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Abstract

Automatic evaluations for natural language gen-
eration (NLG) conventionally rely on token-
level or embedding-level comparisons with the
text references. This is different from human
language processing, for which visual imagi-
nation often improves comprehension. In this
work, we propose IMAGINE, an imagination-
based automatic evaluation metric for natural
language generation. With the help of Sta-
bleDiffusion (Rombach et al., 2022), a state-
of-the-art text-to-image generator, we automat-
ically generate an image as the embodied imag-
ination for the text snippet and compute the
imagination similarity using contextual embed-
dings. Experiments spanning several text gen-
eration tasks demonstrate that adding machine-
generated images with our IMAGINE displays
great potential in introducing multi-modal in-
formation into NLG evaluation, and improves
existing automatic metrics’ correlations with
human similarity judgments in both reference-
based and reference-free evaluation scenarios.

1 Introduction

A major challenge for natural language genera-
tion (NLG) is to design an automatic evaluation
metric that can align well with human judgments.
To this end, many approaches have been inves-
tigated. Metrics that base on matching mecha-
nisms such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015), have been widely adopted in the
field. Edit-distance based metrics, such as Char-
acTER (Wang et al., 2016), WMD (Kusner et al.,
2015), SMD (Clark et al., 2019), have also been ex-
plored. Recently, BERTScore (Zhang* et al., 2020)
and BLEURT (Sellam et al., 2020) attempt to lever-
age BERT (Devlin et al., 2019) to compare text em-
bedding similarities, which correlates better with
human judgments than previous methods. These
automatic evaluation metrics make use of textual
information from various angles extensively.

But what happens in our minds when we read,
comprehend, and evaluate text? Research (Just
et al., 2004; Eviatar and Just, 2006) has found that,
unlike commonly designed automatic evaluation
methods that compare the generated candidates
with the references on the text domain only, hu-
mans, in contrast, leverage visual imagination and
trigger neural activation in vision-related brain ar-
eas when reading text. Cognitive studies show that
visual imagery improves comprehension during lan-
guage processing (Gambrell and Bales, 1986; Joffe
et al., 2007; Sadoski and Paivio, 2013). Inspired
by this imagination-based multi-modal mechanism
in human text comprehension, we ask a critical re-
search question: can machines create a visual pic-
ture of any underlying sentence, and use their imag-
inations to improve natural language understand-
ing? The advances of recent pre-trained vision-
language models such as CLIP (Radford et al.,
2021) provide an excellent opportunity for us to
utilize the learned image-text representations. This
enables us to explore the possibility of incorporat-
ing multi-modal information into NLG evaluation.

In this work, we propose IMAGINE, an
imagination-based automatic evaluation metric for
text generation. Specifically, we first use the
state-of-the-art text-to-image generator StableDif-
fusion (Rombach et al., 2022) to visualize machine
imagination from sentences, which is to generate
descriptive images for the candidate text and the
references. Then we receive the IMAGINE scores
by computing two sets of similarity scores with
the pre-trained CLIP model (Radford et al., 2021):
the visual similarity of the generated images, and
the cross-modal similarity between the text and the
generated image. Figure 1 shows an example.

To understand the role the machine-generated
images play in NLG evaluation, we conduct a series
of experiments with IMAGINE on multiple NLG
tasks and datasets, including machine translation,
text summarization, and sentence completion for
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Reference: 
Basketball: Garnett makes triumphant return as 
Celtics top Pistons


Metric Score

BLEU-4 0.0

ROUGE-1 12.5

ROUGE-2 0.0

ROUGE-L 10.9

BERTScore 5.7

ImaginEimage 91.2

ImaginEtext&image 63.7

Human 4.2/5.0

GigaWord, idx=148

Hypothesis: 
Celtics sink Detroit ##-## in NBA semi-final rematch

Text for Summarization:  
Kevin Garnett scored ## points in his return after a one-game suspension and the Boston Celtics ripped Detroit 
##-## here Thursday in a rematch of last season's NBA semi-finals.
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Figure 1: An evaluation example on GigaWord for text summarization. IMAGINE visualizes machine imagination
with StableDiffusion (Rombach et al., 2022) and extracts textual and visual representations with CLIP (Radford
et al., 2021). While traditional evaluation metrics for natural language generation rely on n-grams matching or
textual embeddings comparison, IMAGINE incorporates machine-generated images into the evaluation process and
enhances the understanding of the text snippet as a whole through the integration of multi-modal information.

open-ended text generation, aiming to answer the
following questions:
1. How influential is IMAGINE in NLG evaluation

in terms of correlations with human judgments?
Can it provide additional reference information
on top of existing metrics?

2. What are the applicable scenarios of introduc-
ing IMAGINE to NLG evaluation? When and
why do machine-generated images help?

