lingual learning to.
We will call texts before translation “native” text
and text after translation “translated” text for the
machine-translation-related descriptions.

We found that one challenge in cross-lingual
event learning with machine translations is that the
machine-translated text MK→L from one language
K into another language L may be different from
the native text in the target language NL. This
difference is also introduced and studied as the
problem of “translationese” (translated text as a
different language) in previous machine translation
research (Pylypenko et al., 2021; Riley et al., 2020).
In cross-lingual event extraction, we observe from
a simple preliminary experiment that there indeed
exists a distinguishable gap between representa-
tions of native texts H(NL) and translated text
H(MK→L) in some multilingual language model
H . The pretrained language models appear to be
“unaccustomed” to the translated text. The represen-
tational gap will negatively impact the cross-lingual
learning with machine-translated data. Since we, as
introduced above, simultaneously encode a native

source language sentence NS and its translation
into the target MS→T language during training,
and a native target language sentence NT and its
translation back to the source language MT →S
during evaluation, the problem of representational
gap between NS and MT →S , as well as NT and
MS→T need to be resolved. Here S and T refer
to the source and the target language respectively.

In order to mitigate the representational gap prob-
lem between machine-translated text M and native
text N in both source and target languages, we
propose to take advantage of an unlabeled corpus
in the target language and use adversarial train-
ing to make the encoder produce more similar rep-
resentations for NS and MT →S , as well as NT
and MS→T . The adversarial framework trains
the language model H such that its hidden rep-
resentations can fool a jointly trained discrimina-
tor that distinguishes translated texts’ representa-
tions H(M) from native texts’ representations
H(N ). Our complete cross-lingual IE framework
is shown in Figure 1, which combines translation-
based methods with transfer-based methods, and
uses an unlabeled target language corpus to im-
prove the representations in multilingual language
models. Our method shows superior performance
on event trigger labeling and argument role label-
ing, and through quantitative studies, we observe
that adversarial training indeed makes the multi-
lingual language model generate closer represen-
tations for the translated text and the native text.
We believe our proposed adversarial training can
also be helpful in other NLP tasks where machine
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translation can boost performance.
To summarize, our contributions are two-fold:

• We observe the gap between representations
of the machine-translated text and the native
text in multilingual language models.

• We propose an adversarial training method
to close the representational gap, which im-
proves event extraction performance.

2 Approach

In this section, we will start with a simple prelim-
inary experiment to validate the problem of the
representational gap, and then introduce our ap-
proaches to cross-lingual event trigger and argu-
ment role labeling. For both tasks, we first design
specific methods to use machine translation models
to translate source language annotations into the tar-
get language. We then use XLM-RoBERTa (Con-
neau et al., 2020) to encode pairs of parallel sen-
tences simultaneously into hidden representations.
Task-specific losses are used on top of the hidden
representations. In order to make the multilingual
language model produce more similar representa-
tions for translated sentences and native sentences,
we further use an unlabeled target language corpus
for adversarial training.

2.1 Preliminary Experiment on
Representational Gap

We translate Chinese sentences from the ACE 2005
Chinese corpus into English and encode the trans-
lated English sentences MZH→EN and native En-
glish sentences NEN in the ACE 2005 English
data using the multilingual language model XLM-
RoBERTa (Conneau et al., 2020). We then train
linear Support Vector Machines (SVMs) (Cortes
and Vapnik, 1995) to classify the encoded repre-
sentations of these two sets of sentences as N ative
or Machine-translated. The model achieves 83.4%
accuracy on a held-out test set classifying the trans-
lated English sentences MZH→EN and native En-
glish sentences NEN. We also perform translation
from English to Chinese and achieve 93.4% ac-
curacy classifying native Chinese sentences NZH

and translated Chinese sentences MEN→ZH. Both
numbers are significantly higher than the random
50% accuracy, indicating that the translated text
and the native text are almost linearly separable in
the multilingual language models and hence val-
idating the representational gap between the two
types of texts.

2.2 Event Trigger Labeling
In monolingual event trigger labeling, the in-
put to the model is a sequence of text tokens
{w0, w1, . . . , wl}. The model identifies consec-
utive text spans as event triggers and classifies
the spans into event types. We first obtain the
token representations using the text encoder as
{h0,h1, . . . ,hl}. Then we apply a linear layer
to classify each token into one of the event types.

For the cross-lingual setting, we first translate
the monolingual training data in the source lan-
guage into the target language together with the
trigger annotations. We will explain the transla-
tion process in Section 2.4. We encode the source
language text sequence {ws0, ws1, . . . , wsl} and
its translation {wt0, wt1, . . . , wtk} using the XLM-
RoBERTa (Conneau et al., 2020) model. We also
adopt a special fusion strategy as introduced in
the FILTER (Fang et al., 2021), which adds cross-
lingual attention between the source language text
and its translation in some hidden Transformer lay-
ers. We apply the classification step as in the mono-
lingual setting for both ws and wt. The task loss is
the summation of losses from ws and wt.

