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Abstract

The rapid development of large pretrained lan-
guage models has revolutionized not only the
field of Natural Language Generation (NLG)
but also its evaluation. Inspired by the recent
work of BARTScore: a metric leveraging the
BART language model to evaluate the qual-
ity of generated text from various aspects, we
introduce DATScore. DATScore uses data aug-
mentation techniques to improve the evalua-
tion of machine translation. Our main find-
ing is that introducing data augmented transla-
tions of the source and reference texts is greatly
helpful in evaluating the quality of the gener-
ated translation. We also propose two novel
score averaging and term weighting strategies
to improve the original score computing pro-
cess of BARTScore. Experimental results on
WMT show that DATScore correlates better
with human meta-evaluations than the other re-
cent state-of-the-art metrics, especially for low-
resource languages. Ablation studies demon-
strate the value added by our new scoring strate-
gies. Moreover, we report in our extended ex-
periments the performance of DATScore on 3
NLG tasks other than translation Code is pub-
licly available1.

1 Introduction

Massive pretrained language models have brought
significant improvement to NLG tasks (Lewis et al.,
2020). Recent systems can even generate texts of
higher quality than human-annotated ones (Peyrard,
2019). At the same time, standard metrics, such
as BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004), for translation and summarization respec-
tively, have not evolved for the past two decades
(Bhandari et al., 2020). These metrics rely on sur-
face lexicographic matches, making them partic-
ularly unsuitable for evaluating modern systems
operating with embeddings at the semantic level
that often generate paraphrases (Ng and Abrecht,

1https://github.com/moussaKam/datscore

2015). To address this issue, many metrics have
been proposed (Sai et al., 2022), but none of them
were widely adopted until the release of BERTSore
(Zhang et al., 2019) and MoverScore (Zhao et al.,
2019). These metrics take advantage of large pre-
trained language models like BERT (Devlin et al.,
2019), which are now being used in nearly all NLP
tasks (Qiu et al., 2020; Min et al., 2021).

In this work, we focus on the task of evaluating
machine translation. We propose an extension of
BARTScore (Yuan et al., 2021), a recent metric ex-
ploiting the BART seq2seq language model (Lewis
et al., 2020) to evaluate the quality of generated
text from various aspects. BARTScore covers four
evaluation facets: Faithfulness, Precision, Recall,
and F-score, derived from different generation di-
rections between the source text, the hypothesis
(the text generated by a system given the source),
and the reference (the reference text for the gener-
ation, often provided by human annotators). The
scores are obtained by pairing the three entities dif-
ferently at the input or the output side of a trained
seq2seq model for fetching conditional generation
probabilities.

Based on BARTScore, and motivated by the gen-
eral idea and positive effect of data augmentation
techniques, we found that adding augmented, trans-
lated copies of the source and reference texts in
BARTScore, can greatly help evaluate the quality
of the hypothesis translation. We also propose two
novel score averaging and term weighting strate-
gies to improve the original score computing pro-
cess of BARTScore. Results and ablation studies
show that our metric DATScore (Data Augmented
Translation Score) outperforms the other recent
state-of-the-art metrics, and our new scoring strate-
gies are effective. Moreover, the performance of
DATScore is also reported on three other NLG
tasks than translation: data-to-text, summarization,
and image captioning.

To the best of our knowledge, no prior work has
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been done on leveraging data augmentation tech-
niques for untrained NLG evaluation metrics. Our
work will help fill this gap. Our contributions in-
clude:
1) Inspired by BARTScore, we developed
DATScore, incorporating augmented data trans-
lated from the source and reference texts.
DATScore is an untrained and unsupervised trans-
lation evaluation metric that offers a larger perfor-
mance boost in evaluating low-resource language
generation. In contrast to other widely adopted
metrics, DATScore can efficiently incorporate both
the source and reference texts in the evaluation.
2) We introduced a novel one-vs-rest method to
average the scores for different generation direc-
tions with different weights, which improves over
the simple arithmetic averaging method used in
BARTScore.
3) We proposed a novel entropy-based scheme for
weighting the target generated terms so that higher
informative tokens receive more importance in ac-
counting for the score, which outperforms the naive
uniform weighting employed in BARTScore.

