XQA-DST: Multi-Domain and Multi-Lingual Dialogue State Tracking

Han Zhou1,* Ignacio Iacobacci2 Pasquale Minervini3,4
1University of Cambridge 2Huawei Noah’s Ark Lab, London 3University of Edinburgh 4University College London
hz416@cam.ac.uk ignacio.iacobacci@huawei.com p.minervini@ed.ac.uk

Abstract
Dialogue State Tracking (DST), a crucial component of task-oriented dialogue (ToD) systems, keeps track of all important information pertaining to dialogue history: filling slots with the most probable values throughout the conversation. Existing methods generally rely on a predefined set of values and struggle to generalise to previously unseen slots in new domains. To overcome these challenges, we propose a domain-agnostic extractive question answering (QA) approach with shared weights across domains. To disentangle the complex domain information in ToDs, we train our DST with a novel domain filtering strategy by excluding out-of-domain question samples. With an independent classifier that predicts the presence of multiple domains given the context, our model tackles DST by extracting spans in active domains. Empirical results demonstrate that our model can efficiently leverage domain-agnostic QA datasets by two-stage fine-tuning while being both domain-scalable and open-vocabulary in DST. It shows strong transferability by achieving zero-shot domain-adaptation results on MultiWOZ 2.1 with an average JGA of 36.7%. It further achieves cross-lingual transfer with state-of-the-art zero-shot results, 66.2% JGA from English to German and 75.7% JGA from English to Italian on WOZ 2.0.

1 Introduction
Task-oriented dialogue systems are designed to provide natural conversation with users and assist them in achieving daily goals. With the growth of task-oriented dialogue systems, there is an increasing interest in supporting dialogues among many domains and languages to fit the users’ demands. However, either modelling a multi-domain or multi-lingual dialogue system requires substantial data collected in real scenarios. This data acquisition procedure is extremely expensive, and it motivates us to resolve this challenge by leveraging dialogue data in rich-resource domains and languages via zero-shot transfer learning.

Dialogue State Tracking (DST) is crucial for accurately extracting user intents and goals over multiple turns within the dialogue. Based on the tracked dialogue states, the dialogue manager makes corresponding next actions with back-end results, where the accuracy of the DST becomes absolutely vital. With a fully predefined ontology, traditional approaches tackle the DST as a classification problem by enumerating every combination of slot-value pairs (Mrkšić et al., 2017; Zhong et al., 2018). Those approaches are strongly limited by their scalability, as some slots (e.g. name) have an unbounded set of slot values. Secondly, they are generally not flexible to unseen slot-value pairs, making them more difficult to adapt to zero-shot transfer learning. Moreover, a completely predefined ontology is hard to acquire and not scalable for ToD systems in real applications.

To overcome those challenges, we take inspiration from Gao et al. (2020) and investigate how DST can be tackled by extracting slot values from user utterances directly. In this paper, we propose a domain-independent and transferable dialogue state tracker within an extractive question answering architecture. Our model is responsible for filling the slot value by recognising specially designed domain-slot prompts by span prediction, which extracts answers from the input utterance by predicting the token positions. In addition, we introduce a novel domain filtering strategy in training and an independent multi-domain classifier in evaluation such that we only ask slot questions that appear in predicted domains. For example, given hotel as the current turn domain, all questions under the train domain are filtered out as there is no overlap between them. This simple but effective filtering strategy significantly reduces the noise from unnec-
Essary questions in both the training and evaluation phases. Furthermore, we study unexplored impacts of two-stage fine-tuning on DST transfer learning with mono-lingual and multi-lingual question answering datasets.

We call the final model XQA-DST: XLM-R based Dialogue State Tracker in Question Answering. Our main contributions are summarised below:

- We introduce XQA-DST, a novel domain-independent and transferable dialogue state tracker inspired by extractive question answering models. The model is able to recognise slot values by reformulating the task as an answer to a designed domain-slot question prompt by span prediction, which extracts answers from the input utterance by predicting the token positions.

- We enable XQA-DST on question answering by zero-shot domain adaptation scenarios, showing its transferability capabilities. The final model shows state-of-the-art domain adaptation performance with an average JGA of 36.7% for five domains on MultiWOZ 2.1.

- We show that our model is capable of both domain adaptation and cross-lingual transfer learning. We demonstrate its cross-lingual transferability by achieving state-of-the-art zero-shot results, 66.2% JGA from English to German and 75.7% JGA from English to Italian on WOZ 2.0.