L = Ls + Lt. (1)

In the training phase described above, the input
sequences to the multilingual language model con-
sist of a native source language sequence wn

s and
its translations wm

t . In the evaluation phase, the
input sequence becomes a native target language
sequence wn

t and a translated source language se-
quence wm

s . Therefore, we need to bridge the rep-
resentational gap in the multilingual LM between
two pairs: (wn

s , w
m
s ) and (wm

t , wn
t ). In order to

encourage the multilingual LM to generate closer
representations for wn

s and wm
s , as well as for wm

t

and wn
t , we further propose an adversarial loss us-

ing another unlabeled target language corpus. We
first translate the unlabeled target language cor-
pus, from which we sample wn

t , into the source
language (wm

s ) to construct an unlabeled parallel
corpus. Then parallel sentence pairs (wm

s , wn
t ) in

the unlabeled corpus are encoded by the multilin-
gual LM in the same way as the labeled training
sentence pairs (wn

s , w
m
t ). We train two additional

two-layer discriminators, Ds and Dt. Ds attempts
to distinguish native source language representa-
tions wn

s from translated source language represen-
tations wm

s . Dt attempts to distinguish translated
target language representations wm

t from the native
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Trigger Labeling Argument Role Labeling

Source
Language

Now that Enron has ceased to exist, Bech-
tel and GE are <b>suing</b> the Indian
Government for 5.6 billion US dollars.

The electricity that Enron produced was
so exorbitant that the government decided
it was cheaper not to buy electricity and
<a>pay</a> <b>Enron</b> the mandatory
fixed charges specified in the contract.

Target
Language

现在安然已经不复存在，柏克德和通用电气正

在<b>起诉</b>印度政府，要求赔偿56亿美元

安然生产的电力如此昂贵，以至于政府决定不

购买电力并<a>支付</a><b>安然</b>合同中规

定的强制性固定费用更便宜

Table 1: Example of training data translation for trigger labeling and argument role labeling.

target language representations wn
t . The adversar-

ial loss is also illustrated in Figure 1. For adver-
sarial training, we adopt W-GAN (Arjovsky et al.,
2017) with gradient penalty (Gulrajani et al., 2017)
in this work. Specifically, Ds and Dt are two-layer
neural networks with one output unit, i.e., they out-
put single scalars. Optimization targets of the two
discriminators are

LDs = Ds(h
m
s )−Ds(h

n
s ; θ)

+ GP(Ds;h
m
s ,hn

s ),

LDt = Dt(h
m
t )−Dt(h

n
t )

+ GP(Dt;h
m
s ,hn

s ).

(2)

Here GP refers to the gradient penalty loss in Gul-
rajani et al. (2017) to regularize the discriminators.
Ds and Dt are both neural networks that output
a single value. We use Ds(w

m
s ; θ) to denote the

average output value of all token representations
in the sequence wm

s , and Dt in an analogous way.
We expect our multilingual LM to produce repre-
sentations that confuse both discriminators. The
optimization target for the encoder is,

LG = Ds(h
n
s )−Ds(h

m
s )

+Dt(h
n
t )−Dt(h

m
t ).

(3)

The gradients of the loss in Equation (1) are back
propagated to both the multilingual language model
and the trigger classification layers. The gradients
of the discriminator loss in Equation (2) are back
propagated to Ds and Dt only. The gradients of the
generator loss in Equation (3) are back propagated
to the multilingual language model. In practice we
find that it is beneficial to back propagate LG to
only the last layer of the XLM-RoBERTa to match
the capacity of the discriminators Ds and Dt.

2.3 Argument Role Labeling

Argument Role Labeling identifies the roles enti-
ties play in events. Assuming gold-standard entity
spans are provided, the input is a sentence x with
a trigger span and an entity span, and the model
predicts the argument role of the entity in the event.
We use an additional None label for the case where
the entity does not participate in the event.

For monolingual prediction, we first insert into
the sentence two pairs of anchors to specify spans
for the trigger and the entity: (“<a>”, “</a>”)
around the trigger span and (“<b>”, “</b>”) around
the entity span. We encode the modified sentence
into hidden representation x by a pretrained lan-
guage model. We consider the token representation
for the CLS token inserted into the beginning of
every sentence xCLS as the summarization of the
sentence and feed it to a linear layer for classifica-
tion. For adversarial training, we use a similar loss
as in Equations (2) and (3), but use the CLS token
representation xCLS as the input to the discrimina-
tors.