3. What are the potentials and limitations of intro-
ducing machine-generated images with IMAG-
INE to NLG evaluation?
Experimental results show that IMAGINE can

serve as a complementary evaluation metric to text-
based ones, and adding IMAGINE scores to ex-
isting metrics surprisingly improves most of the
popular metrics’ correlations with human perfor-
mance on various text generation tasks. This holds
for both reference-based evaluation and reference-
free evaluation. We further conduct comprehensive
quantitative analyses with case studies to verify its
effectiveness. Overall, IMAGINE displays great po-
tential in introducing multi-modal information into
NLG evaluation.

2 Related Work

Automatic Metrics for Natural Language Gen-
eration Common practices for NLG evaluation
compare the generated hypothesis text with the
annotated references. Metric performance is con-
ventionally evaluated by its correlation with hu-
man judgments. Existing automatic evaluation met-
ric calculations are mainly based on three mech-
anisms: n-grams overlap, edit distance, and em-

bedding matching. BLEU (Papineni et al., 2002),
ROUGE-n (Lin, 2004), METEOR (Banerjee and
Lavie, 2005) and CIDEr (Vedantam et al., 2015)
are a few widely used n-gram based metrics for text
generation tasks. Another direction is based on edit
distance (Tomás et al., 2003; Snover et al., 2006;
Panja and Naskar, 2018; Tillmann et al., 1997;
Wang et al., 2016), where they calculate the edit dis-
tance between the two text snippets with different
optimizations. Embedding-based metrics (Kusner
et al., 2015; Rubner et al., 1998; Clark et al., 2019;
Lo, 2017, 2019) evaluate text quality using word
and sentence embeddings, and more recently, with
the help of BERT (Zhang* et al., 2020; Sellam
et al., 2020).

Multi-Modal Automatic Metrics Aside from
previous text-only metrics, some metrics utilize
pre-trained multi-modal models and introduce vi-
sual features on top of text references for NLG
evaluation. TIGEr (Jiang et al., 2019) computes
the text-image grounding scores with pre-trained
SCAN (Lee et al., 2018). ViLBERTScore-F (Lee
et al., 2020) relies on pre-trained ViLBERT (Lu
et al., 2019) to extract image-conditioned embed-
dings for the text. The CLIPScore (Hessel et al.,
2021) proposes a metric for image captioning by
directly comparing images with captions using
CLIP (Radford et al., 2021). Our method differs
in that we use visual picture generation as embod-
ied imagination and apply our metric to various
text-to-text generation tasks.

Mental Imagery The debate between pictorial-
ists and propositionalists about how imagery infor-
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mation is stored in the human brain is still an open
question in the neuroscience and psychology com-
munity (Troscianko, 2013). We follow the views
from pictorialists that information can be stored
in a depictive and pictorial format in addition to
language-like forms (Kosslyn et al., 2001; Pearson
and Kosslyn, 2015). In pictorialists’ model, mental
imagery is constructed in the “visual buffer” either
from the retinal image in seeing or from a long-
term memory store of “deep representations” in the
brain. Our image generation method is to mimic
the generation of deep representations in machines,
with the help of recent powerful text-to-image mod-
els. Inspired by empirical studies from cognitive
science that visual imagination improves human
text comprehension (Gambrell and Bales, 1986; Sa-
doski and Paivio, 1994; Nippold and Duthie, 2003;
Just et al., 2004; Joffe et al., 2007; Sadoski and
Paivio, 2013), we are interested in exploring if one
can draw similar conclusions from automatic text
evaluations by machines.

3 IMAGINE

This section describes how our IMAGINE metric
evaluates the similarity between two pieces of text
with the help of machine imagination. Figure 2
provides an overview of our method.

3.1 Model Details
CLIP We use the cross-modal retrieval model,
CLIP (Radford et al., 2021), for our evaluation
purposes. CLIP jointly trains an image encoder
and a text encoder to predict the correct pairing of
image-text pairs with InfoNCE (van den Oord et al.,
2018) on 400M image-text pairs gathered from
the web. We utilize the CLIP-ViT-B/32 variant,
which consists of a 12-layer, 8-head Transformer
text encoder with a hidden size of 512, and a Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021;
Vaswani et al., 2017) image encoder adopting the
BERT-base configuration and using a 32ˆ32 input
patch size. Both the text and image representations
are normalized and projected into the multi-modal
space before computing pairing likelihood through
cosine similarity.

StableDiffusion We perform text-to-image gen-
eration with StableDiffusion (Rombach et al.,
2022), which is a denoising diffusion probabilistic
model (Ho et al., 2020). The model comprises
three key components: a text encoder, a diffu-
sion model, and an autoencoder. The text encoder,

adopted from the frozen CLIP-ViT-L/14 (Radford
et al., 2021), is utilized to encode the input text
into textual embeddings. The diffusion model,
which leverages UNet (Ronneberger et al., 2015)
for noise estimation, is modified to attend to the
input textual embeddings. We conduct experiments
with StableDiffusion-v1-1, which was trained with
LAION (Schuhmann et al., 2022), using 256ˆ 256
images for pre-training, followed by 512 ˆ 512
images for fine-tuning.