2 Related Work

Traditional dialogue state tracking approaches mostly rely on a predefined ontology. Lee et al. (2019) implement a slot-utterance matching module that computes the similarity between the utterance and each slot-value pair. Lai et al. (2020) use BERT (Devlin et al., 2019) as the context encoder and generate the relevance score for every pair. Recently, Lin et al. (2021a) and Feng et al. (2022) include schema graph networks to utilise inter-slot relationships. However, their scalability is strongly limited by the availability of the predefined ontology and schema graphs.

To improve efficiency, span prediction methods have been proposed to tackle DST so that the slot can be filled by directly addressing values in the context. Heck et al. (2020) implement copy mechanisms, but they use independent span projection layers for each slot, which make their model incapable of inference in new domains. Zhou and Small (2019) and Gao et al. (2020) formulate the DST as a question answering problem, and they prepare questions for asking the model to answer values for every slot. We differentiate from these approaches by disentangling the complex domain information from domain filtering and domain classification strategies.

Generative approaches (Wu et al., 2019; Kumar et al., 2020) provide an alternative way to handle DST. Li et al. (2021) introduce a generative question answering approach, GPT2-m, that leverages an autoregressive language model. Similarly, Lin et al. (2021b,c) propose TSDST, and they study the impacts of slot descriptions and cross-task transfer on domain adaptation. Lee et al. (2021) reformulate DST as prompting states via schema descriptions from language models. Recent end-to-end dialogue models (Peng et al., 2021; Su et al., 2022) also show strong supervised performance on DST.

Cross-lingual transfer learning for DST aims to leverage the labelled data in rich-resource languages and transfer learned knowledge to low-resource languages. Chen et al. (2018) study this problem and propose the XL-NBT teacher-student framework. Liu et al. (2020) introduce an Attention-informed Mixed-Language Training (AMLT) method to build code-switching training sentences. They study the effectiveness of multilingual pretrained language models, XLM (Conneau and Lample, 2019) and mBERT (Devlin et al., 2019), with their AMLT approach. Qin et al. (2020) propose a data augmentation framework, which encourages cross-lingual alignment by fine-tuning mBERT on generated code-switching data. Moghe et al. (2021) introduce intermediate fine-tuning on parallel sentences to improve the cross-lingual DST. To the best of our knowledge, we are the first work that studies the effectiveness of a multi-lingual pretrained language model, XLM-R (Conneau et al., 2020), on DST without implementing additional cross-lingual alignment strategies.

3 Multi-Domain and Multi-Lingual DST

To tackle the task of dialogue state tracking, our model reads the current user utterance U_t, preceding system utterance M_t, dialogue history H_t, and the domain-slot prompt Q_t as inputs for each turn. Followed by that, our model is responsible for firstly determining the dialogue domains D_t from
the input sequence. Then, it predicts the presence of the answer span in predicted domains given the question. If an answer is present in utterances, the model will predict the value for that domain-slot question using span extraction. Otherwise, its value will be filled in accordance with other predicted types. Finally, our model tracks the dialogue states by a rule-based update mechanism along with the progress of the dialogue across turns.

3.1 Context and Domain-Slot Questions

In extractive question answering, the context is used to provide the background information, and the answer is usually contained in the context. When it comes to DST, it is equivalent to modelling the system message and the user response together as the context for the current turn. The complete context C_t is then collected by concatenating the current user utterance U_t and the preceding system utterance M_t with dialogue history H_t at turn t. We implement XLM-R as the context encoder for the purpose of cross-lingual transfer learning.

Each context is paired with N questions, which iterate through every slot that we are interested in. We append the domain-slot prompt at the end of the context as an analogue question for each domain-slot pair. Hence, the model can learn to correlate different questions to the same context and provide corresponding answers to fill the slot. For the same context with nth question Q^n_t at turn t, the input sequence S^n_t can be written as:

$$S^n_t = [\text{CLS}] \oplus U_t \oplus [\text{SEP}] \oplus M_t \oplus [\text{SEP}] \oplus H_t \oplus [\text{SEP}] \oplus Q^n_t \oplus [\text{SEP}],$$

where \oplus is the string concatenation, and H_t represents the dialogue history collected in a reversed order, and it is defined as follows:

$$H_t = U_{t-1} \oplus M_{t-1} \oplus \ldots \oplus U_1 \oplus M_1 \text{ for } t > 1.$$