2.4 Annotation Translation

We show two examples in Table 1 for translating an-
notations for trigger labeling and argument role la-
beling respectively. For trigger labeling, we first en-
close each trigger span in the source language sen-
tences with special tokens (“<b>”, “</b>”) inspired
by previous efforts on question answering (Hu
et al., 2020b). The machine translation model is
applied to the new sentence. If the paired special
tokens (“<b>”, “</b>”) exist in the translated sen-
tence, we label the text span inside the pair as the
event trigger. Otherwise we consider the transla-
tion as invalid and discard the target language loss
Lt in Equation (1) when training. We still use the
invalid translations for the adversarial training loss
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in Equation (2) and Equation (3) since the compu-
tation of these losses doesn’t require trigger spans.

For argument role labeling, we take advantage
of the anchor tokens used for training and simply
translate the sentences with trigger and entity spans
enclosed by anchor tokens into the target language.
Due to the imperfections in the machine translation
model, there are corrupted translated samples miss-
ing “<a>” or “<b>” tags. However, since the role
labeling model architecture doesn’t require the exis-
tence of these tags to be runnable, we still consider
them as valid inputs and use the corrupted trans-
lated samples as training data for both the target
language loss Lt in Equation (1) and the adversarial
losses in Equation (2) and Equation (3).

2.5 Evaluation

At inference time, the inputs to the framework are
sentences in the target language. We first translate
the target language sentence into the source lan-
guage using the same machine translation model
used for the unlabeled target language corpus dur-
ing training and apply our framework to the sen-
tence pairs. We make predictions using the hidden
representations of the target language.

3 Experiments

3.1 Dataset and Machine Translation

We use the ACE2 2005 dataset for experiments.
We study all six transfer learning settings among
the three languages in the dataset: Arabic, Chi-
nese and English. We follow previous work on
event extraction (Lin et al., 2020) to split the ACE
dataset for the trigger labeling task. For the argu-
ment role labeling task, previous work (Subburathi-
nam et al., 2019; Ahmad et al., 2021) has adopted
a different split from Lin et al. (2020). We there-
fore follow the split in (Subburathinam et al., 2019;
Ahmad et al., 2021) in this task. However, since
their processed version of ACE dataset is not avail-
able, we use our own processed version and re-
train their models on our version for comparison.
We provide basic data statistics in Table 2. We
also provide more fine-grained data statistics in
Appendix. There are some other competitive cross-
lingual event extraction baselines that we are not
able to compare due to limited availibity of code or
split information. We provide further discussion in

2https://www.ldc.upenn.edu/
collaborations/past-projects/ace

the related work section. We use Google Translate
for all machine translation components.

Trigger Role
#Docs #Events #Cands #Args

EN
Train 529 4,419 14,036 7,018
Dev 28 468 1,754 719
Test 40 424 1,756 878

ZH
Train 551 2,926 11,826 5,931
Dev 40 217 1482 602
Test 42 190 1484 578

AR
Train 303 1,751 7,918 3,959
Dev 50 255 990 495
Test 50 262 990 495

Table 2: Data statistics for ACE 2005 dataset. EN, ZH
and AR refer to the English, the Chinese and the Arabic
splits respectively. The trigger labeling task (Trigger)
and the argument role labeling task (Role) use different
splits to compare with previous methods. We present the
number of documents and the number of event mentions
for Trigger splits. For Role splits, we present the number
of candidate trigger-entity pairs for prediction (#Cands)
and the total number of pairs that hold some argument
role relationship (#Args).

3.2 Experiment Settings

Methods in Comparison We compare the fol-
lowing approaches in evaluation:
Direct, which directly trains a model on the source
language with a multilingual language model and
evaluates it on the target language. We use XLM-
RoBERTa as the multilingual LM to be comparable
with our method;
GATE (Ahmad et al., 2021) is a state-of-the-art
cross-lingual model for the argument role labeling
task. Hence we only compare with GATE in the
argument role labeling task;
Trans is a baseline that excludes our proposed ad-
versarial loss but keeps all the remaining compo-
nents;
Trans+Adv is our proposed framework;
Target Supervision is a mono-lingual IE model
trained on the target language data.

Evaluation Settings Except for Target Supervi-
sion, all cross-lingual models are trained with the
source language annotations. We use the target lan-
guage training corpus without annotations to com-
pute the adversarial loss in our proposed method.
We report F1 scores in the following sections and
include precision and recall scores in Appendix.
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Event Trigger Labeling AR - EN ZH - EN AR - ZH EN - ZH ZH - AR EN - AR

Direct 39.8 44.4 33.4 46.9 36.7 39.0
Trans 39.4 46.3 38.8 47.3 36.6 39.3

Trans+Adv (ours) 41.5 54.6 40.1 49.3 38.4 42.3

Target Supervision 68.5 65.6 56.1

(a) Event trigger labeling.

