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Abstract

We consider the problem of segmenting unfor-
matted text and transcripts linearly based on
their topical structure. While prior approaches
explicitly train to predict segment boundaries,
we propose to address this task by inferring
the hierarchical segmentation structure associ-
ated with the input text. For this purpose, we
present a data curation strategy to obtain the
hierarchical segmentation structure annotations
for over 700K Wikipedia articles. We then pro-
pose the first supervised approach to generate
hierarchical segmentation structures for given
text based on a neural conditional random field
(CRF) that explicitly models the statistical de-
pendencies between nodes and their constituent
children. We introduce a novel data augmen-
tation scheme as part of our model training,
which involves sampling a variety of node ag-
gregations, permutations, and removals, all of
which help capture fine-grained and coarse top-
ical shifts in the data and improve model per-
formance. Extensive experiments show that
our model outperforms or achieves competi-
tive performance when compared to previous
state-of-the-art algorithms in the following set-
tings: rich-resource, cross-domain transferabil-
ity, few-shot supervision, and segmentation
when topic label annotations are provided.

1 Introduction

Text segmentation (Hearst, 1997; Choi, 2000), an
important task in information retrieval, is defined
as the process of dividing unstructured text into
topically coherent segments. Because it recovers
topical structure from unformatted text, it can be
used as a pre-processing step for several down-
stream tasks such as text summarization (Mitra
et al., 1997), question answering (Oh et al., 2007)
and discourse analysis (Van Dijk, 1982).

Most prior works on text segmentation (Hearst,
1997; Choi, 2000; Koshorek et al., 2018) attempted
to address this task by explicitly predicting the
segment boundaries, with the assumption that any

given text can be decomposed into contiguous, non-
overlapping, indivisible segments, based on topical
themes. The discourse segmentation theory (Grosz
and Sidner, 1986), however, asserts that the out-
come may not always be strictly decompositional,
i.e., a segment may have sub-segments within it,
and segments may overlap with each other. Fol-
lowing this theory, we hypothesize that explicitly
training to infer the hierarchical topic structure of
the underlying text leads to better linear segmenta-
tion, as it forces the models to examine text at mul-
tiple levels to extract coarse-grained to fine-grained
topical segments. Further, this allows inference of
linear segments of varying granularity that can be
used for various downstream applications.

Previous works on hierarchical segmentation
are largely unsupervised (Eisenstein, 2009; Simon
et al., 2015) due to the unavailability of large la-
belled datasets with hierarchical structure informa-
tion. In this paper, we propose to leverage the hi-
erarchical structures in a supervised manner, given
the superior performances of supervised models
across several language processing tasks (Mikolov
et al., 2013; Pennington et al., 2014; Devlin et al.,
2019), and propose a data curation strategy to ob-
tain the hierarchical segmentation structures for
Wikipedia articles. Specifically, we leverage the
available HTML tag annotations1 and use them to
identify section and sub-section information with
their hierarchical level, which are then leveraged
to obtain the associated ground truth hierarchical
structure. Further, because these are extracted from
Wikipedia dump, they cover a wide range of topics
unlike prior/existing datasets (Eisenstein, 2009).2

Our approach is based on a recent CRF-based
constituency chart parsing technique (Zhang et al.,
2021), which offers efficient algorithms for super-

1https://dumps.wikimedia.org/
2Note that the dataset proposed by Eisenstein (2009) is a

small one consisting of 12 examples for evaluation, and will
not suffice for training large models.
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vised training and precise inference. This frame-
work explicitly models the relationships between
nodes and their offspring in binary trees, and thus
can enable hierarchical segmentation inference by
utilising the relationships between coarse segments
and their fine-grained sub-segments. However,
there are three challenges to directly adapt this
method to hierarchically segment text: (a) In con-
trast to the abundant labelled resources available
for constituency parsing (Marcus et al., 1993; Xue
et al., 2005), there is no large-scale labelled dataset
for this task. (b) This method can only infer bina-
rized hierarchical structures; it cannot be extended
to infer general hierarchical structures with nodes
having any number of children, as training and in-
ference become infeasible. (c) While the existing
method processes a sequence of tokens, the input
in our case would be a sequence of sentences.