3.2 IMAGINE Similarity Score
In our proposed approach, as depicted in Fig-
ure 2, the computation of IMAGINE consists of
three sequential steps. Firstly, the StableDiffusion
model (Rombach et al., 2022) is utilized to generate
descriptive images, referred to as machine imagi-
nation, from the two text snippets being compared.
Secondly, both the text snippets and the generated
images are encoded using the CLIP model (Rad-
ford et al., 2021). Finally, IMAGINE is calculated
by computing the cosine similarities of the result-
ing text and visual features, both in a mono-modal
and cross-modal manner.

Step 1: Render Imagination For each image,
StableDiffusion randomly initializes a latent matrix
H from the standard normal distribution and uses
the encoder of the pre-trained autoencoder to en-
code H into the lower-resolution latent map zT (T
is the total inference steps). At each step t, the dif-
fusion model estimates the noise, ϵ, and subtracts
it from zt. The decoder of the pretrained autoen-
coder takes the final noise-free latent map z and
generates the image prediction I of size 512ˆ 512.

Step 2: Extract Feature In the previous step, we
generate the corresponding images I1 and I2 for
the pair of text x1 and x2 for comparison with the
text-to-image synthesis backbone. Then we pass
the machine-generated images I1 and I2 and the
input text x1 and x2 through corresponding CLIP
encoders to receive the visual representations v1,
v2, and the textual representation t1, t2.

Step 3: Measure Similarity With simp¨, ¨q de-
noting the process of first normalizing the two vec-
tors, then computing their cosine similarity, we
compute two types of similarity scores for IMAG-
INE with the extracted textual and visual features:

(1) IMAGINEimage computes the visual repre-
sentation similarity between v1 and v2:

IMAGINEimage “ F psimpv1,v2qq (1)
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Text 1 x1 :  
Beef Kway Teow originates from Singapore 
and is also made in Indonesia. One of the 
ingredients in the dish is oyster sauce.

Metric Score
BLEU 3.91

METEOR 19.14
ROUGE_L 15.21

CIDEr
 5.38
BERTScore 39.04

ImaginE_text 73.63
ImaginE_image 69.04

Human 4/3/2/2/1

Imagination_Ref
Imagination_Hyp

Text 2 x2 : 
Oyster sauce is a dish from Singapore, where 
Oyster sauce is a dish from Indonesia.

Stable 
Diffusion

CLIP

Stable 
Diffusion

STEP 1: 
Render Imagination

text representations

visual representations

IMAGINEimage

I2

I1 v2
v1

STEP 2: 
Extract Feature

STEP 3: 
Measure Similarity

t1
v2

v1
t2

IMAGINEtext&image

Figure 2: Illustration of the computation process of the IMAGINE metric. Given the two pieces of text for
comparison, x1 and x2, we render the machine imagination by generating two images I1 and I2 with the pre-
trained StableDiffusion (Rombach et al., 2022). We extract features of the input text and corresponding generated
images with CLIP (Radford et al., 2021). We receive two variants of IMAGINE by computing the cosine similarity
of the extracted features, in which IMAGINEimage measures mono-modal similarities on the visual side, while
IMAGINEtext&image conducts cross-modal matching.

(2) IMAGINEtext&image (IMAGINEt&i) takes
both the text and the generated image into con-
sideration, and conducts cross-modal comparisons
between (t1, v2), as well as (t2, v1):

IMAGINEt&i “ F
ˆ
simpt1,v2q ` simpt2,v1q

2

˙

(2)
The cosine similarity between the text and im-

age representations theoretically has a range of
r´1, 1s. However, in practice, the IMAGINE simi-
larity scores tend to cluster within a more narrow
interval rl, hs. Following Hessel et al. (2021), we
use a linear function F to stretch the similarity
score distribution to the range of r0, 1s, which is
also the score range for most of the automatic met-
rics covered in this study. Eq. (3) shows how we
re-scale the similarity score s into s1. Appendix
Figure 6 plots the two IMAGINE variants’ distribu-
tions before and after rescaling.

s1 “ s ´ l

h ´ l
,

rl, hs “
#

r0.1, 1.0s, for IMAGINEimage,

r0.1, 0.4s, for IMAGINEtext&image.