To utilise the question as a distinct feature for each slot, we propose the analogue question in the format of a domain-slot prompt. Here, additional special tokens are introduced to assist the model in recognising the domain-slot pair as distinct parts. Moreover, they provide clear signals for the start and end positions for each domain-slot pair. The equation for constructing the domain-slot prompt Q^n_t is defined below:

$$Q^n_t = \langle \text{dom.} \rangle \oplus d^n_t \oplus \langle /\text{dom.} \rangle \oplus \langle \text{slot} \rangle \oplus s^n_t \oplus \langle /\text{slot} \rangle,$$

where d^n_t refers to the name of the domain and s^n_t is the slot name for n-th question at turn t.

3.2 Shared Classification Gate

Our model contains a shared classification gate θ_{gate} for every domain-slot question as shown in Fig. 1. This shared gate provides shared knowledge among various domain-slot pairs, as it is neither domain-specific nor slot-specific.
For each input sentence S_t, this shared gate classifies it to one of six classes as described in three main categories. Special cases, none/dontcare, indicate that there is either no observable value from the input sequence S_t or any value that can become the answer for that slot question. Copy mechanism, span, indicates that the answer can be extracted from the current user utterance U_t by the span prediction module. Similarly, Inform is to copy from the system inform memory that tracks values mentioned in the preceding system utterance M_t. Boolean values true/false are used to deal with binary categorical values for Boolean slots where the value cannot be extracted from the utterance.

With these designed classes, it takes the output r_t^{CLS} from the encoder as its only input. It generates a probability distribution $p_t^{gate} \in \mathbb{R}^6$ over six classes as in the following equation:

$$p_t^{gate} = \text{softmax}(W_{gate} \cdot r_t^{CLS} + b_{gate}),$$

where W_{gate} represents the weights for our shared gate that is achieved by a linear classification layer, and b_{gate} is the corresponding bias term. The class is then determined by taking the maximal argument of $\text{argmax}(p_t^{gate})$.

3.3 Shared Span Prediction Layer

If the predicted class for the current input sequence S_t is span, the answer for that domain-slot question Q_t will be filled by predicting the start and end positions of the value from the input sequence. We implement the shared span prediction layer for every domain-slot question for the purpose of domain-adaptable design. This is achieved by constructing a linear layer that takes the entire token representations from r_t^1 to r_t^{seqmax} as inputs, and it generates two outputs with two parallel softmax layers for token positions, the start and end position distribution, p_t^{start} and p_t^{end}.

$$[p_t^{\text{start}}, p_t^{\text{end}}] = \text{softmax}(W_{span} \cdot r_t^{1} + b_{span})$$

$$\text{start}_t = \text{argmax}(p_t^{\text{start}})$$

$$\text{end}_t = \text{argmax}(p_t^{\text{end}}).$$

The start and end positions of the predicted value are then determined by picking the largest probability from distributions p_t^{start} and p_t^{end}. Followed by that, we sequentially collect the tokens from the predicted start$_t$ position to end$_t$ position, treating any reversed sequence prediction as an empty value. We then detokenize them to form the final predicted value for that domain-slot question.

3.4 Turn-Domain Filtering

For a task-oriented dialogue, the user may shift the domain of conversation across turns so that a dialogue can have multiple domains. We introduce a novel turn-domain filtering strategy that puts a strict constraint and only allows the model to pay attention to currently active domains. Turn-domain filtering indicates that only the slots within the current domains D_t are used to prepare training features since slots are domain-specific. Hence, turn-domain filtering can reduce the potential noises introduced by unnecessary domains. Mathematically, this filtering strategy puts an additional constraint for slot domain d_t^n in Eq. 3:

$$d_t^n \in D_t.$$ (6)

3.5 Independent Multi-Domain Classifier

Turn-domain filtering allows the model to answer questions only within the interested domains. However, the domain information is no longer a given feature in the evaluation stage. Here, we propose a multi-domain sequence classifier as shown in Fig. 1. The input sequence is the complete dialogue context C_t without domain-slot questions. We then collect the entire sequence representation r_t^{CLS} by the context encoders as XLM-R(C_t). Followed by that, r_t^{CLS} is fed into $|D|$ softmax layers, thereby allowing a binary prediction that decides whether each domain d_t is present in the input context or not. Finally, we collect the domains that have been assigned to the ‘True’ class, which indicates the presence of that domain in the context.

