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Abstract

Contrastive Language–Image Pre-training
(CLIP) has shown remarkable success in
learning with cross-modal supervision from
extensive amounts of image–text pairs
collected online. Thus far, the effectiveness
of CLIP has been investigated primarily in
general-domain multimodal problems. In this
work, we evaluate the effectiveness of CLIP for
the task of Medical Visual Question Answering
(MedVQA). We present PubMedCLIP, a
fine-tuned version of CLIP for the medical
domain based on PubMed articles. Our
experiments conducted on two MedVQA
benchmark datasets illustrate that PubMed-
CLIP achieves superior results improving
the overall accuracy up to 3% in compari-
son to the state-of-the-art Model-Agnostic
Meta-Learning (MAML) networks pre-trained
only on visual data. The PubMedCLIP model
with different back-ends, the source code
for pre-training them and reproducing our
MedVQA pipeline is publicly available at
https://github.com/sarahESL/PubMedCLIP.

1 Introduction

Medical visual question answering (MedVQA)
seeks answers to natural language questions about
a given medical image. The development of Med-
VQA has considerable potential to benefit health-
care systems, as it may aid clinicians in interpreting
medical images and obtaining more accurate diag-
noses by consulting a second opinion. Thus, it has
become a very active area of research, with compet-
itive benchmarks and yearly competitions (Abacha
et al., 2021). Yet, visual question answering in the
medical domain in particular remains non-trivial,
as we suffer from a general lack of large balanced
training data, in part due to privacy concerns. To
solve the multimodal task of MedVQA, a system
must understand both medical images and textual
questions and infer the associations between them
sufficiently well to produce a correct answer (An-

tol et al., 2015). Thus, the success of these solu-
tions is tied to the effectiveness of their visual and
question encoders. Current approaches for Med-
VQA adopt deep artificial neural network encoders
to interpret the image and the question. Previous
studies in MedVQA (Nguyen et al., 2019; Zhan
et al., 2020; Pan et al., 2021; Gong et al., 2022)
commonly exploit the Mixture of Enhanced Visual
Features (MEVF) model (Nguyen et al., 2019) as
their visual encoder to overcome data limitations.
However, MEVF is custom-tailored for the par-
ticular challenges encountered in the VQA-RAD
(Lau et al., 2018) dataset, i.e., specifically designed
for the organs present in this dataset, limiting its
generalizability to other settings.

In non-medical settings, recent work (Su et al.,
2019; Zhang et al., 2020; Cho et al., 2021; Wang
et al., 2021; Radford et al., 2021; Yu et al., 2022)
has shown improvements of visual encoders when
learning from multimodal image–text pairs in com-
parison to learning from just visual images. Among
these approaches, the contrastive pre-training of
language–image data in OpenAI’s CLIP (Radford
et al., 2021) has been particularly prominent. CLIP
is trained using a vast number of image–text pairs
acquired from the Internet with close to zero addi-
tional human annotation. We argue that this is par-
ticularly promising for the medical domain, since
data annotation requires expert medical knowledge,
making it expensive and time-consuming. Follow-
ing CLIP, we investigate to what extent learning
from publicly available medical image–text pairs
without any further annotation can aid in the Med-
VQA task. To this end, we use image–text pairs ob-
tained from PubMed articles to train a new version
of CLIP called PubMedCLIP. We then examine the
outcomes when incorporating PubMedCLIP into
state-of-the-art MedVQA methods, investigating
whether CLIP benefits MedVQA.

To the best of our knowledge, this is the first
study introducing a PubMed-optimized CLIP and
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assessing the effectiveness of its visual and textual
encoders for VQA. Unlike prior work on MedVQA,
PubMedCLIP is trained using medical images from
a diverse range of body regions and is not restricted
to only a few organs. We conduct extensive exper-
iments on two MedVQA benchmark datasets and
employ diverse back-end visual encoders in Pub-
MedCLIP. Our experiments show that using Pub-
MedCLIP as a pre-trained visual encoder improves
previous models by up to 3%. Our experiments fur-
ther reveal question type distributional differences
in the two MedVQA benchmark datasets that have
not been imparted in previous work and cause dif-
ferent back-end visual encoders in PubMedCLIP
to exhibit different behavior on these datasets.

