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Abstract

A novel feature represents a cluster of semanti-
cally equivalent novel user requests e.g., re-
quests to play a song on a service or read-
ing user’s messages. Detecting and supporting
novel features is crucial towards wider adop-
tion of dialog systems by end users. Intuitively,
features are represented by a combination of
intents, slot types and/or their values. For ex-
ample, while playing a song is a feature rep-
resented by a single intent (PlayMusic) only,
playing a song on a service is another feature
represented by the combination of PlayMusic
intent and ServiceName slot type. Prior work
on novelty detection limits the scope of features
to those represented by novel single intents,
leading to (1) giant clusters spanning several
user-perceived fine-grained features belonging
to the same intent, (2) incoherent interpreta-
tion of clusters from users’ perspective (no di-
rect connection to some user-perceived feature),
and (3) missing those features spanning several
intents. In this work, we introduce feature dis-
covery as opposed to single intent discovery,
which aims at discovering novel features span-
ning a combination of intents and slots, and
present a technique for discovering novel fea-
tures from user utterances. Experiments on two
datasets demonstrate the effectiveness of our
approach and consistently show its ability to
detect novel features.

1 Introduction

Advances in Natural Language Understanding
(NLU) have led to accelerated adoption of dialog
systems such as Apple Siri and Amazon Alexa by
end users. Standing at the core of a dialog system
is an NLU model for parsing and understanding
user utterances. Two of the key tasks of an NLU
model are (1) Intent Classification, which classifies
an utterance into a fixed set of intent labels, and
(2) Slot Labeling, which classifies slot values into
a predefined set of slot types (Weld et al., 2023).
Determining the intent guides the dialog system

to perform the proper actions as response to user’s
utterance. For example, user utterances “play some
music” and “play despacito” express the intent
PlayMusic, while “how is the weather?” and “is
it raining today” express the intent GetWeather.
Intents can be further grouped into domains, for
instance, PlayMusic and RateSong intents belong
to Music domain. Detecting slots and their corre-
sponding values within an utterance gives informa-
tion about objects upon which the actions should
be performed. For example, ‘despacito’ in “play
despacito” is of type SongName.

A feature represents a user experience with
the dialog system, for example, playing a song
on a service or reading user’s messages. Over
time, users build up expectations about the fea-
tures/experiences that the dialog system offers. Un-
supported features cause friction and degrade user’s
experience. In terms of NLU, a novel feature could
be mapped to a new combination of domain(s), in-
tent(s), slot(s) and/or their values, where each is not
necessarily novel. For example, while PlayMusic

intent was seen by the dialog system, the combina-
tion of PlayMusic and ServiceName is never seen
before, causing friction with the NLU model when
parsing utterances like “play despacito on spotify”.
Consequently, it becomes crucial to discover such
features that are frequently requested by the users
but are still unsupported by the NLU model, which
we address in this work.

The task of novel intent discovery has been in-
tensively studied in prior work, by harnessing un-
supervised techniques (e.g., Liu et al., 2021) or
semi-supervised methods for incorporating exist-
ing knowledge from labeled data (e.g., Vedula et al.,
2020a; Lin et al., 2020; Zhang et al., 2021). Exist-
ing work limits the scope of novel features to those
represented by novel single intents. However, this
does not cover all types of features that naturally
span several domains, intents, slots and their val-
ues. Consider the following user utterances, “play
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despacito”, “play despacito on spotify” and “play
despacito in 30 minutes”. While the utterances be-
long to the same intent PlayMusic, handling each
of them is different. The first requires the dialog
system to play a song on the device itself, the sec-
ond asks for playing the same song on a specific
service, namely Spotify, while the third requires
playing the song after a certain amount of time is
elapsed. Moreover, each request corresponds to a
different user experience and requires a different
underlying implementation for responding. As-
suming PlayMusic intent is novel, applying stan-
dard novel intent discovery will group the three
utterances in a single cluster, which creates two
issues: (1) having many different user-perceived
experiences within the same intent (play song on
device, on specific service or after some time), re-
sults in a giant cluster that needs manual inspection
to be decomposed into smaller sub-groups to make
meaningful business decisions, and (2) while the
cluster represents a novel intent, it might not corre-
spond to a user perceived experience – what the end
users are looking for. On the other hand, assum-
ing PlayMusic intent is not novel, intent discov-
ery might miss those features at more fine-grained
levels. For instance, playing a song on a service
might not be detected as novel. Additionally, intent
discovery cannot handle those features spanning
several intents.