We propose a framework for linear text segmen-
tation using the hierarchical structures of the under-
lying text. Specifically, our work makes four main
contributions: (1) We design an algorithm to obtain
the hierarchical structures for Wikipedia articles in
HTML format, and curate a large labelled dataset
for hierarchical text segmentation.3 (2) We present
an algorithm based on the Chomsky Normal Form
(CNF) (Chomsky, 1959; Hopcroft et al., 2001;
Lange and Leiß, 2009) theory to convert the hierar-
chical structures to binarized form - which makes
the computation of the tree-structure CRF objec-
tive tractable. (3) We propose a Transformer-based
architecture (Vaswani et al., 2017) to encode the
input sequence’s sentences, which uses a lot fewer
parameters than previous state-of-the-art BERT-
based (Devlin et al., 2019) approaches (Lukasik
et al., 2020). (4) We further propose a data aug-
mentation technique involving random node aggre-
gations, removals and permutation, which results
in significant performance improvement. Finally,
we demonstrate our method’s efficacy by compar-
ing its performance against prior unsupervised and
supervised linear text segmentation approaches.

2 Related Works

Prior works for linear text segmentation can be
divided into unsupervised and supervised meth-
ods, both of which can be further categorized
into locally and globally-informed ones. Locally-

3The code to curate dataset is available at https:
//github.com/inderjeetnair/hierarchical_
text_segmentation_data

informed methods find segment boundaries by es-
timating the extent of topical shift using local
cues (Hearst, 1997; Blei and Moreno, 2001; Laf-
ferty et al., 2001). While these methods enjoy
quick inference and low memory constraints as
they only utilize local features, they can result in
erroneous predictions when met with short incon-
sequential digressions (Kazantseva and Szpakow-
icz, 2011). Globally-informed methods, on the
other hand, utilize the complete context in opti-
mizing an objective to find the locations of topi-
cal shift (Choi, 2000; Kazantseva and Szpakowicz,
2011; Malioutov et al., 2007; Fragkou et al., 2004;
Glavaš et al., 2016). As they consider the entire
global context in inference, these methods have
higher memory constraints and time requirements.

More recently, Koshorek et al. (2018) introduced
a large-scale dataset for linear text segmentation,
which has resulted in the application of supervised
neural models to predict the segment boundaries for
unstructured text (Koshorek et al., 2018; Badjatiya
et al., 2018; Li et al., 2018). These models not only
achieve better performance but also are endowed
with high inference speed, owing to parallelized
computing with modern GPU architectures.

Owing to the success of supervised methods
for linear text segmentation, we design a globally-
informed supervised neural model for predicting
segment boundaries. However, unlike previous
works which address segment boundary prediction
explicitly, ours first hierarchically segments the
text, and then leverages the resulting structures
to predict the linear segment boundaries. To en-
able the supervised training of our proposed ap-
proach, we curate a large labelled dataset consist-
ing of Wikipedia articles along with their hierar-
chical structures automatically. Further, our pro-
posed method requires significantly fewer param-
eters that prior SoTA globally-informed methods
while achieving better performances. To the best
of our knowledge, ours is the first work to leverage
hierarchical structures to predict segment bound-
aries, and show that this results in improved perfor-
mances for the task of linear text segmentation.

3 Problem Formulation

Here, we briefly outline the objectives of linear
and hierarchical text segmentation tasks. Given
an article S composed of n sentences, S =
s0, s1, . . . , sn−1, the goal of linear segmenta-
tion is to obtain a contiguous partition L =

884



Sequence of Linear Segmentations Hierarchical Tree

Figure 1: Transformation of a sequence of linear seg-
mentations to a hierarchical tree.

l0, l1, . . . , lk−1 such that joining the elements of
li in the same order reconstructs S and li ∩ lj =
ϕ ∀ i ̸= j. Each segment li in L is associated with
a topical theme which can be used for downstream
tasks such as summarization, information retrieval,
etc.

Hierarchical segmentation (McFee et al., 2017)
aims to infer a sequence of linear segmentations,
L = L0, L1, . . . , Lm−1, where Li is coarser than
Lj for i < j. Each element of L is thus a refine-
ment of all its preceding elements, to satisfy this
coarse-to-fine grained constraint. The refinement
condition for i ≤ j is: ∀l ∈ Lj ∃ l′ ∈ Li : l ⊆ l′.
That is, every segment in Lj is a subset of a seg-
ment in Li. In this paper, we represent the informa-
tion contained in L using a hierarchical tree (Fig.
1), where each node (other than the leaf nodes) rep-
resents a topical theme. The nodes near the root
represent general / coarser topics, and those near
the leaves indicate specific / fine-grained topics. In
our approach, the inferred hierarchical segmenta-
tion is in the form of a tree. After converting this
tree to a sequence of linear segmentations, we re-
turn an appropriate element from the sequence as
our inferred linear segmentation.