Argument Role Labeling AR - EN ZH - EN AR - ZH EN - ZH ZH - AR EN - AR

GATE 50.3 57.0 55.7 63.6 65.1 65.0

Direct 56.8 61.5 64.6 71.7 64.0 62.5
Trans 57.5 60.6 64.9 71.3 63.8 62.2

Trans+Adv (ours) 58.4 62.9 65.6 72.0 68.0 65.1

Target Supervision 77.2 82.0 77.8

(b) Argument role labeling.

Table 3: F1(%) scores for the cross-lingual event extractions. GATE (Ahmad et al., 2021) is a state-of-the-art method
for cross-lingual argument role labeling. Direct,Trans and Target Supervision are introduced in Section 3.2.AR,EN
and ZH correspond to Arabic, English and Chinese respectively.

3.3 Experiment Results

We show the evaluation results for trigger label-
ing in Table 3a. We show results for the argument
role labeling task in Table 3b. Our model shows
superior performance compared with other cross-
lingual baselines in both trigger labeling and role
labeling tasks and across all six cross-lingual trans-
fer settings. Our model outperforms the Trans
baseline that is trained without the adversarial loss.
This indicates that our proposed approach effec-
tively narrows the gap between the translations and
the original natural language to improve the per-
formance. Moreover, we notice that the Trans
that uses translated data for training cannot con-
sistently outperform the Direct baseline which
doesn’t use translated data. This shows that the
representational gap can have a negative impact on
the model performance than the positive impact
brought by including the translated data. In the fol-
lowing sections, we provide further analysis on the
representational gap, our model’s improvements
and remaining errors.

3.4 Effect of Adversarial Training

In this section we evaluate the effect of the adver-
sarial training on reducing the representational gap.
Hence we compare our model against the Trans
baseline that doesn’t use the adversarial training
loss. We take the English-to-Chinese transfer learn-
ing setting as a case study in this section.

Argument EN-to-ZH
Role Labeling T-ZH ZH Diff

Trans 74.3 71.3 -3.0
Trans+Adv (ours) 74.5 72.0 -2.5

Table 4: F1 scores (in %) of the English-Chinese cross-
lingual argument role labeling models on translated Chi-
nese test corpus (from English test corpus), T-ZH and
the native Chinese test corpus, ZH. Diff is the perfor-
mance gap between two test corpora.

A straightforward way to examine the representa-
tional gap between the native text and the translated
text inside a model is to compare its performance
on these two types of texts on role labeling. In Ta-
ble 4, we report the F1 scores on the native Chinese
test set and translated Chinese text from English
dataset respectively. The performance on trans-
lated Chinese is better than native Chinese since
both models use the translated Chinese instead of
native Chinese during training. Our adversarial
training method shows a smaller performance gap
compared with the non-adversarial baseline, indi-
cating that our model indeed reduces the represen-
tational gap.

In addition to this evaluation, we further check
whether the proposed generator loss helps the
model to produce representations that confuse the
discriminators. We compare the discriminator out-
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Figure 2: Distribution of differences in discriminator outputs between native text and translated text. We compute
the density with NumPy3 histogram function on original data points. w. Adv refers to our model with the adversarial
training. w/o Adv is the output of the additional discriminators trained on the baseline Trans without adversarial
training. (See Appendix for details on how the additional discriminators are trained)

Task Sentence Error

Trigger Label-
ing

...徐鹏航...支持参与亲属购买内部职工股...

(...Penghang Xu... supported and partic-
ipated in relatives’ purchasing internal em-
ployee shares)

Baseline model makes a false pos-
itive prediction of “支持” (support)
as a trigger for Transfer-Money
event

Table 5: An Example error that the baseline approach fails but our proposed model succeeds.

puts for the native text representations and the trans-
lated text representations in Figure 2, for both En-
glish and Chinese. Since we use W-GAN (Arjovsky
et al., 2017) for adversarial training, the discrimi-
nator output for an input sentence is a single scalar.
For each language, we plot the distribution of dif-
ference in the output scalars Ds,t(h

n
s,t)−D(hm

s,t)
between the native test corpus and the translated
test corpus. These difference values are closer to
0 if the model fools the discriminators. For com-
parison we trained additional discriminators for the
Trans baseline as the w/o ADV curves on the
plot. The adversarial training makes the difference
between the native text and the translated text much
smaller for both English and Chinese.

Apart from the quantitative analysis, we show
an example error from the baseline model that
our proposed framework with adversarial train-
ing has managed to avoid in Table 5. The model
makes the wrong prediction because in the En-
glish training data, “support”(支持) can trigger
a Transfer-Money event with certain context
which is uncommon in Chinese. By aligning the
representation spaces with adversarial training, the
model will align支持 in translated text to represen-

tations of more common used Chinese words that
trigger the Transfer-Money event.