To allow for general feature discovery, and close
the gap between user requests and the underlying
models, we define a feature to be any combina-
tion of domain(s), intent(s) and slot(s) and/or their
value(s) and move towards discovering clusters of
utterances with novel feature definitions rather than
only focusing on novel single intents. Novel intent
discovery can be seen as a special case of feature
discovery, where new features correspond to new
intents unseen before.

In this paper, we present DNF (Discovery of
Novel Features), a semi-supervised approach for
discovering novel features from a given set of
user utterances with respect to an underlying NLU
model. Our method consists of a cascaded system
with two steps: feature clustering and novelty de-
tection. First, we employ state-of-the-art language
model BERT (Devlin et al., 2019) with multi-stage
fine-tuning to produce feature/experience-aware
representations of user utterances. Then, user utter-
ances are clustered into features. Second, we clas-
sify each resulting feature cluster as either novel or

already supported by the NLU model. The salient
contributions of our paper are:

• We introduce Feature Discovery, where, given a
set of user utterances and a trained natural lan-
guage understanding model, we extract clusters
of novel features.

• We present DNF, an approach for discovering
novel features from user utterances.

• We conducted extensive experiments on two
datasets, the SNIPS dataset augmented with fea-
ture labels, and our internal real-world dataset.
Experimental results demonstrate the effective-
ness of our method across the two datasets.

2 Related Work

Intent classification and slot labeling are two funda-
mental tasks in spoken language understanding,
dating back to early 90’s (Price, 1990). With
the rise of task-oriented dialog systems, the two
tasks have seen more attention, and progress has
been made by applying various deep learning ap-
proaches (e.g., Abujabal and Gaspers, 2019; Abuja-
bal et al., 2021; Goo et al., 2018; Jolly et al., 2020;
Mesnil et al., 2013).

Discovering novel domains and intents from a
pool of user utterances has been well addressed in
earlier works, with fully unsupervised and semi-
supervised settings. These include clustering user
utterances with novel domains or intents individu-
ally, using various techniques such as constrained
deep adaptive clustering (Lin et al., 2020), deep
aligned clustering (Zhang et al., 2021), contrastive
learning (Gao et al., 2021), capsule network (Liu
et al., 2019; Xia et al., 2018), open intent extraction
(Vedula et al., 2020b), and others (e.g., Lin and Xu,
2019; Shivakumar et al., 2019; Yan et al., 2020;
Kim and Kim, 2018). Alternatively, Vedula et al.,
2020a explore the joint discovery of domains and
intents, using hierarchical linking to form an intent-
domain taxonomy. The task is also performed
jointly with slot filling in recent works (Wang et al.,
2018; Goo et al., 2018; Kim et al., 2017; Castellucci
et al., 2019; Gangadharaiah and Narayanaswamy,
2019; Liu and Lane, 2016). All of the above works
require a small amount of labeled data as prior
knowledge to guide the discovery process.

The most prominent work for detecting novel
intents without any prior knowledge was proposed
by Liu et al. (2021), which employs a pre-trained
network for generating sentence embeddings, and
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Figure 1: DNF overview with feature-aware fine-tuning, feature clustering and novelty detection.

K-Means for intent clustering. However, due to
the limited supervision, the method is shown to
perform poorly on novel domains.

All of the above methods are limited to a discov-
ery objective at intent level, and thus fail to operate
on more fine-grained levels (e.g., slot type and/or
value) within the same intent. Moreover, they fail
to detect features composed of multiple domains,
intents and/or slots.