(3)

3.3 Integration with Existing Metrics
The IMAGINE similarity scores can serve as stan-
dalone automatic metrics. Additionally, IMAGINE
can be incorporated as an extension to existing
metrics, as it offers multimodal references and ad-
dresses the limitations of current text-only evalua-
tions that only compare tokens or text embeddings.
This mimics the human process of comprehending

text, where both text and visual imagination are
utilized. The integration of IMAGINE with other
automatic metrics is straightforward, achieved by
summing the IMAGINE similarity score with the
other automatic metric’s score for each example:

metric_score1 `“ IMAGINEsimilarity_score (4)

4 Experimental Setup

4.1 Tasks, Datasets, and Models

We evaluate our approach on three popular natural
language generation tasks: machine translation,
abstractive text summarization, and open-ended
text generation.

Machine Translation We use Fairseq (Ott et al.,
2019) to generate English translation from Ger-
man on IWSLT’14 (Cettolo et al., 2014) and
WMT’19 (Barrault et al., 2019) datasets.

Abstractive Text Summarization We use the
implementation of Li et al. (2017) to generate sum-
marization on DUC20041 and use ProphetNet (Qi
et al., 2020b) for generation on Gigaword.2 Both
datasets are built upon news articles.

Open-ended Text Generation We perform ex-
periments on the ActivityNet (Heilbron et al., 2015)
subset of HellaSwag (Zellers et al., 2019), which is
a benchmark for commonsense natural language in-
ference that ask the model to predict the most likely
follow-up among several choices given a specific

1https://duc.nist.gov/duc2004/
2https://catalog.ldc.upenn.edu/LDC2011T07
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Metric IWSLT’14 WMT’19

Original `IEimage `IEtext&image Original `IEimage `IEtext&image

BLEU-1 21.47 21.38˘1.53 21.86˘0.82 13.74 14.71˘1.19 16.40˘0.73
BLEU-2 20.82 21.17˘1.45 21.53˘0.68 12.50 12.93˘1.13 15.11˘0.64
BLEU-3 19.17 19.88˘1.39 20.31˘0.62 11.31 12.07˘1.09 13.90˘0.58
BLEU-4 17.60 18.57˘1.36 19.08˘0.60 9.10 9.15˘1.06 11.84˘0.54
METEOR 20.60 21.44˘1.54 21.30˘0.99 13.47 14.77˘1.33 16.80˘0.91
ROUGE 20.55 20.69˘1.54 21.26˘0.80 11.40 11.58˘1.16 14.34˘0.68
CIDEr 21.98 22.12˘0.24 22.25˘0.07 11.82 11.86˘0.18 12.05˘0.07
BERTScore 23.95 24.02˘1.41 24.09˘0.65 17.01 17.08˘1.22 18.88˘0.78
BLEURT 22.93 22.99˘0.64 23.40˘0.41 18.81 19.36˘0.82 19.59˘0.37

Table 1: The effect of applying our IMAGINE similarities on automatic metrics for machine translation, reflected
in the Pearson correlation with human judgments. The image generation process is conducted over five different
random seeds for each piece of text. We report the mean and standard deviation of the repeated runs. IE: IMAGINE.

context. The dataset is derived from ActivityNet
video captions and we use it for the task of sentence
completion, where the model is given a context and
asked to complete the sentence. The predicted sen-
tence endings generated by StoryEndGen (Guan
et al., 2019) and GPT-2 (Radford et al., 2019) are
collected and used in the following evaluation.

4.2 Automatic Metrics

Machine Translation & Summarization In the
evaluation of machine translation and text sum-
marization tasks, it is a common practice to com-
pare the predicted text with the reference. Adher-
ing to previous studies, we present results using
reference-based metrics. For machine translation,
we present scores using BLEU-n (n=1,2,3,4) (Pap-
ineni et al., 2002), METEOR(Banerjee and Lavie,
2005), and CIDEr (Vedantam et al., 2015). Mean-
while, for text summarization, we present ROUGE-
n (n=1,2) (Lin, 2004) precision scores. Addi-
tionally, we report the scores of ROUGE-L (Lin,
2004), BERTScore (Zhang* et al., 2020), and
BLEURT (Sellam et al., 2020) for both tasks.

Open-ended Text Generation In the context of
open-ended text generation, where the number of
possible answers for a given scenario can be in-
exhaustible, evaluating the quality of generated
text through a comparison with a fixed set of refer-
ences is challenging. To address this issue, previ-
ous studies have proposed to utilize reference-free
metrics to evaluate the quality of the generated text.
In this work, we experiment with the following
reference-free metrics which assess model degener-
ation: (1) div-n = |unique n-grams|

|total n-grams| measures sequence
level repetition by computing the portion of dupli-
cate n-grams (n=2,3,4) (Welleck et al., 2020). (2)
diversity =

ś4
n=2 rep-n measures the diversity of

n-grams (Su et al., 2022), and assesses the model
degeneration. (3) distinct-n = |unique n-grams|

|length of text| mea-
sures the portion of distinct n-grams (here n=2) in
the text (Li et al., 2016). In addition, we report
results on BERTScore (Zhang* et al., 2020) and
BLEURT (Sellam et al., 2020) for comparison of
contextual similarity.