4 Dataset Curation

To train our proposed method in a supervised man-
ner, we collect hierarchical segmentation structure
annotations for the Wikipedia articles in WIKI-
727K dataset (Koshorek et al., 2018). As done
in (Koshorek et al., 2018), the articles in the HTML
form are preprocessed using WikiExtractor4 to re-
move (a) non-text elements such as tables and fig-
ures, and (b) very short sections and sub-sections
spanning fewer than three sentences. The markup
tags (<h1>,..., <h6>) associated with differ-
ent sections define the level of hierarchy for a given
text segment. We leverage this markup information
to obtain the hierarchical structure among the vari-

4https://github.com/attardi/
wikiextractor.git (Distributed under GNU Af-
fero General Public License v3.0)
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Figure 2: Binarization: Transformation of a tree having
nodes containing more than 2 children to a binarized form.

ous segments. We thus obtain a sequence of HTML
elements for each article. In the next sub-section,
we describe our algorithm to obtain the hierarchical
structures associated with these sequences. We ob-
tain the hierarchical structure annotations only for
the train split articles of the WIKI-727K dataset;
our approach can be applied to larger document
collections to obtain more datapoints.

4.1 Hierarchical Labelling

Algorithm 1 Algorithm for constructing hierarchi-
cal structure from a list of HTML elements
Require: X = x1, x2, . . . , xL ▷ Ordered list of HTML elements

c← ROOT ▷ ROOT initialized denoting the root of the tree to be
constructed
T ← ROOT
for i = 1 to ∥L∥ do

x← X [i]
while PRIORITY(x.TAG)≥ PRIORITY(c.TAG) do ▷ Selecting

appropriate element to add x
c← c.PARENT ▷ Updating c to its parent

end while
c.ADD(x) ▷ x is added as the next child of c
c← x

end for
Return T

Let the sequence of HTML elements associated
with an article be X = x0, x1, . . . xL−1, where
xi.TAG denotes the markup type associated with
xi, and xi.TEXT denotes its associated text. Here,
we outline our algorithm to obtain the hierarchical
organization of these elements. Let this hierarchi-
cal organization be represented as a tree rooted at
T . The non-leaf nodes represent topics, while the
leaf nodes represent sentences from the article.

Our algorithm iterates over the elements in X
and progressively adds them to the tree rooted at
T . It maintains a reference to the node c that is last
added to the tree. To add the next element x, the
algorithm only considers two possibilities: (a) x is
the next child of c, or (b) x is the next child of one
of the ancestors of c. This is to ensure that the pre-
order traversal of T recovers X (which happens
when x is added using the above two rules). To find
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Figure 3: Data Augmentation: First, hierarchical structures
are randomly sampled from the corpus; then, some nodes
are removed from the sampled structures and the outcome is
combined

the element to which x must be added, we associate
a priority to each markup type in the following
decreasing order: h1, ..., h6, p, where hi
indicates for section / sub-section headings and p
its associated text. For adding x, c is updated to
its parent until the priority of c exceeds that of x.
Algorithm 1 presents the pseudo code.

4.2 Binarization

Algorithm 2 Algorithm to be applied to every node
having more than 2 children to convert the original
structure to the binarized form
Require: x ▷ Node having more than 2 children

c← NEWNODE()
c.TYPE← I
n← ||x.CHILDREN||
for i = 1 to n do

c′ ← NEWNODE() ▷ New node initialized
c′.TYPE← R
c.CHILDREN← [c′, x.CHILDREN[n− i + 1]] ▷ Restricting the

number of productions to 2
c← c′

end for

The hierarchies thus obtained allows nodes to
have more than two children. We convert them
to binarized form (from which the original struc-
tures can be recovered) to ensure tractable training
and inference using our CRF-based segmentation
model (§5) (using Algorithm 2).

This algorithm visits each node x in a tree T
that has more than two children, and partitions the
children into two sets having ||x.CHILDREN|| − 1
children and 1 child respectively. Thereafter, a
new node is constructed whose children are as-
signed to the former set, followed by the updation
of x.CHILDREN to contain the new node and the
latter set in the partition. This is repeated until the
tree is devoid of nodes with more than 2 children.
To ensure recoverability, we define two types of
nodes in the binarized trees: Reducible (R) and
Irreducible (I). The nodes retained from T are

regarded to as I, and those added to convert T to
the binarized form are referred to as R (an example
of binarization is shown in Fig. 2). These types are
assigned to the node’s ’TYPE’ property (pseudo
code in Algorithm 2). To recover the original tree,
we visit every Reducible node in the binarized tree
and connect its children to its parent in the same
order. This process is repeated until the structure
becomes devoid of any Reducible nodes.