2 Related work

2.1 Translation evaluation metrics

BLEU (Papineni et al., 2002) is the de facto metric
for evaluating machine translation. It simply calcu-
lates n-gram matching between the reference and
the hypothesis using precision scores with a brevity
penalty. METEOR (Banerjee and Lavie, 2005) was
developed to address two drawbacks of BLEU. It
is F-score based (thus taking recall into account)
and allows for a more relaxed matching, based on
three forms: extract unigram, stemmed word, and
synonym with WordNet (Miller, 1994). Apart from
the above word-based metrics, some approaches
operate at the character level. For example, chrF
(Popović, 2015) computes the overall precision and
recall over the character n-grams with various val-
ues of n. More recently, static word embeddings
(Mikolov et al., 2013) have enabled capturing the
semantic similarity between two texts possible, of
what the historical metrics are incapable. Several
metrics have been proposed to incorporate word
vectors. For example, MEANT 2.0 (Lo, 2017) eval-
uates translation adequacy by measuring the simi-
larity of the semantic frames and their role fillers
between the human and machine translations.

Lately, pretrained language models have become
popular, because they provide context-dependent

embeddings. This proved beneficial to all NLP
tasks, but also to evaluation metrics. For example,
using a modified version of the Word Mover’s Dis-
tance (Kusner et al., 2015), the Sentence Mover’s
Similarity (Clark et al., 2019) measures the mini-
mum cost of transforming one text into the other
as the evaluation score, where sentences are rep-
resented as the average of their ELMo word em-
beddings (Peters et al., 2018). BERTR (Mathur
et al., 2019) computes approximate recall based on
the pairwise cosine similarity between the BERT
word embeddings (Devlin et al., 2019) of two trans-
lations. UniTE (Wan et al., 2022) proposes a uni-
fied framework for modeling three evaluation pro-
totypes: estimating the quality of the translation
hypothesis by comparing it with reference-only,
source-only, or source-reference-combined data.
UniTE is built upon XLM-R multilingual language
model (Conneau et al., 2020).

Among several alternatives, BERTSore (Zhang
et al., 2019) and MoverScore (Zhao et al., 2019)
have received more attention, and have been
adopted for reporting results in recent NLG pub-
lications (Lin et al., 2022; Weston et al., 2022).
They both are unsupervised, general-purpose met-
rics and leverage BERT-like language models, how-
ever, with one difference lying in the similarity
function for matching the two sequence represen-
tations. BERTScore greedily matches each token
from one sequence to the single most similar token
in the other sequence, in terms of the cosine similar-
ity of their token embeddings. While MoverScore
conducts soft one-to-many matching using an n-
gram generalization of the Word Mover’s Distance
(Kusner et al., 2015).

Finally, the work closely related to ours is
BARTScore (Yuan et al., 2021). Unlike all the
above metrics trying to match tokens or their em-
beddings, BARTScore proposes a novel conceptual
view. It treats the evaluation of generated text as
a text generation problem, with the help of a pre-
trained seq2seq model BART (Lewis et al., 2020).
At the time of writing, this metric represents the
state-of-the-art in the NLG evaluation. We will
provide more details about it in Section 3.

2.2 Data augmentation

As deep learning models are often heavily reliant
on large amounts of training data, a common at-
tempt to get around the data scarcity problem is by
applying data augmentation techniques (Shorten
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and Khoshgoftaar, 2019). These techniques in-
crease the size of the training set by making slightly
modified copies of already-existing instances or by
creating new, synthetic ones. Such augmented data
have proven to be beneficial to the training of mod-
els in a wide variety of contexts, from computer
vision (Shorten and Khoshgoftaar, 2019) to speech
recognition (Bird et al., 2020), to NLP (Feng et al.,
2021), as it acts as a regularizer and helps reduce
overfitting (Krizhevsky et al., 2012). For dealing
with textual data, a suite of augmentation tech-
niques exists. To name only a few, backtransla-
tion (Sennrich et al., 2016) translates a text into
an intermediate language and then back into the
original language, as a way of paraphrasing the
initial text. Contextual augmentation (Kobayashi,
2018) generates augmented samples by randomly
replacing words with others drawn following the
in-context word distribution of a recurrent language
model. SeqMix method (Guo et al., 2020) creates
synthetic examples by softly mixing parts of two
sentences via a convex combination.