3.5 Remaining Challenges

Chinese Sentences Error

40年来，日本皇室就没有再

添男丁。 (For 40 years,
the Japanese royal family
has not added any more
males.)

Misses
the trigger
添(add),
Be-Born

德仁皇太子唯一的弟弟，

是[皇室]entity最后一名[出

生]trigger的 男 性 (the
only brother of Prince
Naruhito was the last male
[born]trigger in the [Royal
Family]entity.)

False pos-
itive role
predic-
tion:Place.

Table 6: Remaining error examples of cross-lingual
trigger and argument role labeling from our proposed
model. We provide Chinese test sentences and English
translations on the left and errors on the right.

Our experiments show cross-lingual trigger la-
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beling from English to Chinese is very challenging.
In Table 6, the first two examples are from the trig-
ger labeling task. In the first example, the Chinese
trigger span has the meaning of “add,” which can
only trigger a Born event under specific context
such as “add children.” However, this is not a typi-
cal English expression, and it appears very rarely
in the ACE 2005 English training data. Therefore
cross-lingual learning fails on this case.

The second example is from the argument role la-
beling task. The model makes the wrong prediction
because “室” in the entity span has the meaning of
“room,” making the model to consider the entity as
a location. Joint learning of entity typing and role
labeling can be helpful for such cases.

4 Related Work

Multilingual Language Representations .
Early work on multilingual representations learns
aligned word or sentence embeddings from dictio-
naries (Mikolov et al., 2013; Faruqui and Dyer,
2014; Pan et al., 2019), parallel corpora (Gouws
et al., 2015; Luong et al., 2015) or semi-supervised
or unsupervised approaches (Artetxe et al., 2017;
Zhang et al., 2017; Artetxe et al., 2018; Lample
et al., 2018). Recent advances in pretrained
language models have inspired research on cross-
lingual language models such as mBERT (Devlin
et al., 2019), XLM (Conneau and Lample, 2019)
and XLM-RoBERTa (Conneau et al., 2020).

Cross-Lingual Learning for NLP There is re-
search in cross-lingual learning for many NLP tasks
such as name tagging (Huang et al., 2019), read-
ing comprehension (Cui et al., 2019; Hsu et al.,
2019), summarization4 (Zhu et al., 2019; Cao et al.,
2020). XGLUE (Liang et al., 2020), XTREME (Hu
et al., 2020a) and XTREME-R (Ruder et al., 2021)
present benchmarks covering a wide range of tasks
including natural language inference, paraphrase
detection, part-of-speech tagging, name tagging,
question answering, sentence retrieval and gener-
ation, which are followed by (Phang et al., 2020;
Fang et al., 2021; Luo et al., 2020; Wei et al., 2021;
Ouyang et al., 2021). However these benchmarks
don’t include event extraction as a subtask. For
cross-lingual event extraction, early work utilizes
multilingual embeddings and language universal
parsing structures for cross-lingual transfer for trig-
ger labeling (Liu et al., 2019) and argument role

4Cross-lingual summarization has a different task formula-
tion than common cross-lingual learning, but it is still related.

labeling (Subburathinam et al., 2019). It is worth
mentioning that Liu et al. (2019) focus on aug-
menting the existing supervision in the target lan-
guage with cross-lingual learning that is different
from the setting in this work, which requires no
supervision in the target language. M’hamdi et al.
(2019) explore using mBERT (Devlin et al., 2019)
for direct cross-lingual trigger labeling and find
it outperforms previous methods. Our Direct
baseline can be considered as a re-implementation
of their method with XLM-RoBERTa (Conneau
et al., 2020). GATE (Ahmad et al., 2021) follows
(Subburathinam et al., 2019) and uses a graph con-
volutional architecture and pretrained knowledge
from language models to further improve the perfor-
mance. Yarmohammadi et al. (2021) first translate
the whole sentence and then uses token aligners to
get a sub-sentential alignment, which has shown to
be beneficial. We use a different translation strat-
egy, and our proposed adversarial training approach
may also be helpful with their translations. A more
recent and parallel attempt (Guzman-Nateras et al.,
2022) proposes to use adversarial training to close
the gap between the source language and target
language for event trigger labeling, which is differ-
ent from our approach. (Fincke et al., 2022) uses
priming methods to make the model understand
the critical information for argument labeling. The
performance of these two methods is not directly
comparable due to different splits and limited code
availability. We will add comparison once they
release code. (Huang et al., 2022) proposes a gen-
erative approach to directly generate arguments for
cross-lingual event argument extraction. However
they don’t take entity spans as inputs for evaluation
and results are not comparable.