3 Methodology

Given a set of user utterances {u1, u2, ..., un}, we
aim to detect a set of clusters {C1, ..., Cm} where
each Cj is a cluster of utterances pertaining to a
novel feature and m is the total number of novel
features. As depicted in Figure 1, our method con-
sists of two components, feature clustering and
novelty detection. First, we assign each utterance
ui a feature label and eventually produce a set
of feature-labeled utterances (u1, f1), ..., (un, fk),
where f1, f2, ..., fk is the list of k unique features.
This is performed by employing an utterance rep-
resentation model specifically trained with both
feature-labeled and -unlabeled data to project the
input utterances into a feature-aware vector space
that helps clustering the input utterances into k fea-
tures. Second, a feature novelty detection model
is used to classify each of the k feature clusters
as either novel or already supported by the dialog
system. We measure the novelty of a feature by
exploiting signals from the NLU model. With DNF
being a semi-supervised technique, we distinguish
between two types of training data supervision:
feature-labeled and feature-unlabeled utterances:

• Feature-labeled training data (TrainL): each
utterance is annotated with its feature label
f along with its intent label I and slot la-
bels S = {s1, s2, ...} where each si is
a pair of slot type and its value in the
utterance such as SongName:despacito and
ServiceName:spotify.

Encoder (BERT)

utterance 1 utterance 2

Distance
(cosine)

Figure 2: Fine-tuning with utterance similarity.

• Feature-unlabeled training data (TrainU ): each
utterance is only annotated with its intent and
slot labels, however, with no feature label. In
comparison to feature-labeled data, such data
can be obtained in larger quantities and helps the
feature discovery process as we exploit informa-
tion about utterances’ intent and slots.

3.1 Feature-Aware Utterance Representation
To first encode utterances as high-dimensional vec-
tors separable in the feature space, we use a rep-
resentation model specifically adapted for feature
awareness. To this end, we employ the state-of-
the-art language model SBERT – Sentence BERT
(Reimers and Gurevych, 2019), which is a BERT
model pretrained for generating sentence embed-
dings. Specifically, by feeding an utterance u
into SBERT, we get a list of token embeddings
[CLS, t1, t2, ..., tm], where CLS is the classification
token. By applying mean-pooling, we obtain the
representation vector of u:

eu = mean-pooling([CLS, t1, t2, ..., tm])

We transfer feature knowledge into the utterance
representation model through a multi-stage fine-
tuning process as described below.

3.1.1 Utterance Similarity
As depicted in Figure 2, we use a Siamese Neural
Network (SNN) training paradigm for transferring
feature knowledge into the model. The intuition
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Figure 3: Fine-tuning with pseudo-classification.

behind this fine-tuning step is to directly optimize
the utterance representations based on their fea-
ture similarity. In particular, a pair of utterances
(ui, uj) is encoded into its respective embedding
vectors ei and ej . The utterance feature similar-
ity is computed as the cosine distance between the
two vectors, and is optimized towards minimizing
the distance between utterances belonging to the
same feature. As our training data are both feature-
labeled (TrainL) and feature-unlabeled (TrainU ),
we consider three kinds of training samples for this
fine-tuning step:

1. Both ui and uj are sampled from the same
TrainL feature: (ui, uj) is a positive sample.

2. Both ui and uj are sampled from TrainL, but
are from different features: (ui, uj) is a negative
sample.

3. ui is sampled from TrainL and uj is sampled
from TrainU : (ui, uj) is a negative sample.

For case 3, it is possible that the training sample
is a false-negative, since the actual feature-label
of uj could be the same as of ui. However, we
hypothesize that the number of such false-negative
utterance pairs is much lower than the true-negative
pairs given the large size of this training set.

As the number of utterance pairs is quadratic, we
use a simple way to build a random dataset for each
training epoch. For each utterance ui in TrainL,
we randomly sample an utterance uj that belongs
to the same feature as a positive sample, and k
negative samples from both TrainL and TrainU ;
hence maintaining the ratio of 1 : k between the
number of positive and negative pairs. Empirically,
we found that setting k = 3 provides a decent
balance between positive and negative pairs.