4.3 Human Evaluation
We invite Amazon Mechanical Turk3 annotators to
evaluate the quality of the generated text. Due to
cost constraints, when conducting human evalua-
tion, we randomly sample 1,000 test examples for
each dataset, except for DUC2004 which has 500
examples in the test set. Each example is evaluated
by three human judges using a 5-point Likert scale,
which assessed the fluency, grammar correctness,
and factual consistency of the generated text with
the reference text. The overall human assessment
score is calculated as the mean of the scores ob-
tained from the three aspects. We compute the Pear-
son correlation (Freedman et al., 2007) between the
human scores and the scores obtained from the au-
tomatic metrics, and the results are reported as a
multiple of 100 for clarity.

5 Results and Analysis

5.1 Main Results
Machine Translation Table 1 presents the re-
sults of the system-level Pearson correlation with
human judges when extending the IMAGINE
similarity metric to various existing automatic
natural language generation (NLG) metrics on
the IWSLT’14 and WMT’19 German-to-English
datasets. The results demonstrate that the addition
of both IMAGINEimage and IMAGINEtext&image

3https://www.mturk.com/

97

https://www.mturk.com/


Metric DUC2004 GigaWord

Original `IEimage `IEtext&image Original `IEimage `IEtext&image

ROUGE-1 13.66 16.77˘1.31 13.45˘0.80 12.90 17.52˘0.73 16.78˘0.66
ROUGE-2 9.74 15.71˘1.65 11.19˘1.08 7.75 14.26˘0.83 13.33˘0.77
ROUGE-L 13.14 16.35˘1.47 13.17˘0.95 14.31 17.44˘0.77 16.78˘0.70
BERTScore 19.44 20.60˘1.29 20.26˘0.78 19.59 20.47˘0.64 20.10˘0.57
BLEURT 23.59 25.20˘0.72 24.46˘0.42 20.23 21.08˘0.39 20.74˘0.35

Table 2: The effect of applying our IMAGINE similarities on automatic metrics for text summarization, reflected
in the Pearson correlation with human judgments. The image generation process is conducted over five different
random seeds for each piece of text. We report the mean and standard deviation of the repeated runs. IE: IMAGINE.

Metric Reference-based Reference-free

Original `IEimage `IEtext&image Original `IEimage `IEtext&image

div-2 27.21 28.01˘0.49 28.08˘0.34 27.21 26.51˘0.42 27.29˘0.58
div-3 26.80 27.67˘0.49 27.78˘0.35 26.80 26.17˘0.43 26.98˘0.59
div-4 26.20 27.14˘0.48 27.28˘0.36 26.20 25.71˘0.44 26.55˘0.60
diversity 27.40 28.19˘0.41 28.23˘0.30 27.40 26.89˘0.36 27.55˘0.50
distinct-2 26.72 27.76˘0.56 27.90˘0.40 26.72 25.54˘0.48 26.49˘0.66
BERTScore 23.47 25.92˘0.50 25.43˘0.36 25.10 23.47˘0.56 25.26˘0.78
BLEURT 19.99 22.47˘0.83 21.55˘0.72 18.70 19.67˘0.88 20.56˘1.25

Table 3: The effect of applying our IMAGINE similarities on ActivityNet for open-ended text generation, reflected
in the Pearson correlation with human judgments. In the “Reference-based” setting, we compare the predictions
with the references, while in the “Reference-free” setting, we compare the predictions with the input contexts. The
image generation process is conducted over five different random seeds for each piece of text. We report the mean
and standard deviation of the repeated runs. IE: IMAGINE.

improves the Pearson correlation for all metrics
listed. Among the two variants, the mean of
IMAGINEtext&image consistently performs better
on both datasets. It is observed that there is a more
substantial variance in IMAGINEimage, which is at-
tributed to the difference in the images generated by
the StableDiffusion model (Rombach et al., 2022)
due to varying random seed and initialization val-
ues. As a result, IMAGINEimage, which compares
two machine-generated images, has a higher stan-
dard deviation compared to IMAGINEtext&image.

Abstractive Text Summarization The results
in Table 2 demonstrate the system-level Pearson
correlation with human judges when incorporat-
ing our IMAGINE similarity into existing auto-
matic NLG metrics on the DUC2004 and Giga-
word datasets. In alignment with the observations
made in the machine translation task, the addition
of both IMAGINEimage and IMAGINEtext&image

results in an improvement in Pearson correlation
across all metrics. On the two summarization
datasets, we notice that the correlation after in-
corporating IMAGINEimage exhibits higher mean
values along with larger variances compared to the
correlation with IMAGINEtext&image.