5 Conclusions and Future Work

In this paper, we proposed a new cross-lingual
event extraction framework and evaluated the
framework on the ACE 2005 dataset. Our frame-
work combines the multilingual language models
with a machine-translation-based method. Mean-
while, we observe the representational gap between
the translated text and the native text in multilingual
language models that may affect the performance
and propose an adversarial training approach to
make the language model produce more similar
representations for these two types of text.

One potential reason for remaining errors in
cross-lingual transfer learning could be that the
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source and the target languages may differ in the
common expressions of an event type. It will be
helpful to detect such differences from pretrained
multilingual language models and incorporate them
for training. Although we focus on cross-lingual
event extraction in this work, our adversarial train-
ing approach could be extended to other cross-
lingual language understanding tasks.

6 Limitations

Although we have demonstrated our framework’s
performance in six cross lingual transfer learning
directions for both the trigger labeling and argu-
ment role labeling, our experiments is mostly on
the ACE 2005 dataset due to the availability of
multilingual event extraction data. Since the ACE
2005 dataset only contains Arabic, Chinese and
English, we were not able to test our framework on
some languages with extremely limited resources,
which are more common use cases for the cross
lingual transfer learning .Besides, although our pro-
posed adversarial loss is a general approach not
specific to the event extraction task, we have not
validate the effectiveness of it on other cross lingual
NLP benchmarks or using other machine transla-
tion models. Moreover, our supervised models are
trained in the multilingual language model (XLM-
RoBERTa) for direct comparison. However, the
performance is different from models trained with
monolingual language models specific to the target
language.
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A Appendix

A.1 Details for Model Training

For both the trigger labeling and role labeling task,
we use batch size of 8 for training. We evaluate
performance after each epoch and select the best
model based on the development performance. We
use early-stop strategy with a patience of 5 epochs.
We conduct our experiments on a single Nvidia
Tesla V100 GPU with 16GB memory.

The learning rate for both the trigger labeling and
role labeling loss is 1e− 5. In adversarial training,
the learning rate for the discriminator loss is 1e−5.
For the generator loss, we found in practice it is
very likely to confuse the discriminators within a
few steps if we finetune the whole XLM-RoBERTa
architecture or the learning rate is set too large.
Hence the generator learning rate for the generator
loss is chosen between {1e−5, 1e−6, 1e−7, 1e−
8, 1e − 9} on the dev set for each cross lingual
transfer learning task. We empirically found that
the trigger labeling tasks usually take a smaller
learning rate (1e−8, 1e−9) and the argument role
labeling tasks usually take a larger one (1e−5, 1e−
6). We also only finetune the last output layer
of the XLM-RoBERTa model for the generator
loss to match the capacity of the discriminators.
The discriminator and the generator are trained
alternatively. We train 5 discriminator steps per
generator step.

For the simultaneous encoding of a sentence and
its translation, we adopt the special fusion strategy
in FILTER (Fang et al., 2021) for the role label-
ing task. FILTER will select some hidden layers
of the XLM-RoBERTa model, for which it will
concatenate the hidden representation of the orig-
inal sentence and its translation together for self-
attention computation. We follow FILTER to use
the 21st layer for representation fusion. We found
this strategy to be more helpful in role labeling
task than trigger labeling task. In trigger labeling
task, it suffices to simply encode the sentence pairs
individually for prediction.

The approximate number of parameters is 3.5
million (mainly parameters of XLM-RoBERTa).
We run our model on a single NVIDA V100 with
16 GB memory. Training our framework takes
approximately 20-40 minutes/epoch since 16GB
memory can only take batch size of 1 for training.
We need to accumulate the gradients over multiple
runs for larger batch size. However, we notice that
our model usually converges much faster than a
simple XLM-RoBERTa baseline (Direct base-
line). Usually we achieve our best model with 2-4
epochs. In total it usually takes around 4-5 hours to
train a model. We implement the XLM-RoBERTa
model using Transformers5 Library.

For the back propagation, note that the gradients
of the loss in Equation (1) are back propagated to
both the language model and the trigger classifica-
tion layers, the gradients of the loss in Equation (2)
are back propagated to Ds and Dt, and the gradi-
ents of the loss in Equation (3) are back propagated
to the language model. In practice we found that it
is beneficial to back propagate loss in Equation (3)
to only the last layer of the FILTER model to match
the capacity of the discriminators Ds and Dt.