3.1.2 Pseudo Classification
Utterance similarity considers pairwise distances
between utterances, without setting global con-
straints across all utterances. Moreover, it opti-
mizes the distances according to the feature-labeled
clusters in TrainL but does not consider the un-
known feature clusters in TrainU . The second fine-
tuning step, shown in Figure 3, aims to overcome
the above issues. Inspired by the DeepCluster work
(Caron et al., 2018), pseudo classification is a semi-
supervised iterative training process, alternating
between clustering and classification.

In the clustering step, we first encode the training
utterances into their representation vectors. Then
a clustering algorithm is used to group the rep-
resentation vectors into clusters while assigning
a pseudo-label to each cluster. We use COP-K-
Means (Wagstaff et al., 2001) as the clustering al-
gorithm – an extension of K-Means that allows
putting constraints on the clustering process. For
example, which utterances must be grouped in the
same clusters, and which must not. In our case,
utterances belong to the same feature cluster in-
side TrainL must be grouped in the same candidate
cluster given by COP-K-Means.

In the classification step, we fine-tune the BERT
encoder by employing a feature classification task
using the pseudo-labels generated from the clus-
tering step as the ground truth feature labels. The
pseudo-classifier consists of a dense layer followed
by a softmax on top of the encoder. In the Deep-
Cluster approach, the pseudo-classifier is reinitial-
ized after each iteration, since the indices of the
pseudo-labels are permuted randomly after each
clustering step. This makes training slow as the
parameters cannot be reused. To alleviate this is-
sue, we adopt the cluster centroid alignment tech-
nique proposed by Zhang et al. (2021), where we
re-assign the pseudo-label indices from the cluster-
ing step, and thus, aligning them with the pseudo-
classifier trained from the previous iteration. This
allows the parameters to be reusable across itera-
tions, hence speeding up training.

Compared to utterance similarity, pseudo clas-
sification clusters TrainU utterances, either into
TrainL clusters or into totally new ones. Figure
4 compares the expected effect of the two steps.

3.1.3 Slot Classification
Information about slots in user utterances is a good
source for feature awareness. For instance, while

“play despacito” and “play despacito on spotify” are
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without fine-tuning utterance similarity pseudo classification

Figure 4: Utterance similarity vs. pseudo classification.
Solid red and blue dots are TrainL utterances, while
green and yellow dots are TrainU utterances grouped in
new clusters.
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Figure 5: Fine-tuning with slot classification.

semantically similar utterances, the existence of
ServiceName:spotify slot hints at the existence
of a fine-grained user feature of playing a song on
a service. In contrast to utterance similarity and
pseudo classification, slot classification does not di-
rectly pull/push the utterances close to or far away
from each other in the embedding space. Instead,
we aim to make the representation model aware of
the presence of slots in the input utterances, and
we hypothesize that such information guides the
model towards producing utterance representation
with better feature separability.

This is modeled as a multi-class classification
task (Figure 5), where the model is trained to detect
which slots appear in the input utterances (e.g.,
ServiceName). Concretely, we add on top of the
encoder a multi-class classifier, comprising a dense
layer followed by sigmoid activation, and fine-tune
the model using binary-cross-entropy loss. Note
that we do not consider the exact position of the
slots in the utterances, but rather their presence.

3.2 Feature Clustering

At inference time, we encode user unlabeled ut-
terances into their representation vectors and use
K-Means to cluster them into k feature clusters.
To automatically choose the optimal value of k,
we employ two techniques, namely the Elbow
method (Thorndike, 1953) and the Silhouette score
(Rousseeuw, 1987). Since utterances are a mix of
novel and supported features, we classify whether

each candidate feature cluster is novel using a fea-
ture novelty detection model, described next.