Open-ended Text Generation For the sentence
completion task, we conduct evaluations in two
setups. In the reference-based evaluation, we com-

pare the predicted sentence ending with the ground-
truth ending provided in the dataset. In reference-
free evaluation, we compare the predicted sentence
ending with the input context. This setup is de-
signed to assess the coherence of the prediction
with the input context, as it is hypothesized that a
high-quality prediction for open-ended text genera-
tion should be consistent with the input context.

The results of extending our IMAGINE similar-
ity metric to existing automatic NLG metrics for
the sentence completion task on the ActivityNet
dataset are shown in Table 3. In the reference-
based setting, both IMAGINE variants demonstrate
improvement over the listed metrics and exhibit
comparable performances. In the reference-free set-
ting, the introduction of IMAGINEtext&image con-
tinues to enhance the Pearson correlation, while
the implementation of IMAGINEimage results in a
decrease in correlation. One possible reason for the
decline in correlation when IMAGINEimage is used
in the reference-free setting of the sentence com-
pletion task on ActivityNet (which is comprised
of video captions) is that, despite the requirement
for the predicted continuation to be coherent with
the given context, the visual representation of the
context and continued text may differ greatly in
this scenario (e.g., due to a plot twist in the video).
Consequently, direct comparison of images through
IMAGINEimage may result in a decrease in correla-
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Src.: Also entschied ich mich eines tages den filialleiter zu besuchen, und 
ich fragte den leiter, "funktioniert dieses modell, dass sie den menschen all 
diese möglichkeiten bieten wirklich?" 
Ref.:  So I one day decided to pay a visit to the manager, and I asked the 
manager, "is this model of offering people all this choice really working?"

Hyp.:  So I decided to visit the filialler one day, and I asked the ladder, "does 
this model work that you really offer to the people all these possibilities?"

ImaginationRef ImaginationHyp

Metric Score

BLEU-1 69.70

ROUGE-L 50.00

BERTScore 58.88

BLEURT 55.73

ImaginEimage&text 23.85

Figure 3: A case study on IWSLT’14 German-
to-English translation with images rendered by
StableDiffusion-v2-1. Src.: input source text. Ref.:
reference text. Hyp.: generated hypothesis text.

tion. However, the inherent coherence between the
input text and the continued text may be captured
through cross-modal comparison, which may ex-
plain why IMAGINEtext&image still improves the
correlation for the listed metrics.

5.2 Performance Analysis

Why is ImaginE helpful? As shown in Ta-
bles 1 to 3, the incorporation of certain variants
of IMAGINE improves the correlation between the
reference-based and reference-free metrics and hu-
man scores in the majority of cases. This indi-
cates the usefulness of extending text-only metrics
with multi-modal knowledge. However, how do
these machine imaginations actually help text un-
derstanding and evaluation? In this section, we
further explore how and why IMAGINE works. We
first provide a case study to show the uniqueness of
IMAGINE over text-based metrics, then systemati-
cally analyze the effectiveness of our method from
different perspectives.

Case Study Figure 3 shows an example in which
IMAGINE effectively detects the dissimilarity in
keywords between two text snippets. Despite the
similarity in sentence structure between the refer-
ence and hypothesis, the crucial distinction lies in
the inclusion of the terms “manager” and “ladder”.
While traditional automatic metrics that rely on
n-grams matching (BLEU, ROUGE) or textual em-
bedding comparison (BERTScore, BLEURT) may
exhibit high scores, the quality of the generated text
remains questionable. In contrast, IMAGINE gen-
erates distinctive images and exhibits a relatively
low cross-modal similarity score, which aligns with
human perception.

Metric Original +IEipdVAEq +IEipBigGANq +IEipVQ-GANq +IEipSDq
ROUGE-1 13.7 15.9 ˘ 0.9 15.7 ˘ 1.0 15.9 ˘ 0.8 16.8 ˘ 1.3
ROUGE-2 9.7 14.9 ˘ 1.2 14.6 ˘ 1.3 14.9 ˘ 1.0 15.7 ˘ 1.7
ROUGE-L 13.1 16.0 ˘ 1.0 15.8 ˘ 1.1 16.0 ˘ 0.9 16.4 ˘ 1.5

Table 4: The Pearson correlations with human judges
when using IMAGINEimage (IEi) to augment ROUGE-
1/2 and ROUGE-L on DUC2004. We compute four sets
of IMAGINEimage similarity scores (mean˘std) with
dVAE, BigGAN, VQGAN, and StableDiffusion (SD).

dVAE BigGAN VQGAN StableDiffusion

Entity Recall 88.8% 41.2% 87.2% 94.1%

Table 5: Entity recall rate on the visualizations for
Flickr30k captions. We report results for images gener-
ated by dVAE, BigGAN, VQGAN, and StableDiffusion.