Data augmentation has also been applied to the
field of NLG evaluation metrics. BLEURT (Sellam
et al., 2020) is a supervised metric, i.e., it requires
to be finetuned on human meta-evaluations. Before
finetuning, BLEURT creates an augmented syn-
thetic dataset by perturbing Wikipedia sentences
with BERT mask-filling, backtranslation, and
random word dropping techniques. The data are
then annotated with some automatic numerical
and categorical signals as pretraining labels.
FrugalScore (Kamal Eddine et al., 2022) proposes
the first knowledge distillation approach for NLG
evaluation metrics, to alleviate the significant
requirement of computational resources by the
heavy metrics based on large pretrained language
models (e.g., BERTScore and MoverScore).
Unlike BLEURT, it is purely trained on a synthetic
dataset consisting of pairs of more or less related
sentences, created via various data augmentation
techniques (e.g., paraphrasing with backtranslation,
perturbation then denoising, etc.). The sentence
pairs for training the student model are anno-
tated with scores given by the metrics to be learned.

Differences. Note that BLEURT and FrugalScore
use augmented data to train their parameterized
metric models, while our DATScore is an untrained
and unsupervised metric not requiring human judg-
ments for training and using augmented translation

Srcfr Refen

Hypoen Trans2yyTrans1xx

Figure 1: Dashed arrows denote the generation di-
rections covered by BARTScore. Solid black arrows
indicate our newly introduced directions for calculat-
ing DATScore of the example hypothesis in English
(Hypoen). Trans1xx and Trans2yy represent data aug-
mented translations in any languages xx and yy, ob-
tained by applying a translation model (grey arrows)
to the example source in French (Srcfr) and example
reference in English (Refen), respectively.

for the sole purpose of scoring.

3 DATScore

As mentioned in Subsection 2.1, BARTScore is not
based on matching tokens nor their embeddings as
the other evaluation metrics. Instead, it uses a novel
approach by framing the evaluation of generated
text as a text generation problem. Assuming first a
pretrained seq2seq model is “ideal” (e.g., BART),
BARTScore directly uses the model’s conditional
probability of generating a provided target text Y
given a provided input text X , as the evaluation
score of the generation direction X → Y . For ex-
ample, Y corresponds to a translation hypothesis
generated by any system, and X is the reference.
If Y is of high quality, then by providing the pair
to the pretrained BART model, the estimated con-
ditional generation probability (evaluation score)
P (Y |X) should be high.

Therefore, by placing differently the source
(Src), the reference (Ref), and the hypothesis
(Hypo) in pair at the input or the output side of the
trained seq2seq model for fetching conditional gen-
eration probabilities, BARTScore considers three
different generation directions illustrated as dashed
arrows in Figure 1. The conditional probabilities
associated with the directions are denoted as: Preci-
sion (Ref→Hypo), Recall (Hypo→Ref ) and Faith-
fulness2 (Src→Hypo). Additionally, an F-score,
the arithmetic average of Precision and Recall.

The score (conditional probability) for the gen-

2BART being a monolingual model, faithfulness is only
relevant in the context of abstractive summarization, and its
corresponding direction cannot be applied to machine transla-
tion evaluation.
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eration direction from a source sequence X =
{xt}nt=1 to a target sequence Y = {yt}mt=1 is cal-
culated as the factorized, weighted log probability
over all generation steps:

ScoreX→Y =
m∑

t=1

wtlogP (yt|X, {yt′}t−1
t′=1; θ)

(1)
where wt denotes the term importance score to
put different emphasis on different target tokens yt.
BARTScore simply employs a uniform weighting
scheme (all equal to 1). θ denotes the parameter-
ized seq2seq model.

Our contributions consist of three modifications
tailored to machine translation:

Data augmented translations. Unlike
BARTScore, we employ M2M-100 (Fan et al.,
2021), a non-English-centric multilingual machine
translation system as our backbone seq2seq model,
due to its superior performance. As our main
contribution, we translate the source (e.g., Srcfr
in Figure 1) and the reference (Refen) into any
languages as our augmented data (Trans1xx and
Trans2yy) for evaluating the hypothesis (Hypoen).
In addition to the three directions covered by
BARTScore, our metric takes into consideration all
generation directions centered on the hypothesis
connecting the source, the reference, and the
two data augmented translations, i.e., in total 8
directions as the black (dashed and solid) arrows
depicted in Figure 1. DATScore is calculated as
the weighted average of the scores associated with
all the directions:

DATScore =
∑

X,Y

wX→Y ScoreX→Y ;X ̸= Y

(2)
where wX→Y denotes the weight of the direction
X → Y , as detailed below.

