
Findings of the Association for Computational Linguistics: EACL 2023, pages 770–781
May 2-6, 2023 ©2023 Association for Computational Linguistics

Scalable Prompt Generation for Semi-supervised Learning with Language
Models

Yuhang Zhou*
University of Maryland

College Park, MD
tonyzhou@umd.edu

Suraj Maharjan*
Amazon

Seattle, WA
mhjsuraj@amazon.com

Beiye Liu
Amazon

New York, NY
beiyeliu@amazon.com

Abstract

Prompt-based learning methods in semi-
supervised learning (SSL) settings have been
shown to be effective on multiple natural lan-
guage understanding (NLU) datasets and tasks
in the literature. However, manually designing
multiple prompts and verbalizers requires do-
main knowledge and human effort, making it
difficult and expensive to scale across different
datasets. In this paper, we propose two meth-
ods to automatically design multiple prompts
and integrate automatic verbalizer in SSL set-
tings without sacrificing performance. The first
method uses various demonstration examples
with learnable continuous prompt tokens to cre-
ate diverse prompt models. The second method
uses a varying number of soft prompt tokens
to encourage language models to learn differ-
ent prompts. For the verbalizer, we use the
prototypical verbalizer to replace the manual
one. In summary, we obtained the best average
accuracy of 73.2% (a relative improvement of
2.52% over even the previous state-of-the-art
SSL method with manual prompts and verbal-
izers) in different few-shot learning settings.

1 Introduction

Pre-training large language models with huge
amounts of text corpora in masked language mod-
eling tasks and then fine-tuning the pre-trained lan-
guage model (PLM) on downstream tasks have
shown superior performance in many natural lan-
guage processing tasks. However, the discrep-
ancy between the pretraining task (masked lan-
guage modeling objective) and the downstream
fine-tuning task (task without MASK token) could
lead to unexpected behaviors. Recently, there
has been growing research interest in the area of
prompt-tuning, where any NLU task is transformed
into a cloze task to mimic the pre-training objective
of a large masked language model (Kumar et al.,

*Equal contribution. This work was done during Yuhang’s
internship at Amazon, Alexa AI.

2016; McCann et al., 2018; Radford et al., 2018).
Prompt-based learning transforms an input x into
x′ using a prompt function. It makes use of the
vast amount of acquired knowledge of PLMs to
predict a distribution of tokens at the masked posi-
tion. The verbalizer then maps the predicted tokens
to classes. The main advantage of this approach is
that this method works well in a few-shot learning
environment (Schick and Schütze, 2021). How-
ever, the main disadvantage of this method is the
limitation posed by the prompt and verbalizer func-
tions, which require human knowledge to carefully
craft them. Such handcrafting work is expensive
and not scalable with the increase in the variety of
tasks and datasets. For example, in Alexa, there
are thousands of domains and manually designing
prompts and verbalizer for intent classification for
each of them according to the dataset content de-
mand human expertise, which is time consuming
and not applicable. It is essential to reduce the
human efforts in the process of prompt generation.
Prompt-based learning requires finding the right
tokens in the prompts that align with the task re-
quirement and dataset content. However, since the
objective of these prompt tokens is only for the
language models to perform the task at hand, it is
not necessary for them to be a sequence of words
that humans can understand.

Continuous prompt-based learning alleviates the
need for human intervention to determine prompt
tokens. Instead, it automates the prompt design pro-
cess. In the literature, there are mainly two meth-
ods: i) automatically search for discrete prompt
text tokens (Shin et al., 2020a) ii) automatically
learn numerical prompt embeddings (Lester et al.,
2021; Li and Liang, 2021; Liu et al., 2021c,b; Ham-
bardzumyan et al., 2021). The main difference be-
tween these two approaches is that the first searches
for actual discrete tokens from the language model
vocabulary, whereas the second method directly
learns the embeddings for prompt tokens, which

770

may not be human comprehensible. Similarly, au-
tomatic selection of label words (Shin et al., 2020a;
Schick et al., 2020a; Gao et al., 2021), soft ver-
balizer (Hambardzumyan et al., 2021; Liu et al.,
2021b), and prototypical verbalizer (Cui et al.,
2022) are the methods proposed to eliminate the
tedious process of manually defining verbalizer
mapping functions.

Most of these continuous prompt and automatic
verbalizer methods focus on supervised learning
(SL) settings but ignore their generalization un-
der semi-supervised learning (SSL) settings. The
previous state-of-the-art (SoTA) SSL method with
various manual prompts and verbalizers has shown
superiority over SL language models with a sin-
gle manual prompt (Schick and Schütze, 2021). In
this SSL pipeline, we normally train several labeler
models with different manual prompts to capture
diverse information from the limited training data
and make use of them to annotate a huge amount
of unlabeled data. Having to design several manual
prompts and verbalizer models for SSL settings
and applying them across multiple datasets and
tasks will exacerbate the scalability and cost prob-
lem. In this paper, we tackle the problem posed by
manual prompt and verbalizer design and propose
automatic methods to fully automate the design of
diverse prompts and verbalizers in SSL settings.
Our main contributions are as follows.