People sitting at a bench talking to each other by a body of water .

dVAE BigGAN VQGAN StableDiffusion

Figure 4: An example caption from Flickr30k Entities,
and images rendered by dVAE, BigGAN, VQGAN and
StableDiffusion. The bounding boxes point to the visu-
alizations of the entities marked in the same color.

Sensitivity to Different Image Generation Back-
bones In previous sections, we utilize StableDif-
fusion (Rombach et al., 2022) as the image genera-
tion backbone for IMAGINE. Here, we examine the
influence of the image generation backbone on the
evaluation performance of IMAGINE by conducting
experiments on the DUC2004 dataset for summa-
rization and comparing StableDiffusion with three
alternative models: dVAE (Ramesh et al., 2021),
BigGAN (Brock et al., 2019), and VQGAN (Esser
et al., 2021). The results, as shown in Table 4, in-
dicate comparable performance of IMAGINEimage

with dVAE and VQGAN, both of which outper-
form BigGAN across all metrics. StableDiffusion
achieves the highest mean value, but also displays
the largest variance among the models. These find-
ings highlight the significance of considering the
image generation architecture when evaluating text,
as it can result in varying machine-generated im-
ages and affect the final evaluation outcomes.

Reliability of Machine-Generated Images The
reliability of IMAGINE’s visualization capabil-
ity is further evaluated on the Flickr30k Entities
dataset (Plummer et al., 2015), which consists of
annotated image captions. We randomly sample
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Figure 5: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in DUC2004. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.

100 captions and use the four generative backbones
to render images. We present the captions and
generated images to human annotators, and ask
them to indicate if the entities mentioned in the
captions are visually represented. The results, in
terms of entity recall rates, are presented in Table 5.
A higher recall rate indicates that the text-to-image
generator is more capable of visualizing the con-
tent described in the text. The results show that
StableDiffusion has the highest entity recall rate
of approximately 94%, followed closely by dVAE
and VQGAN. In contrast, BigGAN has the lowest
recall rate of around 41%. An example of entity
recall for a set of images generated by the four
generative backbones is shown in Figure 4.

Syntax Importance to Machine-Generated Im-
ages We evaluate the significance of different syn-
tax tokens in the image generation process using
the DUC2004 summarization dataset. We utilized
the Stanza (Qi et al., 2020a) part-of-speech (POS)
tagger to parse the text and created ablated exam-
ples by masking out a token of a specific syntax
tag.4 The visual similarity of the images gener-
ated from the ablated examples is then compared
to the visualization of the original text. The re-
sults, as reported in Table 5, indicated that the re-

4We report Universal POS tags in this study:
https://universaldependencies.org/u/pos/

POS Tag 10 Most Frequent Tokens

NOUN
president, minister, government, space, party, station,
budget, game, right, arrest

PROPN
U.S., Clinton, China, Korea, Gaza, Microsoft, Congo,
Israel, Livingston, Lebanon

ADJ
new, prime, Russian, international, Asian, possible,
Cambodian, first, human, economic

Table 6: The most frequent NOUN, PROPN, and ADJ
tokens in DUC2004.

moval of PROPN and ADJ tags has a significant
impact on the visualization results, resulting in a
12% decrease in visual similarity. Conversely, re-
moving NOUN tokens has a comparatively smaller
effect. The most frequent NOUN, PROPN, and
ADJ tokens in the DUC2004 dataset were listed
in Table 6. For DUC2004 built upon new clusters,
PROPN and ADJ tokens cover concrete concepts
such as nations, corporations, and celebrities, while
NOUN tokens involve more abstract concepts such
as government, party, and right. For this partic-
ular dataset, our IMAGINE approach pays more
attention to PROPN and ADJ tokens that are easier
to visualize by nature. Further analysis for other
dataset domains can be found in the Appendix.

Which IMAGINE Variant to Report? From Ta-
bles 1 to 3, we can see a mixed trend of perfor-
mance between the two IMAGINE variants. In
general, IMAGINEtext&image has smaller variances
among repeated runs. Nevertheless, we would still
suggest reporting both IMAGINE variants since
they conduct comparisons from different aspects,
with IMAGINEimage comparing similarity within
the visual modality, while IMAGINEtext&image

compares cross-modal similarity.