$$p_t^{d} = \text{softmax}(W_{MSC}^{d} \cdot r_{CLS}^{D} + b_{MSC}^{d})$$

$$d_t = \text{argmax}(p_t^{d})$$

$$D_t = \{d_1, \ldots, d_{|D|}\}.$$ (7c)

3.6 System Inform Memory and Update Rules

To further reduce the error of our span extractor, we have employed the same inform copy mechanism as Heck et al. (2020). This memory is a simple dictionary that records all values informed by the preceding system utterance M_t into a system inform memory $I_t=\{I_t^1, \ldots, I_t^N\}$. Then, the value answer A_t^n for nth question Q_t^n asked at turn t can be predicted by the following copy mechanism, given that inform = $\text{argmax}(p_t^{gate})$:

$$A_t^n = I_t^n \text{ for } Q_t^n.$$ (8)

We implement a simple rule-based mechanism that is used to update dialogue states across turns
as same as Chao and Lane (2019). In each turn, if the model assigned class for the current input sequence S_t^n with Q_t^n is not none, the dialogue state will be updated by obtaining A_t^n from our value prediction modules. On the other hand, if the classification gate predicts that there is no value for S_t^n, the dialogue state will be kept unchanged.

3.7 Two-Stage Fine-Tuning

Our model is designed to be capable of not only DST tasks but also general question answering tasks. Therefore, the transfer learning ability of our base model can be enhanced by firstly fine-tuning it on mono-lingual and multi-lingual question answering datasets as the first-stage fine-tuning. Then, we initialise its weights on DST shared gates and further fine-tune the model on DST datasets as the second-stage fine-tuning. This two-stage fine-tuning strategy maximally brings domain-agnostic knowledge into the field of DST.

4 Experimental Setup

4.1 Dataset

The datasets that we carry out experiments on are WOZ 2.0 (Wen et al., 2017) and MultiWOZ 2.1 (Eric et al., 2020) for single-domain and multi-domain task-oriented dialogues, respectively. WOZ 2.0 is a restaurant reservation dataset, and it contains three slots: area, food, and price range. It provides the conversation in three languages: English, German, and Italian. MultiWOZ 2.1 contains multi-domain conversations for more than 10000 dialogues over seven domains. The dialogue domain can change across turns, thereby making MultiWOZ 2.1 the most challenging dataset for task-oriented dialogue systems. We exclude hospital and police domains with very few dialogues, and the remaining dataset contains five domains (hotel, train, attraction, restaurant, and taxi) with 30 domain-slot pairs in total. For domain adaptation experiments, we use an extractive QA dataset, SQuAD 2.0 (Rajpurkar et al., 2018), to provide the intermediate fine-tuning. In cross-lingual experiments, we further use the multilingual QA dataset, XQuAD (Artetxe et al., 2020), to study the effectiveness of multi-lingual intermediate fine-tuning.

4.2 Implementation Details

We employ the pretrained XLM-RoBERTa-base model from the Huggingface library of Transformers (Wolf et al., 2020), which consists of 12 hidden layers of 768 units. We also employ the BERT-base-uncased model for ablation study and fine-tuned models on SQuAD 2.0 and XQuAD for adaptation experiments. For all implementations, we limit the maximal input sequence length to 180 tokens to save the cost while keeping a reasonable length for including dialogue history. We truncate from the earliest dialogue history when the input sequence length exceeds the limit. The training objective is to minimise the summations of individual loss functions for each module, where each loss is defined as the cross-entropy loss. The loss for each domain module in the multi-domain classifier is equally weighted, where the coefficient for each part of the joint loss of our main model is:

$$L_{\text{total}} = 0.8 \cdot L_{\text{gate}} + 0.2 \cdot L_{\text{span}}.$$ (9)

During the training process, we implement the Adam optimiser (Kingma and Ba, 2015) with an initial learning rate of 10^{-5}. Then, we employ a linear scheduler with a warm-up proportion of 10% so that the learning rate will decay linearly until reaching zero after the warm-up steps. We put a dropout layer with a rate of 30% at the output of our context encoders. We use an early stopping strategy by monitoring the accuracy of the validation dataset until it stops increasing for at least 3 epochs. The batch size is fixed at 16. The multi-domain classifier is trained independently with the same experimental setting, and it is only involved in the evaluation stage. We report the mean of supervised DST and zero-shot experimental results for three runs with different random seeds.