• We propose methods to generate various
prompts by adding multiple demonstration ex-
amples with continuous prompt tokens for use
in SSL settings.

• To the best of our knowledge, we are the first
to completely eliminate human involvement
in designing multiple prompts and verbalizers
in SSL settings and obtain similar and even
better performance than the SoTA methods
with manual prompts and verbalizers.

• We empirically show that using the automatic
verbalizer with manual prompts can achieve
a similar performance to manual verbalizers’
performance in the SSL pipeline.

2 Methodology

Our overall prompt-based SSL workflow follows
Pattern-exploiting Training (PET) semi-supervised
learning setting (Schick and Schütze, 2021). PET
first transforms the input sequence x to a cloze

question containing a single MASK token. Next, it
uses PLM to fill in the value of the MASK token
and applies verbalizers to map the output tokens
to the class labels y ∈ Y . They devise a semi-
supervised framework to produce soft labels on
a large amount of unlabeled data, which are later
used to train a final supervised classifier F. They
report strong performance over other supervised
prompt-tuning methods and other semi-supervised
approaches without prompts across multiple NLU
tasks. Before this paper, the PET approach was the
state-of-the-art (SoTA) framework that integrates
the prompt-tuning method into the SSL pipeline.

The PET method fine-tunes multiple PLMs with
different prompts. It introduces diversity in the
prompts by manually designing several prompts
using domain and task knowledge. Similarly, it
uses human expertise to design verbalizer map-
pings for each of the datasets based on the knowl-
edge of the tasks. Here, we use continuous and
automatic prompts and verbalizers, thus eliminat-
ing the need for human involvement in designing
manual prompts and verbalizers.

2.1 Overall Pipeline

Figure 1 shows the overall pipeline of our pro-
posed methods. Unlike the original PET pipeline
with manual prompts and verbalizers, we use a
prompt generation function to generate multiple
automatic prompts. Each PLM with automatic
prompts serves as a labeler model. We train each
of these prompts + automatic verbalizer models
with a labeled dataset T in few-shot settings. With
an input sequence xt ∈ T and the given label yt,
we first use the prompt function P to transform xt
into a sequence P (xt) with a MASK token. The
verbalizer then maps the predicted word probability
at the masked position to the label probability. For
each PLM m, the predicted probability pm(yt|xt)
is defined as

pm(yt|xt) =
expm(yt|xt)∑

y′∈Y expm(y′|xt)
(1)

where m(y|x) is the raw score of PLM m in the
masked position. After obtaining the probability,
we minimize the cross-entropy loss Lc between
pm(y|x) and y.

We apply trained labeler models to each sentence
xd ∈ D in the unlabeled dataset D and get the prob-
ability pm(yd|xd) for each trained model. We then
take the average of these probabilities from each

771

Figure 1: Semi-Supervised Learning (SSL) Training. Multiple diverse prompt-based learning models are trained
on labeled data to soft label huge amounts of unlabeled data. The soft labels serve as ground truth to train the
final classifier. P0, P1, . . . are continuous prompt tokens and Demo A,Demo B, . . . are demonstration examples
randomly sampled from the training data.

trained model m as the ground-truth probability,

pt(yd|xd) =
1

Z

∑

m∈M
pm(yd|xd)

where Z is the total number of trained PLMs with
different automatic prompts. Eventually, we fine-
tune a final pre-trained language model F with a
standard sequence classification head. We use the
Kullback-Leibler (KL) divergence as our loss func-
tion. Given pt(yd|xd) and the predicted probability
p̂(yd|xd) of the final classifier F, the divergence
loss Ldiv for this input is:

Ldiv(xd) =
∑

y′∈Y
pt(y

′|xd) log
(
pt(y

′|xd)
p̂(y′|xd)

)
(2)

The final classifier F is then applied to the test set
to obtain the results.

Schick and Schütze (2021) introduce diversity
in their SSL pipeline by training several models
with different manual prompts and applying them
to softly label a large number of unlabeled datasets.
The diversity between manual prompts brings con-
sistent improvements. We observe that diverse
knowledge learned by the language model is mostly
introduced by the prompts rather than manual ver-
balizers, since in most datasets, they prepare only
one manual verbalizer but multiple prompts for ex-
perimentation. Thus, we propose replacing manual

prompts with multiple automatic prompts and us-
ing the same automatic verbalizer for all labeler
models.

2.2 Continuous Prompt Design

Several researchers have proposed methods to auto-
mate the prompt design process (Liu et al., 2021c;
Li and Liang, 2021; Lester et al., 2021). In most of
these methods, they insert the continuous trainable
prompt tokens into the input sentence and learn
the token embeddings during the training process.
However, existing continuous prompt-based learn-
ing methods do not consider their application in
the PET pipeline, which requires training several
labeler models (Schick and Schütze, 2021), in or-
der to learn diverse knowledge from the datasets.
Therefore, most methods do not define strategies
to compose multiple continuous prompts. We pro-
pose two scalable solutions to introduce different
variables in the design of continuous prompt la-
beler models (various demonstration examples or
varying numbers of continuous prompt tokens). We
expect that with these diverse continuous prompts,
trained language models can fully learn different
aspects of knowledge from the training dataset.