One-vs-rest score averaging method. We ob-
served empirically that sometimes, one direction
score might strongly disagree with the others, likely
being an outlier (failed evaluation). This may
significantly affect the final DATScore correla-
tions with the human meta-evaluations, if a sim-
ple arithmetic averaging method is applied (like
BARTScore in computing F-score). To reduce this
effect, we weigh each direction with the sum of the
Pearson correlations of its scores with the scores of
all the other directions:

wX→Y =
∑

X′,Y ′
Corr(ScoreX→Y , ScoreX′→Y ′)

s.t. (X,Y ) ̸= (X ′, Y ′) (3)

This one-vs-rest method will assign a low weight
to the direction score poorly correlated with the
rest scores, thus reducing its negative effect on the
averaging result.

Entropy-based term weighting scheme.
BARTScore gives an equal weight wt to every
token in Equation 1 (uniform weighting). Instead,
we introduce a novel scheme to give different
importance to different target tokens yt, based on
the entropy:

wt = −
v∑

i=1

Pt(zi)logPt(zi) (4)

where v denotes the size of the output generation
vocabulary. Pt(zi) represents the probability of
the i-th token in the vocabulary at time step t.
We assume that when the model is very confident
in generating the target token (low entropy), then
this token is non-informative (e.g., stopword). On
the other hand, when the model is less confident
(higher entropy), the target word is more informa-
tive, and then a higher weight should be assigned.

The effectiveness of all our choices regarding
the above contributions is shown by our ablation
studies (see Section 6).

4 Experiments

4.1 Experimental settings
We benchmark DATScore on two commonly
used meta-evaluation datasets for machine trans-
lation metrics: WMT17 (Bojar et al., 2017) and
WMT18 (Ma et al., 2018) consisting of multiple
to_English and from_English language pairs.
For each pair, a few thousand examples are avail-
able, each being made of a source, a reference, a
hypothesis and a label produced by human annota-
tors, assessing the quality of the system generated
hypothesis. Depending on the label type, we use
Kendall’s Tau τ correlations or absolute Pearson
|r| correlations. The former is used when relative
ranking is provided, and the latter in the case of
direct assessment. We adopt the Kendall’s Tau-like
formulation proposed in (Bojar et al., 2017):

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant| (5)
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Metric Model
|r|:cs en

/
τ :en cs

|r|:de en
/

τ :en de

|r|:fi en
/

τ :en fi

|r|:lv en
/

τ :en lv

|r|:ru en
/
-

|r|:tr en
/

τ :en tr

|r|:zh en
/
-

Avg.

BLEU 1a) N/A 34.4/22.0 36.6/23.6 44.4/42.1 32.1/21.5 41.3/- 44.1/33.6 44.0/- 37.8/27.3

BERTScore 1b) RL/mBERT 71.0/43.8 74.5/40.4 83.3/58.8 75.6/46.6 74.6/- 75.1/57.1 77.5/- 75.9/49.3

MoverScore 1c) BB/mBERT 66.6/38.3 70.6/35.9 82.2/54.2 71.7/37.8 73.7/- 76.1/49.8 74.3/- 73.6/43.2

BARTScore
1d) BL+para/mBART 68.4/39.0 70.8/33.4 79.4/50.4 74.9/50.4 71.8/- 73.9/53.8 76.0/- 73.6/45.4

1e) M2M-100_418M 65.9/45.0 66.1/44.5 79.9/59.2 71.7/40.3 69.0/- 71.8/70.9 71.6/- 70.9/52.0

1f) M2M-100_1.2B 67.4/49.6 69.3/49.2 80.7/63.5 73.7/46.9 70.4/- 71.6/72.5 73.0/- 72.3/56.3

DATScore
1g) M2M-100_418M 68.6/51.1 68.5/48.1 82.0/63.7 74.7/48.3 73.0/- 77.6/70.9 76.5/- 74.4/56.4

1h) M2M-100_1.2B 71.3/53.9 72.9/52.2 83.5/66.3 76.8/52.0 75.9/- 78.1/70.9 77.7/- 76.6/59.1

Table 1: Absolute Pearson correlation (|r|) for to-English and Kendall correlations (τ ) for from-English with
segment-level human scores on WMT17. BB stands of Bert-Base, RL for RoBERTa-Large and BL for BART-Large.