3.3 Feature Novelty Detection
While the trained representation model helps at
projecting the utterances into a feature-separable
space, it lacks information regarding feature’s nov-
elty w.r.t the NLU model. We detect novel feature
clusters by exploiting signals from the NLU and
utterance representation models. The NLU model
is trained to jointly recognize intent and slot labels.
The intent classifier (IC) and slot tagger (ST) heads
are plugged on top of a BERT encoder. Slot labels
follow the BIO schema (Ramshaw and Marcus,
1995). Note that our approach is agnostic to the
choice of the NLU model. For novelty detection,
we define the novelty confidence of each candidate
feature cluster C = {u1, u2, ...} as the average
novelty of its utterances:

featnovel(C) =
1

|C|
∑

u∈C
uttnovel(u)

where uttnovel is computed as follows:

uttnovel(u) = mean
(
st(u), ic(u), pc(u)

)

where slot tagging confidence (st) is the confidence
produced from the slot tagger. We tested with two
variants: average over tokens (stavg), and minimum
over tokens (stmin). Intent classification confidence
(ic) is the confidence of the most probable intent
label produced by the intent classifier. Pseudo
classification confidence (pc) is the confidence of
the most probable pseudo cluster, produced by the
pseudo-classifier from the utterance representation
model. Feature clusters with novelty score greater
than a pre-defined threshold are labeled as novel.

4 Experimental Setup

We evaluate the performance of each component of
DNF independently as well as the overall discov-
ery system using two datasets: SNIPS and a large
French internal dataset.

4.1 Datasets
The SNIPS dataset (Coucke et al., 2018) consists
of 14K English utterances spanning 7 intents with
72 unique slot labels. Since the dataset does not
contain any feature labels, we augment it with fea-
ture labels using hand-crafted rules. We end up
with a total of 43 features, each of which forms
a cluster of utterances that semantically map to a

786



user-perceived feature. Features cover three combi-
nations:

• Slot value features: utterances in these features
share the same intent, slots and at least one slot
value. For example, “play a song on spotify”
and “play music on spotify” belong to the same
feature of playing a song on Spotify service.

• Slot features: utterances in these features share
the same intent and same slots. For example,

“what is the weather tomorrow in new york” and
“weather tonight in brooklyn” belong to the same
feature of asking about weather at a specific time
in a specific city.

• Intent features: utterances in these features
share the same intent, with potentially, several
slots and/or slot values. For example, “book me
a restaurant tomorrow at 9pm” belong to the
feature of booking a restaurant.

Given the nature of the dataset, it was not possi-
ble to create cross-intent features that are semanti-
cally sensible. Out of the 43 features, 11 are used
as a test set, while 32 as a training set, where 19
out of the 32 features are feature-labeled TrainL,
and 13 features are feature-unlabeled training set
TrainU . These 32 features are deemed supported
by the NLU model, i.e., not novel. Out of the 43
features, 26 are slot value features, 15 are slot fea-
tures, while 2 are intent features. We randomly
sample utterances out of 32 features and add them
to the test set so that our test set contains a mix
of supported and novel features. The final dataset
contains 32 features as training set and 43 features
in the test set (11 of which are novel). On average,
we have 210 utterances per feature cluster.

Our internal dataset has a total of 273K utter-
ances comprising 41 features with different combi-
nations. 15 out of the 41 features span single intent
while the other features span two or more intents.
31 features are included in the feature-labeled train-
ing set TrainL. The number of utterances without
feature labels in TrainU set is in the order of mil-
lions. The remaining 10 features are part of the
test set. We also sample utterances out of 31 fea-
tures and add them to the test set. The final test
set contains 41 features (10 of which are novel).
The dataset covers 14 domains, 89 intents, 128 slot
labels and has, on average, 6.6K utterances per
feature cluster. All utterances were pre-processed
such that users are not identified.

Table 1: Feature-aware utterance representation perfor-
mance on SNIPS and internal datasets.