2.2.1 Scalable Prompt Generation
Inspired by the P-tuning (Liu et al., 2021c) method,
we insert multiple continuous prompt tokens pn
into the input sentence x, transforming it into

772

[x][p0, p1, . . . , pn][MASK].. Different from the
original P-tuning method, we invent two scalable
designs to make it suitable for the prompt-based
SSL pipeline.

Add Demonstration Examples: In this method,
we add different demonstration examples to con-
struct diverse prompts. This is similar to the prompt
augmentation method, in which one chooses to
add additional answered prompts to demonstrate
what kind of answer the language model should
produce for the MASK token (Liu et al., 2021a).
These additional answered prompts are called the
demonstration example [demo]. To reduce the
discrepancy between the demonstration examples
and the input sentences, we also add a fixed num-
ber of continuous prompt tokens p between the
demonstration sentence and its true label. Thus,
given the labeled input xd and its correspond-
ing ground-truth label yd from the labeled train-
ing dataset, we construct the demonstration exam-
ple as [demo] = [xd][p0, p1, . . . , pn][yd], where
p0, p1, . . . , pn are continuous prompt tokens.

After composing the demonstration examples
[demo], given a training input from the labeled
dataset xt = (si, s2, . . . , sk) ∈ T and label yt,
where si, s2, . . . , sk are input tokens for the PLM
m, the prompt template function P1(xt) is formally
defined as

P1(xt)1 = [demo1][xt][p0, . . . , pn][MASK]

. . .

P1(xt)k = [demok][xt][p0, . . . , pn][MASK]

(3)

We create multiple prompts by adding different
demonstration examples with exactly n continuous
soft tokens with the input sentence. Demonstration
examples are randomly sampled from the labeled
datasets. For longer input sentences, we first trun-
cate the length of [demo] to fit the PLM require-
ment. Our intuition is that different demonstration
examples will introduce the diversity necessary for
SSL experimentation.

Vary Soft Token Numbers: In this method, we
vary the number of continuous prompt tokens be-
tween different labeler models. In other words, this
prompt function P2(xt) with input sentence xt is
defined as

P2(xt)1 = [xt][p0, p1, . . . , pn1][MASK]

. . .

P2(xt)k = [xt][p0, p1, . . . , pnk
][MASK]

(4)

and each of the labeler models uses different n1

to nk number(s) of continuous prompt tokens
p. Here, we do not prepend the demonstration
example. Our intuition is that given different
numbers of continuous prompt tokens, the opti-
mized learned continuous prompts may also be
different. For example, for AG’s News dataset
(Zhang et al., 2015a) about news topics, the opti-
mized prompts with two continuous prompt tokens
could be: [[x][News :][MASK]], while optimized
prompts with three continuous prompt tokens could
be: [[x][the category is][MASK]]. We expect that
varying the number of continuous prompt tokens
will have a similar impact to manually constructing
different prompts.

2.2.2 Reparameterization Block
Li and Liang (2021) and Liu et al. (2021c) empiri-
cally show that directly updating the parameters in
continuous prompts leads to unstable optimization.
Hence, we first feed prompt embeddings through
a reparameterization block rather than directly
feeding them into the PLM. Our reparametriza-
tion block uses a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) network with a two-layer
ReLU activated multilayer perceptron (MLP) (Liu
et al., 2021c; Li and Liang, 2021).

We denote the random initialized tokens as p′i
and the real input embeddings, which are fed into
the PLM, as pi. The pi are the output of the bidi-
rectional LSTM network and the MLP as,

pi = MLP([LSTM(p′0:i),LSTM(p′i:n)])

where pi is also the soft token used in Equations 3
and 4.We learn the optimized continuous prompt
tokens p̂0:n during the training process. With the
downstream cross-entropy loss Lc, we can differ-
entially optimize the continuous prompts by:

p̂0:n = argmin
p

Lc(pm(x|y), y) (5)

2.3 Automatic Verbalizers
There are several automatic verbalizer methods that
eliminate the need for human intervention and ex-
pertise to build mapping functions. We experiment
with three types of automatic verbalizers: i) soft
verbalizer (Hambardzumyan et al., 2021), ii) proto-
typical verbalizer (Cui et al., 2022), and iii) search-
based verbalizer (Schick et al., 2020b).

Cui et al. (2022) experimentally show the su-
periority of the prototypical verbalizer in a super-
vised learning environment. However, they did not

773

conduct such experiments for SSL settings. Our
experiment with the SSL PET method (details in
Section 3.5) with different automatic verbalizers
showed that the prototypical verbalizer performed
better than the soft verbalizer and the search-based
verbalizer on multiple datasets. Thus, we choose
to use the prototypical verbalizer as a replacement
for the manual verbalizer.