A.2 Details for Machine Translation

We use Google Cloud API6 for machine translation.
For trigger labeling, if a sentence contains multi-
ple triggers, we enclose each of them with “<b>”
and “</b>” for translation. After the sentence is
translated, we retrieve all trigger spans in the target
language one by one, and map them back to the
triggers in the source language according the offset
in the sentence. For example, the first trigger span
in the source language will be mapped to the first
trigger span in the target language. If we retrieve
less triggers spans in the target language than the
source language, we consider this translation in-
valid and discard this instance for the trigger label-
ing loss. We still use it for the adversarial training.
For argument role labeling, we directly translate
the sentence with inserted “<a>”, ”</a>”,“<b>”,
“</b>” and always apply the role labeling loss on
the translated sentence even if it may not contain
paired special tokens.

For trigger labeling, our translation method re-
trieved7 4,284 event triggers out of 4,419 triggers in

5https://huggingface.co/docs/
transformers/index

6https://cloud.google.com/translate
7Here “retrieved” means that after the translation of a

source language sentence of the format in Table 1, the trans-
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the ACE 2005 English training data. For argument
role labeling, there is no simple automatic metric
to evaluate our translation method. Therefore, we
sampled a small portion of the translation and con-
duct a small scale manual evaluation. 80.0% of the
translations are considered reasonable by human
assessors.

The reason behind this translation strategy is
that the machine translation model trained on large-
scale web-crawled data could have seen some
HTML tags during training. “<b></b>” are HTML
tags for displaying bold characters, and “<a></a>”
are tags for the content of reference links. There-
fore we expect the model to translate properly if it
can translate HTML formatted text.

A.3 ACE 2005 Dataset Details
This dataset is licensed by LDC.8 Membership is
required for access. The dataset can be used for
research purpose.

There are three languages in this dataset. For all
the languages, we notice a significant long-tailed
distribution among event types. We provide num-
ber of event mentions for all splits in Table 7. We
also notice that the most frequent types for all lan-
guages are similar with minor differences.

A.4 Details of Additional Discriminators for
Case Study

For fair comparison of the additional discriminators
for the Trans baseline and the discriminators in
our framework, we also jointly train the the discrim-
inators with the Trans baseline in the same way as
we conduct adversarial training in our framework.
The training process can be seen as training our
framework with the generator learning rate being
0. Note that the parameters of the discriminators
are disjoint of that of the Trans baseline model.
Therefore the joint training will not affect the learn-
ing the Trans baseline model.

A.5 Corruption Ratio of Translated Training
Data

We provide corruption ratio for the argument role
labeling task here for translation of the training
data. Due to our strategy of inserting special tokens,
a corrupted translation is defined as a translated

lated sentence include paired “<b>” and “</b>” tokens and the
content between them are not empty. In this sense retrieved
triggers are not guaranteed to be correct annotations. This
is just a rough estimation of the performance of proposed
translation method.

8https://www.ldc.upenn.edu

sentence without either of the special tokens. In
sentences translated into Arabic, we noticed that
special tokens are sometimes translated as ’<a >’
or ’<b >’ with additional spaces. We don’t consider
them as corrupted and automatically cleaned up
such errors. The corruption ratios are as below:
EN-ZH, 10%; EN-AR: 22%; ZH-EN: 12%, ZH-
AR: 27%; AR-EN: 26%; AR-ZH: 38%.

It is also worth mentioning that Google translate
offers the option to respect HTML mark up. How-
ever, we didn’t adopt this option in our experiments.
We believe enabling this function can further re-
duce the corruption ratio and potentially improve
the performance.

A.6 Full Results
We present full results of all six cross-lingual trans-
fer settings across two tasks, including the preci-
sion, recall and f1 scores. We include trigger label-
ing performance in Table 8a-8f. We include role
labeling performance in Table 9a-9c.
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Split
English Chinese Arabic

train dev test train dev test train dev test

Conflict:Attack 1,272 172 93 470 37 17 377 45 55
Movement:Transport 611 59 48 662 54 43 354 46 34

Life:Die 524 53 17 211 18 14 177 33 34
Contact:Meet 200 29 50 163 19 26 152 38 27

Personnel:Elect 162 4 16 28 1 9 31 6 4
Personnel:End-Position 159 19 22 71 5 11 37 14 7

Transaction:Transfer-Money 128 52 14 84 3 5 34 11 3
Life:Injure 127 9 1 149 7 7 92 14 21

Contact:Phone-Write 112 3 8 77 8 2 45 3 8
Justice:Trial-Hearing 103 1 5 79 4 8 58 1 6
Justice:Charge-Indict 96 2 8 50 0 2 45 2 5

Transaction:Transfer-Ownership 92 4 30 84 2 1 9 0 1
Personnel:Start-Position 92 12 13 95 5 2 36 10 0

Justice:Sentence 84 4 11 79 4 7 46 1 4
Justice:Arrest-Jail 78 4 6 115 11 6 82 13 14