Metric Model
τ :cs en

/
τ :en cs

τ :de en
/

τ :en de

τ :et en
/

τ :en et

τ :fi en
/

τ :en fi

τ :ru en
/

τ :en ru

τ :tr en
/

τ :en tr

τ :zh en
/

τ :en zh
Avg.

BLEU 2a) N/A 23.3/38.9 41.5/62.0 38.5/41.4 15.4/35.5 22.8/33.0 14.5/26.1 17.8/31.1 24.8/38.3

BERTScore 2b) RL/mBERT 40.4/55.9 55.0/72.7 39.7/58.4 29.6/53.9 35.3/42.4 29.2/38.9 26.4/36.1 36.5/51.2

MoverScore 2c) BB/mBERT 36.8/44.6 53.9/68.4 39.4/52.7 28.7/50.9 27.9/40.1 33.6/32.5 25.6/35.2 35.1/46.3

BARTScore
2d) BL+para/mBART 39.6/50.2 54.7/65.0 39.4/53.3 28.9/57.2 34.6/37.0 27.4/37.7 24.9/32.4 35.6/47.5

2e) M2M-100_418M 36.3/55.4 53.5/72.2 37.6/58.4 26.3/60.2 33.4/44.4 26.8/45.1 23.4/31.3 33.9/52.4

2f) M2M-100_1.2B 38.4/63.5 54.6/76.2 39.2/63.2 27.9/64.5 35.7/45.6 28.5/50.2 24.3/34.7 35.5/56.8

DATScore
2g) M2M-100_418M 38.6/53.5 53.5/71.3 39.3/64.0 28.4/62.2 34.9/44.4 28.5/47.9 25.3/34.0 35.5/53.9

2h) M2M-100_1.2B 40.7/61.9 54.9/76.2 40.5/68.2 30.4/67.9 36.4/46.2 31.0/52.7 26.3/36.6 37.2/58.5

Table 2: Kendall correlations (τ ) for to-English and from-English with segment-level human scores on WMT18.
BB stands of Bert-Base, RL for RoBERTa-Large and BL for BART-Large.

where |Concordant| is the number of examples
on which the metric agrees with the human relative
ranking, and |Discordant| is the number of
examples when they disagree.

To compute DATScore, two M2M-100 mod-
els: M2M-100_418M3 and M2M-100_1.2B4 are
adopted (418M and 1.2B refer to the model sizes).
They are finetuned to translate a source text to a tar-
get text by providing the source language code (e.g.
"fr") at the beginning of the encoder input sequence,
and a target language code at the beginning of the
decoder input sequence. In our experiments, when
English is the target language (to-English), we
choose English for Trans1 and Spanish for Trans2
(see Figure 1). Otherwise, whenever English is
the source language (from-English), we choose
Spanish for Trans1 and English for Trans2. This
choice is motivated by the fact that English and

3https://huggingface.co/facebook/m2m100_418M
4https://huggingface.co/facebook/m2m100_1.2B

Spanish are the top two represented languages in
the training set of M2M-100 (Fan et al., 2021).

4.2 Main results

We compare the performance of our metric against
BLEU and three other reference-based unsuper-
vised metrics: BERTScore5, MoverScore6 and
BARTScore7 (detailed in Subsection 2.1 and Sec-
tion 3), using their official implementations. Ex-
perimental results are reported in Table 1 and 2.
Following their original settings, we use different
underlying language models for each baseline met-
ric. For BERTScore and MoverScore, RoBERTa-
Large (RL; Liu et al., 2019) and Bert-Base (BB) are
used respectively when we evaluate to-English
translations, and mBERT (Devlin et al., 2019)
for from-English translations. In the case of
BARTScore, we use a BART-Large (BL) check-
point (finetuned on CNNDM (See et al., 2017) and

5https://github.com/Tiiiger/bert_score
6https://github.com/AIPHES/emnlp19-moverscore
7https://github.com/neulab/BARTScore

946



ParaBank2 (Hu et al., 2019) datasets) for evaluat-
ing to-English translations, and an mBART-50
model (Escolano et al., 2021) for from-English
translations.