With the optimized embedding of the MASK
token from PLM m and the ground-truth labels y,
the prototypical verbalizer learns the prototype vec-
tors for each class using contrastive learning (Oord
et al., 2018). The prototypical verbalizer first ini-
tializes a prototype embedding for each class label
and then uses the embedding of the MASK token as
the instance embedding. It uses instance-instance
loss Lins to maximize intra-class similarity and
minimize inter-class similarity. Similarly, it uses
instance-prototype loss Lproto to maximize the sim-
ilarity between the prototype and instances belong-
ing to the same class and minimize the similarity of
instances belonging to other classes. The probabil-
ity distribution of the MASK token for each class
is calculated by the cosine similarity between the
instance embedding and each optimized prototype
embedding. For inference, it assigns the class of
the prototype vector to the instance with the high-
est probability score, which is computed by taking
the similarity scores of the instance vector with the
prototype vectors and normalizing them.

2.4 Training and Inference Strategy

All model parameters to be optimized are randomly
initialized. As mentioned in Section 2.2.2 and
2.3, we update the parameters in the continuous
prompts and PLMs with the loss Lc and optimize
the parameters in the verbalizers with the loss Lins

and Lproto. Instead of summing all losses together,
our training strategy is to first freeze the param-
eters in the prototypical verbalizer and then train
the parameters in the reparameterization block and
the PLM together with the cross-entropy loss Lc.
Then we freeze the learned parameters and train
the parameters in the prototypical verbalizers with
instance-instance loss Lins and instance-prototype
loss Lproto. After training all labeler models and
obtaining the class probability on the unlabeled
dataset, we use Ldiv to fine-tune the final language
model classifier. During inference, we do not rely
on any prompt-based labeler models and directly
use the final fine-tuned language model F to predict

on the test dataset.

3 Experiments

To verify the effectiveness of our framework, we
conduct multiple semi-supervised learning experi-
ments with several strong baseline frameworks on
the commonly-used NLU benchmarks.

3.1 Dataset Collection
We experiment with five different datasets1:
AG’s News (Zhang et al., 2015a), Yahoo An-
swers (Zhang et al., 2015b), MNLI (MultiNLI,
Multi-Genre Natural Language Inference, Williams
et al. (2018)), RTE (Recognizing Textual Entail-
ment, Dagan et al. (2006)) and CB (Commitment-
Bank, de Marneffe et al. (2019)). AG’s News
and Yahoo answers are topic classification (TC)
datasets, while MNLI, RTE, and CB are natural
language inference (NLI) datasets. In Table 1, we
provide the number of distinct classes, the unla-
beled dataset size used for SSL, and the test size
for all five datasets. Details about the design of
prompts and verbalizers can be found in Appendix
A.

Dataset Task #Class #Unlabeled #Test
AG’s News TC 4 40,000 7,600
Yahoo TC 10 100,000 60,000
CB NLI 3 30,000 56
RTE NLI 2 20,000 277
MNLI NLI 3 30,000 9,815

Table 1: Data statistics. TC= Topic Classification, NLI=
Natural Language Inference

We perform multiple experiments in few-shot
settings for all datasets. For few-shot experi-
ments, we use 1, 5, 10, 20 examples per class for
all datasets except for CB and RTE, where we ex-
periment with 32 examples to align with earlier
research work (Schick and Schütze, 2021). We re-
port the average accuracy for the evaluation across
three runs of each experiment with three different
random seeds.

3.2 Proposed Models
Demo+Soft Tokens PET: The first method is to
replace the manual verbalizer with the prototypical
verbalizer and manual prompts with demonstration
examples and continuous prompt tokens.

1We downloaded these datasets using the script pro-
vided by OpenPrompt https://github.com/thunlp/
OpenPrompt

774

https://github.com/thunlp/OpenPrompt
https://github.com/thunlp/OpenPrompt

Vary Soft Tokens PET: The second method is to
introduce diversity by varying the number of con-
tinuous prompt tokens, and we use the prototypical
verbalizer across multiple labeler models.

3.3 Models for Comparison

We design several strong baseline experiments in
addition to our proposed models and also perform
an ablation study to show the superiority of our
proposed models in multiple NLU tasks.

3.3.1 Baseline Models

Fine-tune: This is a supervised method, where we
directly fine-tune the RoBERTa-large PLM with
training examples in different few-shot settings. In
this method, we do not leverage the unlabeled data.
Prototypical Verbalizer PET: This is a semi-
supervised learning method similar to Schick and
Schütze (2021), but we replace the manual verbal-
izer with the prototypical verbalizer and keep the
manual prompts. Experiments with this setup will
show the benefits of applying automatic verbalizer
in the PET framework.
Manual PET: This is a semi-supervised learning
method from Schick and Schütze (2021). Our main
goal is to show that, with our proposed method,
we can achieve similar or better results than this
manual method.

There are other SSL methods that rely on data
augmentation without prompt tuning, such as UDA
(Xie et al., 2020) and MixText (Chen et al., 2020).
Since their performance is consistently worse than
the Manual PET model across multiple datasets
(Schick and Schütze, 2021), we do not choose these
models for comparison in this work.