Training Strategy SNIPS Internal Dataset
NMI ARI ACC NMI ARI ACC

No fine-tuning 0.626 0.309 0.396 ==== baseline ====
US only 0.737 0.451 0.512 +0.096 +0.147 +0.149
PC only 0.728 0.374 0.471 +0.116 +0.161 +0.130
US→PC 0.749 0.475 0.537 +0.116 +0.178 +0.166
SC→US→PC 0.766 0.474 0.557 +0.104 +0.166 +0.129
(SC+US)→PC 0.782 0.531 0.605 +0.137 +0.216 +0.140

To assess the ability of our model to accurately
cluster cross-domain features, we split the internal
dataset into:

• Single-domain features, where utterances be-
long to the same domain. 32 out of the 41 fea-
tures are single domain features (25 train and 7
test), and

• Cross-domain features, where utterances be-
long to multiple domains (e.g., Music and
SmartHome). 9 out of the 41 features are cross-
domain features (6 train and 3 test). Features in
these two splits cover different combinations.

4.2 Feature-Aware Utterance Representation
We use SBERT as a baseline utterance represen-
tation model, and compare different variants fine-
tuned on different feature-related tasks. We con-
sider the following fine-tuning strategies:

• No fine-tuning: We directly use the SBERT base
model for utterance representation.

• Utterance Similarity (US): The model is fine-
tuned with only utterance similarity.

• Pseudo Classification (PC): The model is fine-
tuned with only pseudo classification.

• US→PC: The model is fine-tuned with both ut-
terance similarity and pseudo classification se-
quentially.

• Slot Classification (SC)→US→PC: The model
is fine-tuned with slot classification, utterance
similarity and pseudo classification sequentially.

• (SC+US)→PC: Slot classification and utterance
similarity are jointly trained to prevent overfit-
ting, and then pseudo classification.

We use paraphrase-mpnet-base-v2, a
pre-trained SBERT model, where we unfreeze all
the layers during fine-tuning. We use AdamW as
our optimizer (Loshchilov and Hutter, 2017), with
an initial learning rate of 5e−5 and a weight decay
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Table 2: Performance across different feature types.

Feature Type SNIPS Internal Dataset
NMI ARI ACC NMI ARI ACC

By
Novelty

supported 0.836 0.698 0.746 0.949 0.870 0.849
novel 0.741 0.566 0.637 0.772 0.640 0.662

By
Combi-
nation

slot 0.753 0.610 0.626 – – –
slot value 0.811 0.590 0.646 – – –
intent 0.547 0.512 0.804 – – –

Table 3: Intent-agnostic vs. intent-targeted discovery.

Intent Intent-agnostic Intent-targeted
NMI ARI ACC NMI ARI ACC

AddToPlaylist 0.544 0.402 0.595 0.671 0.573 0.789
PlayMusic 0.700 0.429 0.527 0.747 0.625 0.672
SearchCreat.Work 0.631 0.431 0.598 0.766 0.602 0.707
SearchScrn.Event 0.639 0.474 0.634 0.740 0.541 0.678

of 0.01. We set the batch size to 16 and apply early
stopping whenever we observe no improvement
on a development set. On average, all fine-tuning
strategies converge after 4 epochs.

Evaluation Metrics. To evaluate clustering
quality against ground-truth, we follow previous
work and report on the following metrics: Normal-
ized Mutual Information (NMI), Adjusted Rand
Index (ARI), and clustering Accuracy (ACC). All
metrics range from 0 to 1. The higher the score,
the better the clustering quality. We report the rela-
tive gains/losses over the baseline for the internal
dataset. Since we are only interested in evaluating
the quality of the fine-tuned representations, we use
the reference number of clusters k in subsequent ex-
periments and run a separate experiment to find the
optimal k when evaluating the end-to-end system.

5 Experimental Results

We evaluate (1) the effect of our fine-tuning strate-
gies to produce feature-aware representation on
feature clustering, and (2) our feature novelty de-
tection model.

5.1 Fine-tuning Results
Table 1 shows clustering performance using differ-
ent fine-tuning strategies. Across datasets, our fine-
tuning strategies outperform the vanilla SBERT
baseline across all metrics. Stacking different fine-
tuning tasks consistently results in better mod-
els. Fine-tuning with slot classification individ-
ually either before or after the other tasks (e.g.,
SC→US→PC) yields inferior performance com-
pared to jointly running slot classification with
other tasks. The best performing strategy is fine-
tuning with slot classification and utterance similar-

Table 4: Ablation study results.