Overall, results show that, on average, across
all language pairs, DATScore significantly outper-
forms all 4 baseline metrics under their original
model settings (rows 1a-1d and 2a-2d). Specifi-
cally, with respect to the best performing baseline
BERTScore (row 1b and 2b), our metric provides a
performance boost of 0.7 for to-English case and
of 9.8 for from-English case on WMT17 dataset
in Table 1, and achieves a gain of 0.7 and of 7.3
respectively on WMT18 dataset in Table 2. These
averaging results demonstrate the superiority and
applicability of DATScore in evaluating general
machine translations of many languages. More-
over, it is interesting to note that our improvement
is much more significant in from-English case,
which makes DATScore particularly well-suited to
evaluate hypothesis translations in non-English lan-
guages, often with low resource. We hypothesize
that this is due to the inconsistency of underlying
language models. The baselines adopt a mono-
lingual model for evaluating English, but a multi-
lingual one for non-English languages. However,
DATScore uses a single multilingual M2M-100
model for both cases. It is known that, in general,
monolingual models outperform multilingual com-
petitors. Thus, it is reasonable that when compar-
ing multilingual-based DATScore against monolin-
gual baselines in the to-English case, DATScore
achieves a smaller improvement than in the other
from-English case, where the comparison is fairer
(multilingual vs. multilingual).

By looking across specific language pairs and
directions, we observe DATScore constantly per-
forms better than 4 baseline metrics with a few
exceptions, i.e., de en (-1.6) in Table 1, and de
en (-0.1), tr en (-2.6), and zh en (-0.1) in Table
2. Despite these small drops in the performance,
DATScore brings a larger margin of improvement
in most cases, such as en tr up to 13.8 both on
WMT17 and WMT18 datasets.

In the end, for the sake of having a complete
comparison, we additionally evaluate BARTScore8

with M2M-100_418M and M2M-100_1.2B models
(row 1e, 1f, 2e, and 2f) that are used as DATScore’s
underlying models. Results show that, only in the

8The official implementation of BARTScore is slightly
modified to take into account the languages tokens when using
a multilingual model.

Metric Model
WebNLG

SEMA GRAM FLU

BLEU N/A 45.5 36.0 34.9
BERTScore RoBERTa-Large 56.1 60.8 54.8
MoverScore BERT-Base -9.9 -27.8 -20.6

BARTScore
BART-Large+para 71.9 61.3 57.4
M2M-100_418M 64.9 62.8 56.0
M2M-100_1.2B 66.1 63.9 57.2

DATScore
M2M-100_418M 69.9 62.9 57.2
M2M-100_1.2B 70.4 63.7 57.9

Table 3: Pearson correlation results on WebNLG
dataset.

Metric Model
REALSumm SummEval

COV COH CONS FLU REL

BLEU N/A 37.9 11.8 6.3 7.7 18.6

BERTScore RoRERTa-Large 41.2 33.9 10.5 15.0 35.9
MoverScore BERT-Base 44.1 14.4 14.7 13.8 29.1

BARTScore
BART-Large+para 31.7 20.8 -3.5 6.7 22.2
M2M-100_418M 30.1 14.8 -2.3 3.0 19.8
M2M-100_1.2B 32.0 17.1 1.1 6.7 22.8

DATScore
M2M-100_418M 44.7 17.1 4.4 4.6 26.3
M2M-100_1.2B 45.5 19.5 6.8 8.2 30.2

Table 4: Pearson correlation results on two summariza-
tion datasets: REALSumm and SummEval.

from-English case, while they bring an improve-
ment compared to the vanilla BARTScore (row 1d
and 2d), they are not able to yield as big of a gain
as our metric, indicating that our achieved improve-
ment is not solely due to the underlying language
model, but also to taking additional generation di-
rections into account, including those related to
data augmented translations.