Life:Marry 73 0 10 55 0 2 9 7 0
Conflict:Demonstrate 65 9 7 72 3 1 55 8 10

Justice:Convict 64 6 6 13 3 0 3 1 1
Justice:Sue 60 12 4 76 0 3 2 0 0

Life:Be-Born 47 0 3 22 0 6 6 0 0
Justice:Release-Parole 46 0 1 31 5 2 18 6 7

Business:Declare-Bankruptcy 40 1 2 15 0 4 1 0 0
Business:End-Org 31 1 5 16 0 2 6 1 1

Justice:Appeal 30 7 6 35 0 0 12 0 7
Business:Start-Org 29 0 18 77 2 5 12 0 2

Justice:Fine 22 0 6 7 4 2 33 0 0
Life:Divorce 20 0 9 11 0 0 3 2 0

Business:Merge-Org 14 0 0 36 16 1 1 0 0
Justice:Execute 14 5 2 5 0 1 0 0 0

Personnel:Nominate 11 0 1 24 0 1 4 0 3
Justice:Extradite 6 0 1 2 2 0 7 0 0
Justice:Acquit 5 0 1 3 0 0 3 0 0
Justice:Pardon 2 0 0 9 4 0 1 0 1

Table 7: Event type distribution for the event trigger labeling task
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Trigger Labeling P(%) R(%) F(%)

Direct 42.3 52.5 46.9
Trans 39.9 58.1 47.3

Trans+Adv (ours) 42.5 58.7 49.3

ZH Supervision 65.2 65.9 65.6

(a) English-to-Chinese.

Trigger Labeling P(%) R(%) F(%)

Direct 32.0 50.0 39.0
Trans 33.1 48.1 39.3

Trans+Adv (ours) 38.1 47.7 42.3

AR Supervision 49.4 64.9 56.1

(b) English-to-Arabic.

Trigger Labeling P(%) R(%) F(%)

Direct 50.6 39.6 44.4
Trans 56.0 39.4 46.3

Trans+Adv (ours) 63.2 48.1 54.6

EN Supervision 63.0 75.0 68.5

(c) Chinese-to-English.

Trigger Labeling P(%) R(%) F(%)

Direct 43.1 33.3 39.8
Trans 57.4 29.9 39.4

Trans+Adv (ours) 56.0 33.0 41.5

EN Supervision 63.0 75.0 68.5

(d) Arabic-to-English.

Trigger Labeling P(%) R(%) F(%)

Direct 30.3 37.3 33.4
Trans 34.5 44.3 38.8

Trans+Adv (ours) 36.1 45.1 40.1

AR Supervision 49.4 64.9 56.1

(e) Chinese-to-Arabic.

Trigger Labeling P(%) R(%) F(%)

Direct 35.3 38.3 36.7
Trans 37.6 35.6 36.6

Trans+Adv (ours) 49.6 31.4 38.4

ZH Supervision 65.2 65.9 65.6

(f) Arabic-to-Chinese.

Table 8: Precision(P), recall(R) and f1(F) scores for the cross-lingual trigger labeling task. Direct,Trans and Target
Supervision are introduced in Section 3.2.
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Argument Role Labeling
Chinese-to-English Chinese-to-Arabic

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

GATE 48.0 70.0 57.0 64.1 66.1 65.1

Direct 59.7 63.4 61.5 68.2 60.3 64.0
Trans 56.6 65.0 60.6 67.9 60.1 63.8

Trans+Adv (ours) 59.1 67.3 62.9 72.4 64.4 68.0

Target Supervision 75.1 79.5 77.2 77.5 78.1 77.8

(a) Chinese as the source language.

Argument Role Labeling
English-to-Chinese English-to-Arabic

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

GATE 60.7 66.8 63.6 72.5 58.9 65.0

Direct 72.6 70.8 71.7 81.5 50.7 62.5
Trans 73.0 69.7 71.3 76.3 52.5 62.2

Trans+Adv (ours) 72.2 71.8 72.0 76.0 57.0 65.1

Target Supervision 79.7 84.4 82.0 77.5 78.1 77.8

(b) English as the source language.

Argument Role Labeling
Arabic-to-English Arabic-to-Chinese

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

GATE 40.4 70.5 50.3 44.7 74.1 55.7

Direct 50.5 64.8 56.8 60.7 69.0 64.6
Trans 50.6 66.6 57.5 62.2 67.8 64.9

Trans+Adv (ours) 54.1 63.4 58.4 64.1 67.1 65.6

Target Supervision 75.1 79.5 77.2 79.7 84.4 82.0

(c) Arabic as the source language.

Table 9: Precision(P), recall(R) and f1(F) scores for the cross-lingual argument role labeling task. GATE (Ahmad
et al., 2021) is a state-of-the-art method for cross-lingual argument role labeling. Direct,Trans and Target Supervision
are introduced in Section 3.2.
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