Model SNIPS Internal Dataset
NMI ARI ACC NMI ARI ACC

Standard 0.782 0.531 0.605 ==== baseline ====
Ablation 0.769 0.444 0.523 -0.081 -0.132 -0.087
Upperbound 0.812 0.530 0.672 – – –

Table 5: Choosing the number of clusters k.

Method SNIPS Internal Dataset
k NMI ARI ACC k NMI ARI ACC

Gold k 43 0.782 0.531 0.605 41 ==== baseline ====
Silhouet. 24 0.761 0.511 0.593 35 -0.030 -0.063 -0.013
Elbow 30 0.790 0.573 0.632 39 +0.002 +0.003 +0.020

ity jointly and then running pseudo classification.
This shows that slot classification is able to improve
utterance representations in the feature space. In all
subsequent experiments, we use the best observed
model (SC+US)→PC.

Performance breakdown across feature types.
In Table 2, we report the performance of the best
representation model on different feature types.
First, we split the features in the test set by their
novelty (whether the feature has been seen during
training). Across the two datasets, our model clus-
ters utterances from supported features better than
from novel ones, which is expected.

In the second half of the table, we show a break-
down per combination. On SNIPS dataset, we
achieve better clustering results for slot and slot
value features than for intent features, which is rea-
sonable as our training data contains only 2 features
at intent level. On the internal dataset, clustering
single-domain features is slightly better than cross-
domain ones. For example, the model achieves an
NMI of 0.867 for single domain features, and 0.823
NMI for cross-domain features.

Intent-agnostic vs. Intent-targeted discovery.
For deeper analysis, we consider another discovery
setup in an intent-targeted way, in which we only
train and test with features from the same intent.
This setup is particularly useful in cases where we
focus on fine-grained discovery where the intent
is assumed to be known. In Table 3, we report the
results for this study on four SNIPS intents sepa-
rately. The models trained with features belonging
to the same intent perform generally better than
when being trained with cross-intent features.

Ablation study. During fine-tuning, we lever-
age both feature-labeled (TrainL) and feature-
unlabeled (TrainU ) data. To understand their im-
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Table 6: Performance of the feature novelty detection.

Signal SNIPS Internal Dataset
Prec. Rec. F1 Prec. Rec. F1

stavg 0.407 1.000 0.579 ==== baseline ====
stmin 0.750 0.545 0.632 +0.076 0.000 +0.043
ic 0.500 0.636 0.560 -0.083 -0.100 -0.091
pc 0.615 0.727 0.667 +0.167 -0.200 -0.020
featnovel 0.750 0.545 0.632 +0.167 0.000 +0.091

pact on model performance, we compare our model,
trained with both kinds of data (standard model),
against a model trained with only TrainL data (ab-
lation model). Moreover, we compare both models
to an upperbound model, in which we also include
the true feature labels of TrainU . Hence, the upper-
bound model is also trained with feature-labeled
data only, similar to the ablation model, but with
more features. We did not build an upperbound
model on the internal dataset since all utterances in
TrainU are not annotated with feature labels.

As shown in Table 4, the standard model out-
performs the ablation model on all metrics across
both datasets, with NMI and ACC gains reaching
8-9%, and ARI gains of 13% on the internal dataset.
This shows that our model benefits from feature-
unlabeled data during training. Naturally, an abun-
dance of feature-labeled data, although impractical,
provides better feature-aware representations.

Choosing the number of feature clusters. As
we are interested in evaluating the quality of the
fine-tuned representations, we use the number of
ground-truth features k from test data. However,
this number is unknown in practice. We experi-
mented with two popular techniques for predicting
k: the Elbow method (Thorndike, 1953) and the
Silhouette score (Rousseeuw, 1987). As shown in
Table 5, on both datasets, Elbow method works
slightly better than Silhouette score, with the pre-
dicted k closer to the ground-truth value. In terms
of other metrics, Elbow method even produces bet-
ter feature clusters than the baseline with gold k.