5 Other NLG tasks

In addition to machine translation, our main fo-
cus, we evaluate DATScore on other NLG tasks,
including data-to-text generation, abstractive sum-
marization, and image captioning. To work around
the different modalities of source inputs repre-
sented in these tasks (e.g., not able to create a data
augmented translation with an image), we adapt
DATScore to only consider 4 generation directions:
Hypo↔Ref and Hypo↔Trans2.

Data-to-text. Table 3 shows the performance of
DATScore compared to the other baselines on the
WebNLG data-to-text dataset (Shimorina et al.,
2018), which contains 2000 descriptions of struc-
tured tables along with their corresponding refer-
ences. In addition, human assessments covering
three dimensions are provided (semantics, gram-

947



mar, and fluency). The results show that DATScore
significantly outperforms all the other metrics in
two settings (grammar and fluency) out of three,
while being very competitive in the third setting
(semantics). Surprisingly, BERTScore is largely be-
hind DATScore, and MoverScore failed to correlate
positively with human judgments in all dimensions.

Summarization. Table 4 shows the evaluation
of the different metrics on two summarization
meta-evaluation datasets: REALSumm (Bhandari
et al., 2020) and SummEval (Fabbri et al., 2021).
Both datasets contain a few thousand examples
of system-generated summaries and their refer-
ences. The generated summaries are annotated
with lightweight pyramids (Shapira et al., 2019)
method in the case of REALSumm, while the an-
notations in SummEval cover four dimensions: co-
herence, consistency, fluency, and relevance. On
REALSumm, DATScore has the best performance
compared to all the other baselines even when us-
ing its smaller version (M2M-100_418M). How-
ever, despite its higher correlations compared to
BARTScore and MoverScore, DATScore fails to
outperform BERTScore on the different dimen-
sions of SummEval.

Image captioning. We consider Flickr8K (Hodosh
et al., 2013) and PASCAL-50S (Vedantam et al.,
2015), two image captioning datasets. The former
is annotated with scores from 1 to 4 assessing the
relevance of the captions, and the latter is anno-
tated with relative ranking (i.e., given two descrip-
tions which one is better). Table 5 shows that in
this task, DATScore is competitive to BARTScore
and BERTScore. Surprisingly, MoverScore signifi-
cantly outperforms all the other metrics despite its
poor performance on the other datasets.

Finally, although not the top-performing metric
across all tasks, DATScore showed an overall stable
and competitive performance. Conversely, each of
the other metrics fails in evaluating generations, at
least in one of the tasks. For example, BERTScore
and MoverScore have poor performance on the
WebNLG dataset. On the other hand, although
BARTScore is finetuned on an abstractive summa-
rization dataset, it fails to correlate well with human
judgment on REALSumm and SummEval. This
finding suggests that DATScore can be safely used
to evaluate NLG systems in other tasks for different
evaluation dimensions, regardless of being initially
designed for machine translation evaluation.

Metric Model
Flickr8K PASCAL-50S

RELE RR

BLEU N/A 13.8 8.1
BERTScore RoBERTa-Large 46.1 33.8
MoverScore BERT-Base 52.5 33.2

BARTScore
BART-Large+para 44.8 33.1
M2M-100_418M 34.3 29.6
M2M-100_1.2B 34.6 26.3

DATScore
M2M-100_418M 42.6 29.6
M2M-100_1.2B 45.3 31.4

Table 5: Pearson correlation Results on two Image Cap-
tioning datasets: Flickr8K and PASCAL-50S.

Entropy-based
weighting

One-vs-rest
weighting to_English from_English

✓ ✓ 37.2 58.5

✓ ✗ 37.1 58.1

✗ ✓ 36.4 55.9

✗ ✗ 36.4 56.0

Table 6: The average Kendall correlation (to/from)-
English when the entropy-based and one-vs-rest weight-
ing are included or excluded. Experiments are con-
ducted on WMT18.

6 Ablation study

To validate our different choices with regard to
DATScore, we conducted ablation studies on:
1) the contributions of all 8 direction scores, results
are illustrated in Figure 2.
2) the effectiveness of our one-vs-rest score aver-
aging and entropy-based term weighting strategies
(See Section 3), results are reported in Table 6.