5 Experimental Results

5.1 Zero-Shot Domain Adaptation

We rank our XQA-DST model with prior methods capable of zero-shot domain adaptation. The experiment is used to evaluate the transfer performance of models when tested with dialogues in a completely unseen domain. We train our model on the other four domains by excluding the target domains. We follow the experimental steps reported by Kumar et al. (2020). Since there is a single domain defined in the target domain, the domain classifier is not utilised here because the dialogue domain is given information. Table 1 shows a comparison of our XQA-DST model to baselines and recent approaches, where the JGA is defined as the ratio of dialogue turns that have been perfectly predicted over the number of turns for all dialogues. It is
clear that our model has generated more accurate results than both MA-DST (Kumar et al., 2020) and SUMBT (Lee et al., 2019) baselines by at least 6.2% JGA on average in domain adaptation even without two-stage fine-tuning. SUMBT tracks the dialogue states by classifying every slot-value pair. Hence, it is a classification-based method, whereas our approach is mainly relying on the value filling by the span prediction module. It can be seen that our model has outperformed baselines by a significant (3-9%) margin in the hotel, restaurant, and taxi domains. This is because the classification-based method requires a predefined ontology for its enumeration of values, which inevitably makes it not robust to unseen values in new domains and results in relatively low performance for domain adaptation.

There is another class of methods that utilises generative value filling to handle the DST, including TRADE, GPT2-m, and TransferQA. Given GPT2-m as an example, it is in the framework of generative question answering, which also coincides with the underlying idea of our XQA-DST model but has a decoder to generate candidate values. With the two-stage fine-tuning strategy on the SQuAD 2.0 dataset, our model shows improvements in all domains of 2.3% on average. It shows the highest JGA in both train and restaurant domains (40.0% and 28.2%, respectively). It also outperforms the TransferQA approach that implements the cross-task transfer learning, which is similar to our two-stage fine-tuning that includes multi-task knowledge. Our results appear as the state-of-the-art results at 36.7% JGA on average for zero-shot domain adaptation experiments.

Furthermore, our approach is designed to be applicable for both domain adaptation and cross-lingual transfer learning, whereas all generative methods listed above can only do mono-lingual learning. Therefore, our XQA-DST model has shown very competitive results in the zero-shot domain adaptation, and we can conclude that it is able to effectively generalise to task-oriented dialogues in new domains by understanding the linguistics behind our domain-slot questions.

5.2 Domain Adaptation Analysis

We analyse the individual slot accuracy for every domain-slot pair in 5 domains to study the impact of shared slots over domains on the performance of domain adaptation. The results are obtained by computing the slot accuracy on each target domain by XQA-DST. The slot accuracy is defined as the ratio of dialogue turns where the value for that slot is correctly predicted. Fig. 2 shows the slot accuracy for 16 slots over 5 domains, where multiple domain bars for the same slot indicate that the slot is shared across these domains.

It is observable that slots that have been shared among multiple domains lead to a relatively higher domain adaptation performance. By contrast, it is
<table>
<thead>
<tr>
<th>Models</th>
<th>Joint Goal Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GE</td>
</tr>
<tr>
<td>XLM-R-DST</td>
<td>20.78</td>
</tr>
<tr>
<td>XL-NBT</td>
<td>30.80</td>
</tr>
<tr>
<td>MUSE + AMLT</td>
<td>36.51</td>
</tr>
<tr>
<td>XLM+CLCSA</td>
<td>48.70</td>
</tr>
<tr>
<td>mBERT+CLCSA</td>
<td>63.20</td>
</tr>
<tr>
<td>TLM+CLCSA</td>
<td>65.80</td>
</tr>
<tr>
<td>Ours w/o two-stage</td>
<td>64.88</td>
</tr>
<tr>
<td>w: XQuAD</td>
<td>66.16</td>
</tr>
<tr>
<td>w: SQuAD2</td>
<td>66.12</td>
</tr>
</tbody>
</table>

Table 2: The zero-shot cross-lingual DST results for target languages, German (GE) and Italian (IT), on WOZ 2.0. There are no results on Italian by XLM due to the absence of Italian in its pretraining (Liu et al., 2020).