5.2 Results of Feature Novelty Detection

The base NLU model is a pre-trained BERT with
12 hidden layers, each with a size of 768. On top
of the CLS classification token, we plug a linear
projection head followed by softmax to perform
intent classification, and a similar head on top of
each token to perform slot tagging. To train the
NLU model, we unfreeze all 12 hidden layers and
fine-tune the two heads jointly.

To evaluate novelty detection in isolation from

clustering, we use the ground-truth feature clusters
and run novelty detection on top, i.e., to decide
whether a ground-truth feature cluster is novel or
supported. We harness different signals from the
NLU model: stavg, stmin, ic, pc and the combined
signal featnovel. As shown in Table 6, the combined
signal featnovel performs the best across all metrics
on the internal dataset. On SNIPS, featnovel excels
against other signals in terms of precision, and
places the second best in F1.

5.3 End-to-end DNF Evaluation

In this experiment, we first ran the clustering step
with Elbow method to generate feature clusters.
This resulted in 30 predicted clusters on SNIPS,
and 39 clusters on the internal dataset (see Table
5). Then, we perform novelty detection on the
predicted clusters.

To generate ground-truth labels for the predicted
clusters, we assign a feature label lC for each pre-
dicted cluster C by taking the majority vote of the
labels of the utterances within the cluster. Table 7
shows the number of novel clusters predicted using
each signal and their quality metrics. all is the base-
line, where we assume all predicted feature clusters
as novel. featnovel signal performs the best in terms
of precision on SNIPS, together with stmin, which
shows that the NLU slot confidence is a strong indi-
cator of the novelty of an utterance. On the internal
dataset, featnovel also achieves highest precision
and F1, while discovering almost all novel features
in the data (9 out of 10).

6 Conclusion

We introduced feature discovery, where, given a
set of user utterances and a trained NLU model,
we extract clusters of novel features composed of
a combination of domains, intents, slots and/or
their values. To this end, we presented DNF, a
semi-supervised approach for extracting novel user
features from a set of raw utterances, utilizing mini-
mal feature knowledge from labeled data combined
with feature-unlabeled data. DNF supports several
fine-tuning strategies to improve utterance repre-
sentation and make them separable in the feature
space. We evaluated DNF on two datasets and
observed significant improvements over baselines,
showing the effectiveness of our method. In the
future, we plan to explore various fine-tuning strate-
gies for better utterance representations, as well as
extending DNF to support different languages.
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Table 7: End-to-end DNF evaluation.

Method
SNIPS Internal Dataset

#novel features Precision Recall F1 #novel features Precision Recall F1
all 30 0.233 0.636 0.341 39 ==== baseline ====
stavg 23 0.238 0.455 0.312 16 +0.295 0.000 +0.288
stmin 5 0.600 0.273 0.375 12 +0.462 0.000 +0.400
ic 21 0.238 0.455 0.312 8 +0.545 -0.200 +0.340
pc 10 0.400 0.364 0.381 9 +0.462 -0.200 +0.305
featnovel 5 0.600 0.273 0.375 9 +0.573 -0.100 +0.410

7 Limitations

While we empirically showed that our approach
performs well for novel feature discovery and gen-
eralizes across different datasets, we can identify
avenues for improvement in terms of efficiency
and model training. With DNF relying on good
feature-aware sentence representations, obtaining
such representations requires expensive fine-tuning
steps. For example, using a single GPU, our cas-
caded fine-tuning strategy takes on average 7 hours
on our internal dataset to reach convergence. More-
over, in workflows where NLU model refresh is
frequent, the model’s intent classification and slot
tagging confidence distribution can shift over time.
With DNF relying on observing confidence signals
from the NLU model to determine feature novelty,
a retraining/tuning of the novelty detection compo-
nent would have to be performed frequently. Fur-
thermore, our approach requires a small manually
annotated feature-labeled dataset (feature labels in
addition to intent and slot labels). These additional
annotations require expertise and time, which poses
a challenge during the data collection phase.
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