4.3 Data Augmentation

An inherent limitation of this dataset stems from
the fact that each Wikipedia page is composed of
a single global topic, and the direct usage of this
data will only train the model in detecting fine-
grained topical shifts resulting from sub-sections /
sub-headings. However, an article in practice can
also contain fragments with stark topical contrast.

To overcome this, we introduce a data augmenta-
tion strategy, where a subset of tree root references
are sampled at every iteration. Thereafter, some of
the children of these nodes are randomly dropped
and the ordering of left-out children is randomly
permuted. Finally, a new node is created and its
children are the sampled tree roots (Figure 3). This
new root consists of several coarse topics and the
random permutation of the child nodes ensures
that the model robustly infers topical segments in-
dependent of the order of the child nodes. The
augmentation is performed at every epoch ensuring
the number of artificially synthesized datapoints
is equal to the actual number of documents in the
train split.

5 Neural CRF Segmentation Model

5.1 CRF Formulation

We consider an article containing n sentences,
S = s0, s1, . . . , sn−1 and its corresponding hierar-
chical segmentation tree structure t. A node in t
representing a segment spanning si, si+1, . . . , sj is
denoted by (i, j). Alternatively, t can be expressed
as a set of tuples where each tuple corresponds to a
node segment in t.

Inspired by (Zhang et al., 2021), our model
presents a scoring function s(., .) → R (described
later) to assign a score for each node in t, e.g.,
s(i, j) represents the score for a node entailing
si, si+1, . . . , sj . We define a function S to score
the tree t using the sequence S as:

S(S, t) =
∑

(i,j)∈t

s(i, j) (1)
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Figure 4: Pipeline: Our pipeline is divided into two stages. We extract contextualised embeddings for each sentence
during the feature extraction stage. These representations are then fed into the structure prediction module, which
first infers the binarized tree and label for each node. This inference is used to construct the actual hierarchy.

Under CRF, we define conditional probability as:

P(t|S) = S(S, t)
Z(S) :=

∑
t̂ S(S, t̂)

(2)

The denominator sums the score of all possible le-
gal hierarchical trees.5 Note that, the computation
of the partition function Z(S) in the denominator
is intractable (exponential time complexity) if we
consider all possible hierarchical trees with nodes
having arbitrary number of children. However, bi-
narization offers efficient dynamic programming
algorithm to compute the partition function with
polynomial time complexity. Thus, we binarize t to
obtain t̃. However, the binarization also associates
a type to each node from the set {R, I}. Under this
formulation, every node in t̃ can be represented by
a triplet (i, j, l) which indicates that the correspond-
ing node of type l ∈ {R, I} spans si, si+1, . . . , sj .
Similar to Zhang et al. (2021)’s two-staged method,
we first identify the binarized tree structure that
maximises P(̃t|S), whose denominator only adds
the scores of the binarized trees, and then determine
the type for each of its constituent nodes. To find
the optimal structure maximizing P(̃t|S), we lever-
age Cocke–Younger–Kasami algorithm (CYK) al-
gorithm (Sakai, 1961). For each span (i, j) in the
inferred structure, we predict its type l:

l = argmax
l̂∈{R,I}

s(i, j, l̂) (3)

Figure 4 shows how our model processes the in-
put sequence to infer the hierarchical segmentation
structure. In the next subsection, we specify the
architectural details of its components.

5Legal hierarchical trees are expected to satisfy two condi-
tions: (1) There should be one-to-one correspondence between
the leaf nodes and the constituent sentences. (2) Every node
in the tree must span consecutive sequence of sentences.