IMAGINE as a Standalone Metric Table 7
presents the Pearson correlation with human evalua-
tions on each dataset when utilizing the two IMAG-
INE variants as standalone metrics. The results
reveal that both IMAGINE variants demonstrate a
lower correlation compared to other metrics as re-
ported in Tables 1 to 3. Additionally, the scores
produced by IMAGINE are not determinate, given
the probabilistic nature of text-to-image models
that generate various images with different random
seeds. Hence, IMAGINE may not be an optimal
choice as a standalone metric. Nonetheless, it is
important to emphasize the capability of IMAGINE
in introducing multimodal aspects to traditional
text-only metrics. In this study, integrating IMAG-
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IWSLT’14 WMT’19 DUC2004 GigaWord AN(w/ ref) AN(w/o ref)

IEi 19.1˘1.5 13.8˘1.7 10.6˘1.5 15.9˘1.1 18.9˘1.5 16.8˘1.9
IEt&i 18.0˘1.5 12.9˘1.8 9.6˘1.6 15.3˘1.1 18.4˘1.6 18.2˘1.8

Table 7: The Pearson correlation between IMAGINE
variants and human assessments on each dataset. Here
we use IMAGINEimage (IEi) and IMAGINEtext&image

(IEt&i) as two individual metrics. AN: ActivityNet, “w/
ref”: reference-based, “w/o ref”: reference-free.

INE with text-only metrics leads to an improvement
in the Pearson correlation with human evaluations.
Future work may explore alternative methods of
integrating multimodal information in text evalua-
tion.

6 Conclusion

We present IMAGINE, a novel automatic evaluation
metric for NLG that is based on machine imagi-
nation. Our experiments on five datasets across
three different NLG tasks demonstrate the poten-
tial of incorporating IMAGINE similarity scores as
a supplement to existing automatic NLG metrics,
which can lead to improvement in their correla-
tion with human evaluations in various scenarios.
In the future, it is interesting to explore effective
ways of visualizing abstract concepts, and how to
incorporate machine imagination efficiently. We
hope our work can contribute to the discussion and
advancement of multi-modal studies.

Limitations

The current limitations of IMAGINE include the
length constraint of the CLIP text encoder, which
is limited to 77 BPE tokens (including [BOS] and
[EOS]), thus limiting its applicability to longer
text generation tasks such as story generation or
document summarization. As a metric that re-
lies on “machine imagination”, IMAGINE is lim-
ited by the inherent limitations of the generative
models for images. The non-determined nature
of machine-generated images can lead to non-
determined IMAGINE scores. Possible solutions to
mitigate this issue includes but are not limited to
fixing the random seeds or repeating the evaluation
process several times to reduce the variance effect.
Additionally, it remains a challenge for machines
to properly visualize certain abstract concepts or
numerical values, which could limit the scope of
IMAGINE’s applicability.

Ethical Statement
Our study has received IRB exempt status and the
estimated hourly wage paid to MTurk annotators
is $12. It is important to note that our “imagina-
tion” approach may raise questions of fairness if
the training dataset for CLIP or StableDiffusion
contains any biases. This could result in a ten-
dency for IMAGINE to generate certain types of im-
ages based on what it has seen in the training data.
While we did not observe such issues in our study,
it is important to consider that such unfair behavior
would undermine the effectiveness of IMAGINE as
an evaluation tool.

All of the datasets used in our study on machine
translation, abstractive text summarization and
open-ended text generation tasks are publicly avail-
able. We use the public repositories to implement
IMAGINE. The implementations of image genera-
tors used in our study are DALL-E(dVAE+CLIP),5

Big-Sleep(BigGAN+CLIP),6 VQGAN+CLIP,7 and
StableDiffusion.8
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A Appendix

A.1 Score Distributions
In this study, we use cosine similarity to evalu-
ate the similarity between features, which yields
a score distribution in the range of r´1, 1s. How-
ever, our results indicate that negative scores were
not observed when computing the similarities be-
tween the features generated by CLIP. The score
distributions of the two IMAGINE variants are de-
picted in Figure 6. Prior to re-scaling, the scores
generated by IMAGINEimage typically fall within
the range of r0.1, 0.4s, while those generated by
IMAGINEtext&image are within r0.1, 1.0s. Follow-
ing re-scaling, both IMAGINE metrics are linearly
transformed to lie within the range r0, 1s.
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Figure 6: The score distributions of IMAGINEimage and
IMAGINEtext&image before and after re-scaling.

A.2 Syntax Importance to Imaginations
In Section 5.2, we discussed the impact of
DUC2004 Part-of-Speech (POS) tags on the qual-
ity of generated images. In this section, we extend
our examination to another dataset domain, the
Flickr30k Entities dataset (Plummer et al., 2015),
which is an image captioning corpus. While the
domain of the Flickr30k Entities dataset is distinct
from that of the DUC2004 (based on news articles),
similar trends are observed. The results displayed
in Figure 7 also suggest that concrete concepts are
easier to be visualized and play a more significant
role in the visualization process, similar to the re-
sults observed in Figure 5.DUC2004 POS Flickr30k POS

Figure 7: The influence on visualization when masking
tokens of different syntax tags. Upper: The occurrence
frequency of each syntax tag in Flickr30k. Lower: The
relative image similarity decrease after masking each
syntax tag. Baseline: The average intra-group pairwise
image similarity. The top-10 syntax tags that have the
most significant impact on visualization are listed here.
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