3.3.2 Model Intervention for Ablation Study

Fixed Soft Tokens PET: This semi-supervised
learning method is similar to our second proposed
method, where we vary the number of continuous
tokens to create multiple prompts. However, here
we keep the number of continuous tokens fixed and
do not add demonstration examples as well. This
experiment will help us to understand the impor-
tance of diversity introduced by varying continuous
tokens in prompt design.
Demo+Soft in SL: This is a supervised method,
where we use a prompt template to transform the
input by adding a randomly selected demonstra-
tion example from the training data and a fixed
number of continuous prompt tokens to the input,

and we use the prototypical verbalizer for classi-
fication. We use RoBERTa-large for PLM. With
this experiment, we try to understand the power
of semi-supervised learning methods with multiple
prompts over supervised training.

3.4 Implementation Details

We use the RoBERTa-Large model (Liu et al.,
2019) as our PLM for all of our experiments. We
use AdamW as our optimizer with a learning rate
of 1e−5 and a weight decay of 0.01 with linear
scheduler, batch size of 2, and trained for 5 epochs.
The reparameterization block contains 2-layer bidi-
rectional LSTM and 2 linear layers with ReLU acti-
vation function. The hidden dimension of the linear
layer and LSTM layer is 768, as well as the hidden
dimension of Roberta-Large. We train the parame-
ters in the reparameterization block and the PLM
together. For the prototypical verbalizer, we base
our implementation on the Pytorch2, Huggingface
transformer3, and OpenPrompt4 frameworks (Ding
et al., 2021). The number of continuous prompt
tokens is consistent 5. For our Vary Soft Tokens
PET, we prepare 5 prompts for each dataset and the
number of soft tokens in each prompt ranges from
1 to 5.

3.5 Results of Multiple Automatic Verbalizers

Datasets SSL PET
instances SoftVerb SearchVerb ProtoVerb

AG’s News 10 49.4 80.5 77.2
Yahoo 10 11.8 34.0 51.9
CB 32 88.7 73.2 85.7
RTE 32 48.2 50.2 52.8
MNLI 10 39.0 37.0 50.0

Table 2: Average accuracy on different datasets by
replacing manual verbalizers with automatic verbalizers
in the PET SSL setup. For CB and RTE, we use 32
training examples, whereas for other datasets, we use
10 training examples to train labeler models. The best
performance is marked in bold.

To understand which automatic verbalizer is a
better replacement for manual verbalizer, we first
experiment with three automatic verbalizers: soft
verbalizer (Hambardzumyan et al., 2021; Liu et al.,
2021c,b), search verbalizer (Gao et al., 2021; Shin
et al., 2020a; Schick et al., 2020a), and prototyp-
ical verbalizer (Cui et al., 2022). For all of these

2https://pytorch.org/
3https://huggingface.co/
4https://github.com/thunlp/OpenPrompt

775

https://pytorch.org/
https://huggingface.co/
https://github.com/thunlp/OpenPrompt

experiments, we apply experimental setups sim-
ilar to PET paper, but only replace the manual
verbalizer with the automatic verbalizer (Schick
and Schütze, 2021). Table 2 shows the average
accuracy over three runs with three different seeds
on different datasets with these verbalizers. From
Table 2, the prototypical verbalizer shows better
performance than other verbalizers for three (Ya-
hoo, RTE, and MNLI) out of five datasets. The
search verbalizer and soft verbalizer models per-
form better than the prototypical verbalizer model
only on one dataset each. Since the prototypical
verbalizer performs better than other verbalizers in
majority of the datasets, we decided to use this as
our automatic verbalizer.

3.6 Comparison with Manual PET

With the prototypical verbalizer as our automatic
verbalizer, we then experiment with our proposed
methods for automatic prompt design. Table 3
shows our results on different datasets and tasks in
the few-shot setting. Table 3 shows that by only
replacing the manual verbalizer with the prototyp-
ical verbalizer (column Protoverb) and keeping
other aspects of the experiment the same as the
PET method, we can achieve slightly lower per-
formance (70.1 average accuracy) compared to
Manual PET (71.4 average accuracy) (Schick and
Schütze, 2021). This shows that to eliminate hu-
man involvement in designing verbalizers, we can
simply replace the manual verbalizer with the pro-
totypical verbalizer with only a little performance
sacrifice.

For our next set of experiments, we replace man-
ual prompts with our proposed method, automati-
cally creating multiple prompts. The first method
(Demo+Soft Tokens PET), which adds randomly
sampled demonstration examples from training
data with a fixed number of trainable continuous
prompt tokens with input, achieves better perfor-
mance than Manual PET method. The next method
(Vary Soft PET), in which we vary the number of
continuous trainable tokens, also achieves better
performance than Manual PET method. For topic
classification tasks, under multiple few-shot set-
tings, the average accuracy of Demo+Soft and Vary
Soft PET are 77.0 and 77.3, respectively, while
the average accuracy of Manual PET method is
77.1. Similarly, for NLI datasets under different
few-shot settings, the average accuracy of our Vary
Soft PET method is 69.6 and Demo+Soft Tokens

PET method is 70.7. Both of these results are bet-
ter than Manual PET method (67.7). Furthermore,
across all these datasets, Demo+Soft Tokens PET
and Vary Soft PET achieve an average performance
of 73.2 and 72.6, respectively. These results are
better than Manual PET (71.4) method. This exper-
iment shows that it is possible to completely elimi-
nate human involvement and expertise in designing
prompts and verbalizers for the SSL pipeline with
even better performance.