5.2 Model Architecture

We now describe the implemented architecture,
which is adapted from the model proposed by Stern
et al. (2017) and Zhang et al. (2021) with two im-
portant modifications: (a) utilization of memory-
efficient Transformer (Vaswani et al., 2017) model
for encoding the sentence in place of word encoder,
and (b) better choice of hyper-parameters for hier-
archical text segmentation.
Encoder. Each sentence in S is encoded
in a context-independent manner using the
Transformer-based model proposed by Wang et al.
(2022), which contains 6 layers and 22M parame-
ters. The parameters of this model are fine-tuned
using self-attention distillation (Wang et al., 2022)
for the compression of large language models like
RoBERTa-Large (Liu et al., 2019). This stage trans-
forms s0, s1, . . . sn−1 to v0, v1, . . . vn−1 with 384
length each.
Contextualization. To contextualize v0, . . . vn−1,
we implement two BiLSTM layers over it. While
the architecture implemented by Zhang et al.
(2021) comprises of three BiLSTM layers, we ob-
serve that direct usage of the same hyper-parameter
settings lead to sub-optimal results on a valida-
tion set. The final context-aware representation for
a sentence is obtained by concatenating the cor-
responding forward and backward vectors from
the last layer. Let these vectors be represented by
c0, c1, . . . cn−1.
Scoring. Having obtained the contextualized repre-
sentations of the elements in S, we describe the ar-
chitecture used to compute s(i, j) and s(i, j, l). For
the computation of s(i, j), the contextualized repre-
sentations are passed to two multi-layer perceptron
(MLP) modules to obtain the left and right bound-
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ary representation vectors (Zhang et al., 2021):

rsi ; l
s
i = MLPs

r(ci);MLPs
l (ci) (4)

Similarly, additional set of boundary vectors are
derived to compute s(i, j, l) for label prediction:

rli; l
l
i = MLPl

r(ci);MLPl
l(ci) (5)

The dimension of the boundary vectors for struc-
ture prediction is set to 500 and that for label pre-
diction is set to 800. s(i, j) is computed by intro-
ducing a trainable parameter W ∈ Rd×d:

s(i, j) = lsi
TWrsi (6)

Similarly s(i, j, l) is computed by introducing
WR and WI to derive the scores: s(i, j,R) and
s(i, j, I) respectively. Note we use rli and lli for the
computation of these scores of instead of rsi and lsi .

5.3 Training
An instance in the labelled dataset can be repre-
sented by: (S, t̃, l) where l is the set of all spans an-
notated with their corresponding type from {R, I}.
The loss function is formed by accumulating two
components:

L(S, t̃, l) = Ls(S, t̃) + Ll(S, t̃, l) (7)

The first term tries to maximize log(P(̃t|S)) by
refining the scoring function s(i, j). The second
term establishes cross-entropy loss for the type pre-
diction of the constituent spans. While the time
complexity of the partition function computation
Z(S) for log(P(̃t|S)) is O(n3) using inside algo-
rithm (Lari and Young, 1990), we implement the
batchified version of this algorithm proposed by
Zhang et al. (2021) that provides much better time
complexity (O(n) for a batch).

We train our models over the curated dataset
for 4 epochs using Adam optimizer (Kingma and
Ba, 2015) with batch size of 100 and learning rate
initialized to 2 × 10−4. The learning rate is ex-
ponentially decayed to 0.75 times its initial value
after 50K optimizer steps. The training is restricted
to datapoints having less than 200 sentences due to
GPU memory constraints.

6 Experiments and Results

We assess our method’s performance in various set-
tings when compared to SoTA linear segmentation
techniques. The tree inference from the model is
converted to a sequence of linear segmentations

Method Precision Recall F1 Score

BI-LSTM 69.3 49.5 57.7
CROSS SEGMENT BERT 69.1 63.2 66.0
BERT+BI-LSTM 67.3 53.9 59.9
HIERARCHICAL BERT 69.8 63.5 66.5

HIERCRF 80.6 59.4 68.4
HIERCRF-AUG 82.5 60.3 69.7

HIERCRF-BERT 79.0 63.3 70.2
HIERCRF-AUG-BERT 80.4 64.6 71.6

Table 1: Comparison with supervised baselines when abun-
dant labelled data is available. Only the hierarchical structures
of the articles in the train split of WIKI-727K are used in our
method for consistency.

(Fig. 1). As the position of an element in this se-
quence indicates the extent of segmentation, we se-
lect an appropriate position (constant for a dataset,
obtained through validation for supervised meth-
ods, and second position for unsupervised methods
due to how coarsely grained the topical shifts are
in them) and return the corresponding segmenta-
tion. We call our method variants HIERCRF and
HIERCRF-AUG, where the former and latter are
trained without and with data augmentation.