Contributions of all direction scores. From Fig-
ure 2(a), we observe that none of the individual
directions (horizontal bars) has a better correlation
with human judgments than DATScore (dashed ver-
tical lines), which confirms the importance of our
ensemble approach. In Figure 2(b), we can see
that all variants excluding one direction will lead,
in almost all cases, to a drop in the performance,
compared to the complete DATScore in which all
directions are included. Besides, in the case of
to-English translations, we can see that the drop
in the performance is almost the same for all exclu-
sions of direction. While for from-English trans-
lations, the largest drop in performance is observed
when Hypo→Trans2 and Trans2→Hypo are ex-
cluded. This finding highlights the important con-
tribution of our augmented data, especially in the
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Figure 2: (a): The horizontal bars represent the Kendall correlations of each individual generation direction.
(b): The horizontal bar represents the Kendall correlation of a variant of DATScore with excluding the single
generation direction of the line. Both in (a) and (b), the dashed vertical lines represent the Kendall correlation
of the vanilla and complete DATScore. Correlation results of to-English (in green) and from-English (in red)
cases are calculated w.r.t human judgments, and averaged over all languages pairs. Experiments are conducted on
WMT18.

low resource language settings (from-English).
In the end, we can see that excluding Src→Hypo
or Trans1→Hypo directions can lead to a slightly
better final score. We leave the investigation of the
potential negative impact of the two directions to
future work.

One-vs-rest and entropy-based weighting strate-
gies. Table 6 shows the performance of DATScore
variants with respect to different combinations of
applying or not our proposed weighting strate-
gies. Note that when one-vs-rest and entropy-based
weightings are not applied, they are replaced with
a simple uniform averaging approach (as used in
BARTScore). A performance drop is observed
when excluding one of the two weighting strategies,
especially for the entropy-based method, whose in-
clusion leads to an improvement of 2.5 compared
to the uniform weighting. This experiment con-
firms the positive impact of our proposed weight-
ing methods and motivates future work further to
investigate a more elaborated approach in this di-
rection.

7 Conclusion

In this work, we proposed one of the first applica-
tions of data augmentation techniques to NLG eval-
uation. To obtain an evaluation score of the trans-
lation hypothesis, our developed metric DATScore
additionally leverages newly translated copies aug-

mented from the source and reference texts. We
also proposed two novel strategies for score aver-
aging and term weighting to improve the original,
naive score computing process of BARTScore, on
the basis of which our work is built. Experimental
results show that DATScore achieved a higher cor-
relation with human meta-evaluations, in compari-
son with the other recent state-of-the-art metrics, es-
pecially for those less represented languages other
than English. Moreover, ablation studies show the
effectiveness of our newly proposed score comput-
ing approaches, and extended experiments showed
an overall stable and competitive performance of
DATScore on more NLG tasks.

Limitations

In this section, we list some limitations that are
worth further investigation in future works:

1) DATScore requires generating additional data
augmented translations to perform the evaluation.
This process might be time-consuming depending
on the adopted backbone seq2seq model, especially
if the original text is long. Thus, the performance
scalability can be investigated in future comple-
mentary experiments.

2) We chose to use English and Spanish to create
data augmented translations for the reason that they
are the two most represented languages in the train-
ing of the M2M-100 model (see Subsection 4.1).
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However, this leaves a question about the perfor-
mance of DATScore with augmentations varying
in other languages (e.g., Chinese). Moreover, for
the sake of simplicity, we decided only to include a
single translated copy of the source text and the ref-
erence text. However, this can be easily extended,
and more augmented translations can be created in
more languages. We expect to see an improvement
in performance with diminishing returns.

3) BARTScore only considers the 8 generation di-
rections centered on the hypothesis connecting with
the source, the reference, and the two data aug-
mented translations (see Section 3). However, other
connections exist between these entities, such as
Src→Ref and Trans1→Src (see Figure 1). There-
fore, future research could be dedicated to discov-
ering the effect of these other directions and poten-
tially leveraging them to improve the performance
of DATScore.

4) Since our focus was on evaluating machine
translation, we naturally chose translation for aug-
menting the data. However, other data augmen-
tation techniques could seamlessly integrate into
DATScore, such as using a text paraphrasing model
(Bandel et al., 2022).
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