We also observe that for the case of one-shot
experiments with MNLI dataset, Demo + Soft PET
method obtains an accuracy of 36.1, which is much
worse than other prompt baseline models. This
may be due to randomly sampled [demo] examples,
as previous studies have shown that the choice of
examples in the few-shot setting can result in high-
variance performance (Lu et al., 2021). In future
work, we can utilize sentence embeddings to make
intelligent decisions while selecting demonstration
examples.

3.7 Ablation Study
3.7.1 Impact of Semi-supervised Learning
We compare our proposed methods with super-
vised learning methods: fine-tuning and prompt-
based tuning methods (Demo+Soft in SL). All
semi-supervised learning methods perform signif-
icantly better than supervised learning methods.
Traditional fine-tuning methods perform the worst
(45.1 average accuracy) on different datasets and
tasks. Demo+Soft in SL method is similar to our
proposed Demo+Soft Tokens PET method but does
not make use of unlabeled data. Demo+Soft in SL
performs better than the fine-tuning method and
achieves an average accuracy of 68.7 on multiple
datasets and tasks in different few-shot settings.
Both of the supervised learning methods perform
worse than any SSL prompting model, indicating
the necessity of the SSL pipeline in NLU tasks.

3.7.2 Impact of Diversity in the Prompts
In order to understand the effect of introducing di-
versity through multiple prompts in SSL, we devise
another experiment, where we use the SSL setup
but use only one prompt labeler model (not adding
a demonstration example but using trainable soft to-
kens) to label unlabeled data. We name this method
as Fixed Soft Tokens PET. Table 3 shows that in
most comparisons (13/14), our proposed Vary Soft
PET or Demo+Soft PET method achieves better
performance. When comparing with the Fixed Soft

776

Semi Supervised Learning PET Supervised
Dataset # Training Demo+Soft Vary Soft Fixed Soft Protoverb Manual Fine-Tune Demo+Soft

Topic Classification
AG’s News 1 83.5 81.3 82.8 80.0 80.7 25.7 62.2
AG’s News 5 87.6 88.0 87.3 87.3 87.8 32.6 84.9
AG’s News 10 88.3 88.3 86.5 88.7 88.8 58.3 87.2
AG’s News 20 88.8 89.3 88.9 89.2 89.2 86.1 88.0
Yahoo 1 61.1 62.9 59.6 62.0 62.3 10.7 55.6
Yahoo 5 67.4 67.9 67.1 67.8 68.0 12.1 65.2
Yahoo 10 68.9 69.5 69.1 70.0 69.5 37.8 67.0
Yahoo 20 70.7 71.0 70.4 70.9 70.7 66.7 66.5
TC Avg - 77.0 77.3 76.5 77.0 77.1 41.2 72.1

Natural Language Inference
MNLI 1 36.1 51.7 52.7 44.2 44.8 34.3 35.1
MNLI 5 51.2 58.1 57.7 55.3 55.2 33.5 46.9
MNLI 10 60.4 57.8 58.4 62.3 60.5 34.3 54.4
MNLI 20 64.0 64.7 60.5 69.6 68.6 35.0 41.9
CB 32 88.7 88.1 88.7 85.7 86.9 60.7 87.6
RTE 32 70.4 62.5 62.6 52.8 58.8 48.1 67.4
NLI Avg - 70.7 69.6 69.5 65.5 67.7 47.7 66.5
Overall Avg - 73.2 72.6 72.3 70.1 71.4 45.1 68.7

Table 3: Few-shot experiment results (average accuracy) on different datasets with our proposed methods in PET
SSL setup. For CB and RTE, we use 32 training examples, whereas for other datasets we use {1, 5, 10, 20} randomly
selected examples per class for few-shot learning experiments. The best performance is marked in bold. Note that to
report the average results for NLI task, we first average over the MNLI results under different few-shot settings, and
then average over the three NLI datasets to give each task equal weight. The overall average results are computed
following a similar approach, giving each dataset an equal weight.

PET, our proposed Demo+Soft PET shows an im-
provement of average accuracy from 72.3 to 73.2
(p < 0.05 by paired t test) (Hsu and Lachenbruch,
2014). Moreover, both Demo+Soft and Vary Soft
PET methods obtain better average performance
than the Fixed Soft Tokens PET in NLI and topic
classification tasks. These results show the impor-
tance of diversity introduced by multiple prompt
labeler models.