We compare our models to supervised methods
trained on WIKI-727K augmented with our hierar-
chical structure annotations (§6.1). Unsupervised
methods (Kazantseva and Szpakowicz, 2011; Du
et al., 2013) require a significant amount of time
for inference as they are computationally intensive
and do not take advantage of GPU parallelization
for efficiency. Hence, we do not compare their
performance for WIKI-727K, which contains a
large number of datapoints in the test split. In §6.2,
we look at how our model transfers knowledge
from one domain to another and investigate effi-
cacy in a low-resource setting. Here, we compare
our method to unsupervised as well as some super-
vised methods. Finally, we evaluate how our model
utilises topic label information for segmentation
using WikiSection (Arnold et al., 2019).

6.1 Rich Resource Setting

Here, we consider models that perform well
in linear text segmentation when large labelled
datasets are available for training. The large-scaled
dataset (WIKI-727K) curated by Koshorek et al.
(2018) for linear segmentation has been instru-
mental in the formulation of several deep learn-
ing methods (Koshorek et al., 2018; Lukasik et al.,
2020). We use the following as baselines: BI-
LSTM (Koshorek et al., 2018), CROSS SEG-
MENT BERT (Lukasik et al., 2020), BERT+BI-
LSTM (Lukasik et al., 2020) and HIERARCHI-
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Property Clinical Fiction Wiki

# Documents 227 85 300
# Sentences 31,868 27551 58,071

Segment Length Mean 35.72 24.15 25.97
Std Dev 29.37 18.24 9.98

Table 2: Datasets used for comparing our method against
statistical methods for linear text segmentation.

CAL BERT (Lukasik et al., 2020). Most of them
use BERT as their encoder (> 109M parameters).
To show the increased effectiveness of our model
when its complexity is increased, we also present
the performance with BERT as its encoder. We
use the test split in WIKI-727K (73, 233 instances)
and F1 score for evaluating the segment boundary
prediction performance. Further, the first and the
last sentences are not annotated in the ground truth
set of boundaries, as any segmentation algorithm
can easily predict them as segmentation boundaries,
thus inflating performance.

We note, from Table 1, that our linguistically mo-
tivated approach for inferring linear segmentation
from hierarchical segmentation gives better perfor-
mance despite having significantly fewer param-
eters (≈ 23M as opposed to strongest baseline’s
≈ 109M). As expected, increasing model complex-
ity improves performance, resulting in a new SoTA
for WIKI-727K (71.6 F1). We also observe our
precision is comparatively higher and the recall is
lower. We attribute this to node misclassification in
the inferred hierarchy. By construction, R nodes
are removed to get the final inference indicating
the corresponding segments would be absent in the
inferred hierarchy. Thus, even if the inferred bina-
rized structure is accurate, a misclassification of I
nodes as R will result in lower recall.

6.2 Cross Domain and Low Resource Setting
We categorize the methods in following groups.
A: Unsupervised: This group comprises of the fol-
lowing unsupervised techniques: U&I (Utiyama
and Isahara, 2001), MINCUT (Malioutov and
Barzilay, 2006), BAYESSEG (Eisenstein and Barzi-
lay, 2008), APS (Kazantseva and Szpakowicz,
2011), PLDA (Purver et al., 2006) and TSM (Du
et al., 2013). These methods use the number of
gold standard segments and test data corpus for
tuning the hyperparameters.
B: Cross-Domain Transferability: Here, we pre-
train supervised models using WIKI-727K’s train
split and evaluate on other datasets completely un-
supervised, without knowing the number of gold-
standard segments. We consider top baselines

Method Clinical Fiction Wiki
WD Pk WD Pk WD Pk

GROUP A

U&I 37.6 37.0 45.9 45.9 36.8 36.8
MINCUT 38.2 36.8 40.5 37.1 38.9 36.4
BAYESSEG 35.3 33.9 33.7 27.8 39.0 35.9
APS 39.9 39.6 48.0 45.1 38.0 39.2
PLDA 37.3 32.4 43.0 36.1 - -
TSM 34.5 30.6 40.8 32.5 - -
RANDOM 45.9 44.1 51.0 47.5 48.6 48.0

GROUP B

CROSS SEG BERT 40.8 39.4 44.4 42.7 37.1 36.3
HIER BERT 34.8 33.9 41.1 39.0 35.6 34.5
HIERCRF 34.4 33.9 43.1 42.4 33.4 30.0
HIERCRF-AUG 33.7 33.0 42.8 42.2 30.9 28.6