also distinctive that slots that have not been shared among multiple domains have much lower accuracy. For instance, most slots in the hotel domain are not shared with other domains, so the slot accuracy for ‘parking’ and ‘internet’ slots (66.4% and 64.5%, respectively) are reasonably lower than others. The same rule applies to the ‘time’ and ‘food’ slots in the restaurant domain. Therefore, the number of shared domains for the slot is the foremost factor in achieving a good domain adaptation result. Secondly, we notice that slots with digital values such as ‘people’ and ‘day’ have very high slot accuracy (91.3% and 92.0% in the restaurant domain) even in the zero-shot setting. It validates the effectiveness of our model to domain adaptation for successfully extracting candidate values from the message. Last but not least, due to the wide surface form of location values, it is naturally hard to predict location slots, ‘departure’ and ‘destination’, that are not categorical with unseen values. Hence, even though they are shared in both train and taxi domains, they give relatively lower slot accuracy in the set of shared slots. Overall speaking, our XQA-DST model has generated reasonably well domain adaptation results on most domain-slot pairs and has shown a certain level of common knowledge across domains.

5.3 Zero-Shot Cross-Lingual DST

The zero-shot cross-lingual transfer learning is to train our XQA-DST on the source language, English. Then, it is sequentially evaluated on the test sets in German and Italian with labels that are kept in English. Since WOZ 2.0 is a single domain dataset with relatively short dialogues, the dialogue history is not included as inputs, and the domain classifier is deactivated. To provide a fair comparison to the ground truth, we implement Google Translator (Wu et al., 2016) to translate the values filled by span prediction in the target language back to the source language.

In Table 2, our XQA-DST model with two-stage fine-tuning gives strong zero-shot results in both German and Italian languages (66.2% and 75.7% JGA, respectively). In comparison to recent approaches for cross-lingual DST, our XQA-DST model has generated results that significantly increase the margin by an absolute 8% on Italian. It is worth noting that both XLM+CLCSA and mBERT+CLCSA (Qin et al., 2020) are data augmentation-based approaches on multi-lingual models with the same model architecture as XL-NBT (Chen et al., 2018). TLM+CLCSA (Moghe et al., 2021) also implements two-stage fine-tuning with data augmentation. Even without two-stage fine-tuning, our model in extractive QA still outperforms most of them and appears as the state-of-the-art results in the zero-shot cross-lingual transfer learning on WOZ 2.0.

Besides the above approaches, we include XLM-R-DST as a baseline that we replace the context encoder of BERT-DST (Lai et al., 2020) with XLM-R. Then, we can study the effectiveness of different model architectures in cross-lingual transfer learning. We recall that XLM-R-DST fills the slot values by iterating through every candidate slot value with a relevance scorer. Table 2 shows a huge improvement in our approach by increasing the average JGA on target domains from 23.1% to 66.8% by more than 40%. It indicates that our specially designed extractive QA framework has a strong generalisation ability across languages, whereas the XLM-R-DST appears as only recognising each value as distinct features without understanding the deep semantics behind them. Lastly, we notice that the cross-lingual result on Italian has a higher joint goal accuracy than German in our experiments. We suppose that this is because of the declension in German, which leads to more diverse word forms with the same semantics and introduces noises to the translation process.

5.4 Supervised DST

We perform experiments on the supervised DST configuration and compare our XQA-DST model with prior methods capable of monolingual zero-
Table 3: The performance of Supervised DST for our proposed XQA-DST model with prior methods capable of zero-shot inference on MultiWOZ 2.1.

<table>
<thead>
<tr>
<th>Models tested on MultiWOZ 2.1</th>
<th>JGA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADE (Wu et al., 2019)</td>
<td>45.60</td>
</tr>
<tr>
<td>SUBMT (Lee et al., 2019)</td>
<td>46.70</td>
</tr>
<tr>
<td>STARC (Gao et al., 2020)</td>
<td>49.48</td>
</tr>
<tr>
<td>MA-DST (Kumar et al., 2020)</td>
<td>51.88</td>
</tr>
<tr>
<td>T5DST (Lin et al., 2021c)</td>
<td>52.21</td>
</tr>
<tr>
<td>GPT2-m (Li et al., 2021)</td>
<td>52.58</td>
</tr>
<tr>
<td>SDP-DST (Lee et al., 2021)</td>
<td>56.66</td>
</tr>
<tr>
<td>SOLOIST (Peng et al., 2021)</td>
<td>56.85</td>
</tr>
<tr>
<td>PPTOD (Su et al., 2022)</td>
<td>57.10</td>
</tr>
<tr>
<td>XQA-DST (our work)</td>
<td>53.21</td>
</tr>
</tbody>
</table>

Table 4: Ablation study of XQA-DST with different base models and training strategies on MultiWOZ 2.1.