4 Related Work

4.1 Language Model Prompting

Cui et al. (2021) authors fine-tuned the pre-trained
generative language model, BART, with a prede-
fined template (candidate span is a entity type
entity) for NER classification. Wang et al. (2021)
proposed Entailment as Few-shot Learner (EFT)
method, which transforms classification tasks into
natural language textual entailment tasks and then
fine-tunes the LM. The transformation also makes
it easy to leverage unsupervised contrastive data
augmentation methods to add pairwise examples
to the limited annotated data. This setting further
showed an average 2.7% improvement in 15 dif-
ferent NLP tasks. In addition to using the prompts

for supervised learning, PET is the SoTA method
to adapt the manual prompts along with semi-
supervised learning to obtain strong performance
across multiple NLU tasks. (Schick and Schütze,
2021).

4.2 Automatic Prompts and Verbalizers
Shin et al. (2020a) used a gradient-guided search
to find the discrete tokens for prompts based on
task accuracy, initialize tokens, and then fine-tune
the LM. For automatic label token selection, they
first train a logistic regression classifier from the
contextualized embedding of the MASK token and
then predict the score from MLM’s output word
embeddings. They select the top-k highest scoring
words for each label. They showed better perfor-
mance over manual prompting methods for sen-
timent classification and textual entailment tasks.
Similarly, instead of using a gradient-guided search
for prompt tokens, Li and Liang (2021) and Lester
et al. (2021) attached prefix vectors and learned
the embeddings for prefix vectors by keeping the
LM model parameters frozen. Liu et al. (2021c)
proposed P-tuning, which replaces the input em-
beddings of pre-trained language models with its
differentiable output embeddings, using the pat-

777

tern based on human design. Liu et al. (2021b)
optimized and adapted the Prefix Tuning model
for NLU. Vu et al. (2021) proposed to learn soft
prompt embeddings from one or more source tasks
and then transfer them to initialize the prompts for
the target task. In addition, they also proposed an
efficient retrieval approach to find task embeddings
and predict the most transfarable source tasks for a
given novel target task.

Several automatic verbalizers, such as search-
based verbalizers, soft verbalizers, and prototypi-
cal verbalizers, have been proposed to automate the
design of the verbalizer mapping function. Search-
based verbalizers aim to find the appropriate tokens
to replace human selection (Schick et al., 2020a;
Shin et al., 2020b; Gao et al., 2020). Both soft ver-
balizers and prototypical verbalizers learn trainable
class or prototyope embeddings during the train-
ing process (Cui et al., 2022; Zhang et al., 2021;
Hambardzumyan et al., 2021).

Mahabadi et al. (2022) proposed a prompt-free
method (PERFECT) to train the language model,
which does not rely on manual commands and ver-
balizers. PERFECT reported performance similar
to that of PET (Schick and Schütze, 2021) in a
few-shot setting. However, they used a supervised
learning setup and compared their results with the
single labeler model with one prompt rather than
the results from the final classifier. Here, we use a
similar SSL setting to Schick and Schütze (2021)
and report the results of the final classifier.

5 Conclusions

In this paper, we are able to successfully use auto-
matic prompts and verbalizers in semi-supervised
learning settings. We show that our proposed au-
tomatic prompt generation methods with proto-
typical verbalizer can eliminate human engineer-
ing in prompt-based SSL setup and achieve simi-
lar or better performance than the SoTA Manual
PET method. Our methods have the added ad-
vantage of being scalable with multiple tasks and
datasets. We also empirically verify the power of
semi-supervised learning methods, which take ad-
vantage of large amounts of unlabeled data, over
supervised methods.

In the next steps, we plan to investigate whether
we would be able to achieve similar performance
by freezing PLMs’ parameters and only tuning ver-
balizer and prompt parameters. This setup will save
a tremendous amount of space by making it easy

to share and reuse PLMs. Moreover, we plan to ex-
plore ways to combine the two proposed methods
Demo+Soft PET and Vary Soft PET, which would
take advantage of both methods.

6 Limitations

Although we experiment with multiple NLU tasks
and datasets, these datasets are only in the En-
glish language. Prompt-based learning relies on
large language models, which have acquired knowl-
edge through pre-training on huge corpora. With
low-resource languages, it might be difficult to get
PLMs trained on a huge corpus, which might make
it hard to reproduce performance similar to the En-
glish corpus. The fine-tuning and inference of PLM
requires multiple large GPUs, which might not be
accessible to everyone.

Acknowledgments

We would like to thank the anonymous reviewers
as well as Wei Ai, Paiheng Xu, Akram Almatarky,
Jangwon Kim, Morteza Ziyadi, and Giannis Kara-
manolakis for reviewing the paper and for provid-
ing helpful comments and suggestions.

References
Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mixtext:

Linguistically-informed interpolation of hidden space
for semi-supervised text classification. arXiv preprint
arXiv:2004.12239.

Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang,
and Zhiyuan Liu. 2022. Prototypical verbalizer for
prompt-based few-shot tuning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7014–7024, Dublin, Ireland. Association for Compu-
tational Linguistics.

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang.
2021. Template-based named entity recognition us-
ing BART. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1835–1845, Online. Association for Computational
Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177–190,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun.
2021. Openprompt: An open-source framework for
prompt-learning. arXiv preprint arXiv:2111.01998.