GROUP C

CROSS SEG BERT-
NO-PT

38.4 35.0 39.4 29.5 40.6 38.0

CROSS SEG BERT 31.0 29.8 34.4 27.6 32.4 27.5
HIER BERT-NO-PT 33.4 32.4 37.8 34.5 39.1 38.1
HIER BERT 38.5 35.2 34.0 25.5 35.0 29.1
HIERCRF-NO-PT 33.3 32.2 34.7 34.5 37.0 35.9
HIERCRF 26.7 25.5 33.3 29.9 28.6 26.3
HIERCRF-AUG 25.2 24.4 32.6 28.4 27.9 25.7

Table 3: Performance of our model against unsupervised
approaches. All results are averaged for 5 random splits.
TSM and PLDA implementations are unavailable to report
their performance on Wiki. PT: Pre-training.

from §6.1 (CROSS SEGMENT BERT and HIER-
ARCHICAL BERT) and our variants (HIERCRF
and HIERCRF-AUG). We re-implement the super-
vised baselines as original code is unavailable.
C: Low Resource Setting: Here, we expose the
models to 20% of the dataset for supervised learn-
ing and evaluate it on the rest of the dataset (results
averaged for 5 random seeds). For fine-tuning,
our model parameters are optimized to predict the
flat-hierarchy associated with the datapoints in the
training split. We also report the performance of the
model (appended with NO-PRETRAINING) which
is not pretrained over WIKI-727K.

We use the following three datasets to compare
our method against the statistical unsupervised ap-
proaches (Table 2):
Clinical (Eisenstein and Barzilay, 2008). Every
document is a chapter from a medical textbook
where labeled boundaries represent section breaks.
Fiction (Kazantseva and Szpakowicz, 2011). Each
document is a fiction from Project Gutenberg where
boundary annotations denote chapter breaks.
Wiki (Badjatiya et al., 2018). 300 articles are ran-
domly sampled from the wikipedia dump where
section tag labels are used to annotate boundaries.

We assess the performance of these methods
using Pk (Beeferman et al., 1999) and WinDiff
(WD) (Pevzner and Hearst, 2002) error metrics. Pk

computes the probability that two segments sam-
pled from a document are incorrectly identified as
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Method Pk(City) Pk(Disease)

SECTOR 14.4 26.3
S-LSTM 9.1 20.0
TRANSFORMER2 8.2 18.8
HIERARCHICAL BERT 8.6 22.4
CROSS SEGMENT BERT 10.1 21.8

HIERCRF* 8.8 20.4
HIERCRF-AUG* 8.5 21.2

HIERCRF 8.1 20.3
HIERCRF-AUG 8.0 20.0

Table 4: Comparison with various approaches in leveraging
segment labels. * indicates those methods do not use segment
labels. For our AUG-appended methods, we augment the flat
hierarchies associated with the training datapoints.

belonging to the same segment. WD moves a slid-
ing window across the document and counts the
number of instances where the hypothesized and
reference segment boundaries are different.

The results shown in Table 3 demonstrate the
competitive performance exhibited by our model
without any additional fine-tuning (B). As our
models in B are not subjected to separate hyper-
parameter tuning for different datasets, our pro-
posed models can be applied to other domains
with minimal changes (only the position from
the sequence of segmentations inferred from the
model needs to be specified). The performance of
HIERCRF-AUG in B is better than all the meth-
ods in A (despite not knowing the number of
gold-standard segments and tuning hyperparam-
eters over the testing corpus) for Wiki and Clinical
dataset which demonstrates the effectiveness of our
approach in transferring the knowledge from one
domain to another. Fine-tuning our models with
small number of datapoints (C) provides competi-
tive results for most of the datasets. As expected,
the performance in few-shot supervision setting
is boosted if the model is pre-trained over WIKI-
727K for the supervised approaches. Because the
datapoints in the Fiction dataset are longer than in
the other datasets, our model performs poorly (§8).

6.3 Results using Segment Labels

We compare our model’s segmentation perfor-
mance to baselines when segment-wise topic la-
bels are given. We use WikiSection’s split (Arnold
et al., 2019) that comprises of English documents
from two domains: diseases (3.6K documents)
and cities (19.5K documents). We use 70/20/10
splits for train/dev/test. We assess how well our
model uses the segment labels compared to earlier
methods. We consider the following approaches:
SECTOR (Arnold et al., 2019), S-LSTM (Barrow
et al., 2020) TRANSFORMER2 (Lo et al., 2021),

HIERARCHICAL BERT and CROSS SEGMENT
BERT. For fair comparison, no model is pretrained
on WIKI-727K.