<table>
<thead>
<tr>
<th>Ablation</th>
<th>JGA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-base</td>
<td></td>
</tr>
<tr>
<td>w. undersampling</td>
<td>38.23</td>
</tr>
<tr>
<td>w. joint domain classifier</td>
<td>41.10</td>
</tr>
<tr>
<td>w. independent domain classifier</td>
<td>49.04</td>
</tr>
<tr>
<td>+ dialogue history</td>
<td>51.11</td>
</tr>
<tr>
<td>XLM-RoBERTa-base</td>
<td></td>
</tr>
<tr>
<td>w. independent domain classifier</td>
<td>51.67</td>
</tr>
<tr>
<td>+ dialogue history</td>
<td>53.21</td>
</tr>
</tbody>
</table>

6 Conclusion

We introduce a new multi-domain and multi-lingual dialogue state tracker, XQA-DST, within an extractive question answering framework. It gives distinct advantages for avoiding relying on any predefined ontology and being open-vocabulary to new slots with unseen values. We have shown a strong domain and cross-lingual transferable ability of our model by outperforming famous baselines. We have demonstrated its competitive performance in multi-domain DST with a novel turn-domain filtering strategy and a multi-domain classifier in parallel. With the design of an XLM-R based multi-domain classifier, our approach is feasible for track-
ing states in multi-domain and multi-lingual scenarios. Therefore, it holds a strong potential to overcome the challenging data scarcity problem for either domains or languages in the real application of task-oriented dialogue systems.

Limitations
In the supervised DST experiments, our multi-domain classifier is effective when the range of domains is given. However, we have fixed weights for each domain projection layer, which inevitably makes the classifier not domain scalable. Though the shared span prediction layer is still scalable to all domains, the performance of our model will degrade if it encounters a dialogue in multiple unseen domains.

We recall that the independent multi-domain classifier provides a clearer training objective and significantly improves the JGA than the joint domain classifier. However, this is at the cost of model size and requires expensive computation resources. Therefore, we look forward to approaches that wisely incorporate the domain classifier.

In the cross-lingual experiments, we test the transfer performance for German and Italian, which have been used as the pretraining languages for XLM-R. Hence, we expect a degradation of cross-lingual performance for our model on low-resource languages that are not pretrained by XLM-R. In addition, our experiments rely on a back-translation from the target language to the source language. Though we have implemented a predefined label dictionary that collects vocabulary with similar semantics, it cannot perfectly handle the noise from an external translation system.

Acknowledgements
Pasquale was partially funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 875160, ELIAI (The Edinburgh Laboratory for Integrated Artificial Intelligence) EPSRC (grant no. EP/W002876/1), an industry grant from Cisco, and a donation from Accenture LLP.

References

Guan-Lin Chao and Ian R. Lane. 2019. BERT-DST: scalable end-to-end dialogue state tracking with bidirectional encoder representations from transformer. In INTERSPEECH, pages 1468–1472. ISCA.

pages 35–44, 1st virtual meeting. Association for Computational Linguistics.

Tuan Manh Lai, Quan Hung Tran, Trung Bui, and Daisuke Kihara. 2020. A simple but effective bert model for dialog state tracking on resource-limited systems. In ICASSP, pages 8034–8038. IEEE.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,

A Reproducibility Details

Training details We use both XLM-RoBERTa-base (125M) and BERT-base-uncased (110M) with pretrained weights from the Huggingface library of Transformers without tuning their hyperparameters. For the XQuAD experiment, it implements the batch size at 40 and a learning rate of 3×10^{-5} for the first-stage fine-tuning. For the SQuAD 2.0 experiment, we use the fine-tuned weights and hyperparameters from deepset/xlm-roberta-base-squad2.

Dataset details For the supervised DST experiments, we split the datasets into train/dev/test sets as same as Heck et al. (2020). In domain adaptation experiments, the MultiWOZ 2.1 datasets are divided into 5 domains in accordance with Lin et al. (2021c), where the hospital and police domains are excluded. Lastly, the multi-lingual WOZ 2.0 datasets have the same split as Moghe et al. (2021).