778

https://doi.org/10.18653/v1/2022.acl-long.483
https://doi.org/10.18653/v1/2022.acl-long.483
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/2021.findings-acl.161

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4921–4933, Online. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Henry Hsu and Peter A Lachenbruch. 2014. Paired t
test. Wiley StatsRef: statistics reference online.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,
James Bradbury, Ishaan Gulrajani, Victor Zhong, Ro-
main Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural lan-
guage processing. In International conference on
machine learning, pages 1378–1387. PMLR.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021b. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021c. Gpt
understands, too. arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James
Henderson, Marzieh Saeidi, Lambert Mathias,
Veselin Stoyanov, and Majid Yazdani. 2022. Per-
fect: Prompt-free and efficient few-shot learning with
language models. arXiv preprint arXiv:2204.01172.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
Proceedings of Sinn und Bedeutung, 23(2):107–124.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Timo Schick, Helmut Schmid, and Hinrich Schütze.
2020a. Automatically identifying words that can
serve as labels for few-shot text classification. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 5569–5578,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Timo Schick, Helmut Schmid, and Hinrich Schütze.
2020b. Automatically identifying words that can
serve as labels for few-shot text classification. arXiv
preprint arXiv:2010.13641.

Timo Schick and Hinrich Schütze. 2020. It’s not just
size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020a. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceedings
of the 2020 Conference on Empirical Methods in

779

https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18148/sub/2019.v23i2.601
https://www.aclweb.org/anthology/2020.coling-main.488
https://www.aclweb.org/anthology/2020.coling-main.488
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346

Natural Language Processing (EMNLP), pages 4222–
4235, Online. Association for Computational Lin-
guistics.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020b. Auto-
prompt: Eliciting knowledge from language models
with automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and
Daniel Cer. 2021. Spot: Better frozen model adap-
tation through soft prompt transfer. arXiv preprint
arXiv:2110.07904.

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,
and Hao Ma. 2021. Entailment as few-shot learner.
arXiv preprint arXiv:2104.14690.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33:6256–6268.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun
Chen. 2021. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2108.13161.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015b.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

A Prompts and Verbalizers

A.1 Manual Prompts and Manual Verbalizers

We use the same manual prompts and manual ver-
balizers for our baseline experiment as used by
Schick and Schütze (2021, 2020).

AG’s News is a news topic classification dataset
with four classes. We use the manual verbalizer that
maps class 1-4 to “World”, “Sports”, “Business”
and “Technology”. For the input sentence x =
(a, b), where a is the news headline and b is the

body of the news text, we use the manual prompts
below:

P1(x) = [MASK] : [a] [b]

P2(x) = [MASK] - [a] [b]

P3(x) = [a] ([MASK]) [b]

P4(x) = [a] [b] ([MASK])

P5(x) = [MASK] News: [a] [b]

P6(x) = Category : [MASK] [a] [b]

Yahoo Questions is another dataset for topic
classification with ten classes. We use the same
manual prompts as AG’s News, but define the man-
ual verbalizer for the Yahoo dataset, which maps
the classes 1-10 to “Society”, “Science”, “Health”,
“Education”, “Computer”, “Sports”, “Business”,
“Entertainment”, “Relationship” and “Politics”.

MNLI is the dataset for textual entailment tasks,
consisting of text pairs x = (a, b). We define
two manual verbalizer pairs v1 and v2. v1 ver-
balizer maps class 0-2 to “Wrong”, “Right” and
“Maybe”. v2 verbalizer maps class 0-2 to “No”,
“Yes”, “Maybe”. We use the following manual
prompts:

P1(x) = “[a]” ? || [MASK], “[b]”

P2(x) = [a] ? || [MASK], [b]

RTE and CB are datasets for textual entailment
tasks. We use v1 as the manual verbalizer similar to
MNLI task. We use the following manual prompts:

P1(x) = “[a]” ? || [MASK], “[b]”

P2(x) = [a] ? || [MASK], [b]

P3(x) = [a] ? || [MASK]. [b]

P4(x) = “[a]” ? || [MASK]. “[b]”

A.2 Continuous Prompts
For our proposed models: Demo+Soft and Vary
Soft models, we apply continuous prompts and
automatic verbalizers to ensure that the prompt-
tuning SSL method can be scaled across multiple
datasets. From previous works, we find that few
anchor tokens help to improve the performance of
NLU tasks (Liu et al., 2021c), so we design two dif-
ferent continuous prompts dependant on the nature
of NLU tasks. For the continuous prompt for AG’s
News and Yahhoo Questions (text classification
task), our design is:

P(x) = [a] [b] Category: [p0, p1, . . . , pn] [MASK]

780

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

For continuous prompt for MNLI, CB and RTE
(NLI tasks), our design is:

P(x) = [a] [b] ? [p0, p1, . . . , pn] answer : [MASK]

The construction of continuous prompts also follow
the design of the P-tuning paper (Liu et al., 2021c).
Rather than designing multiple manual prompts for
different datasets, we can use our proposed meth-
ods to automate this process. This reduces human
efforts and costs when we scale across multiple
datasets and tasks.

781