To incorporate the topic label information in
training, we use the boundary vectors for label
prediction and a scoring mechanism similar to
Eqn 6. Specifically, the likelihood that span (i, j)
corresponds to topic label T is proportional to
s(i, j) = lli

T
WTr

l
i. The parameters WT for each

topic label T are trained using cross-entropy loss
similar to Eqn 7.

Table 4 shows that after incorporating topic la-
bel information, our model provides SoTA perfor-
mance for the City Domain and competitive per-
formance for the Disease Domain. This suggests
that providing auxiliary information, such as topic
label information, improves the performance of our
model. We believe that using a medical domain
specific encoder (Gu et al., 2021) would improve
our model’s performance in the Disease domain.

6.4 Ablation: Training Size and Performance

Here, we investigate the effect of training our mod-
els on data splits comprising of articles with vary-
ing sizes (number of sentences). Our objective is to
demonstrate that the performance of the model can
be improved by including datapoints with larger
size. However, the limitations in the GPU hard-
ware, has restricted the maximum datapoint size in
the training split to 200. We consider three variants
of our curated dataset for training: (a) datapoint
sizes ≤ 50, (b) datapoint sizes ≤ 100, and (c) dat-
apoint sizes ≤ 200. We report the performances
of models trained over these variants on splits con-
taining datapoints with size in the following ranges:
[1, 50], (50, 100], (100, 150], (150, 200], (200,∞),
and [1,∞)) from the WIKI-727K test data.

Table 5 shows the F1 scores. We note three main
trends: (1) The model performance decreases as
the size of the datapoint increases. This can be
attributed to the following two reasons. Firstly, ma-
jority of the datapoints in our curated dataset have
size in the range [1, 50], and the number of data-
points decreases as the range varies from (50, 100]
to (200,∞). Secondly, the ability of the model
to produce discriminative contextualized sentence
features is dependant on the size of the input dat-
apoint. As the contextualization is brought about
by Bi-LSTM module, very long sequences result
in vanishing gradient problem, and this results in
less effective modeling for longer sequences. (2)
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Method Training Dataset Testing Dataset Size Range
Size Upper-bound [1, 50] (50, 100] (100, 150] (150, 200] (200,∞) [1,∞]

HIERCRF
50 70.4 57.5 46.6 39.5 30.7 64.2

100 72.5 62.2 52.3 47.0 39.4 67.4
200 72.9 64.2 54.8 50.1 41.8 68.4

HIERCRF-AUG
50 71.8 61.3 51.2 45.4 37.2 66.5

100 73.9 64.1 54.9 50.3 42.5 69.0
200 74.2 64.2 55.2 50.3 42.9 69.7

Table 5: Effect of including datapoints with larger size in the training set: A model’s performance in terms of F1-Score
decreases as the size of the datapoint increases. Increasing the upper bound of the datapoint size in the training dataset improves
the performance uniformly for all the dataset size ranges.

Including datapoints with larger size uniformly im-
proves the performance of the model across all the
ranges. Thus, one line of future work could be to
procure more labels for articles with more number
of sentences. However, it is to be noted that train-
ing the model over larger sequences imposes heavy
requirements on GPU memory. (3) The effective-
ness of our data augmentation can be seen here as
well in producing uniformly better results than the
model not trained over augmented corpus.

7 Conclusion

We curated a dataset with hierarchical structures
and introduced an approach for linear segmenta-
tion by inferring the hierarchies. We illustrated
the effectiveness of our approach against prior su-
pervised and unsupervised methods for several
datasets. Our method, when exposed to a small
fraction of the data for fine-tuning, achieves supe-
rior performance when evaluated on other datasets
for this task. Unlike prior unsupervised methods,
ours without any hyperparameter tuning achieved
competitive results. While we focussed on predict-
ing segment boundaries, our method could also be
applied to yield hierarchical segmentation. How-
ever, the challenges specific to dataset size and
memory persist. We will study these aspects in our
future work.

8 Limitations

The ablation studies conducted in this paper high-
light some of the limitations of our model. The
model predictions are erroneous when the length
of the input text is very large. Even if we are
able to curate sufficient number of very long text
with ground truth hierarchical structure, training
the model parameters imposes heavy requirements
for GPU memory. This demands for the require-
ment of a better architecture that not only handles
long range sequence dependencies but also is GPU
memory-efficient while training.
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