2 Related Work

Shen et al. (2021) showed the benefits of CLIP for
general-domain visual question answering. How-
ever, MedVQA approaches generally need to be
able to learn from small amounts of training data
and be able to pick up fine-granular details such as
subtle medical abnormalities. Recent MedVQA ap-
proaches typically employ deep pre-trained neural
encoders and consist of four main components: a
visual encoder, question encoder, attention-based
fusion of vision and text features, and an answer
classifier (Nguyen et al., 2019; Vu et al., 2020;
Zhan et al., 2020; Pan et al., 2021; Liu et al.,
2021a; Gong et al., 2022). Skip-thought vectors,
LSTM, and GRU recurrent neural networks have
been popular question encoders in prior work. Due
to the lack of diversity in the semantics of the ques-
tions in the ImageCLEF VQA-Med 2021 Chal-
lenge (Abacha et al., 2021), the winning teams
(Gong et al., 2021; Eslami et al., 2021) were able
to treat MedVQA as a multi-class image classifi-
cation task, without any need to encode and in-
terpret the questions. Bilinear attention networks
(Kim et al., 2018), multimodal compact bilinear
pooling (Fukui et al., 2016), stacked attention net-
works (Yang et al., 2016), and element-wise produc-
tion are popular as multimodal pooling approaches
in MedVQA. With regard to the visual encoder,
the winning teams in the ImageCLEF VQA-Med
Challenges (Abacha et al., 2020, 2021) often fine-
tune an ensemble of pre-trained VGG (Simonyan
and Zisserman, 2014) and various ResNet (Lei
et al., 2018) encoders. A notable number of pa-
pers (Nguyen et al., 2019; Zhan et al., 2020; Pan
et al., 2021; Gong et al., 2022) employ the Mixture

of Enhanced Visual Features (MEVF; Nguyen et al.
2019) in order to overcome image data limitations.
MEVF consists of two modules: 1. the pre-trained
meta-learning module, which uses Model-Agnos-
tic Meta-Learning (MAML; Finn et al. 2017) with
the objective of solving a k-shot n-way classifica-
tion problem with the abnormality status of chest,
abdomen, and brain organs as classes, 2. the Con-
volutional Denoising Autoencoder (CDAE; Masci
et al. 2011) module in order to have a robust visual
encoder for noisy medical images. The pre-training
of MEVF is custom-tailored for the particular or-
gans that are present in the VQA-RAD (Lau et al.,
2018) dataset, i.e., chest, brain, abdomen. Another
study (Do et al., 2021) similarly trained multiple
meta-models confined to these three body regions,
combined with a scoring mechanism to select the n
most robust and accurate encoders and concatenate
their outputs to represent the visual features. Liu
et al. (2021a) also restricted the objective of their
visual encoding to chest, brain, and abdomen, and
pre-trained three separate visual encoder teacher
models for these respective body regions. They
distilled the three teacher models into a smaller
student model by contrastive representation distil-
lation. As opposed to previous work, which learns
from just visual data, we design an alternative en-
coder, PubMedCLIP, which not only uses natural
language as supervision for visual representation
learning, but also learns features in medical images
of various modalities and diverse body organs, and
hence, is not limited to only a few body regions.

3 PubMedCLIP

Our first step is to fine-tune the original general-
domain CLIP using medical image–text pairs. We
refer to the fine-tuned version as PubMedCLIP.
Figure 1 (A) shows an overview of the training
procedure for PubMedCLIP. Texts and images are
encoded separately using CLIP, which we denote
by et ∈ Rb×d, ev ∈ Rb×d, respectively, for a batch
of size b. For each image–text pair, a label y ∈ R
represents the correspondence of the pairing of im-
age and text. The cosine similarities between text
and image features are computed to represent the
respective visual and textual logits ŷv, ŷt, i.e.,

ŷv =
e⊺v et

∥ev∥ ∥et∥
, ŷt =

e⊺t ev
∥ev∥ ∥et∥

. (1)

As formulated in Eq. 2, a weighted sum of the
vision and language loss values is computed to
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Figure 1: (A) Overview of how PubMedCLIP is pre-trained. (B) Schematic of MedVQA backbone with PubMed-
CLIP pre-trained visual encoder.

represent the overall loss. Y ∈ Rb denotes the set
of labels y for a total of b image–text pairs in the
batch. In this work, we use the cross-entropy loss

L = λH(ŷv, Y ) + (1− λ)H(ŷt, Y ). (2)

Following CLIP, we set λ = 0.5 to obtain the aver-
age of vision and language losses.

For training PubMedCLIP, we drew on the Radi-
ology Objects in COntext (ROCO) dataset (Pelka
et al., 2018). Previous work (Rajpurkar et al.,
2017; Wang et al., 2017; Irvin et al., 2019; John-
son et al., 2019a) also proposes large-scale multi-
modal datasets in the medical domain. However,
they include images of only one imaging modal-
ity, i.e., X-ray, for a very limited number of body
regions. In contrast, ROCO includes over 80K
samples of diverse imaging modalities such as ul-
trasound, X-rays, PET scans, CT scans, MRI, an-
giography, from various human body regions, e.g.,
head, neck, spine, chest, abdomen, hand, foot, knee,
and pelvis. Learning visual representations of di-
verse organs with various imaging modalities is
valuable for a MedVQA system, as it is expected to
interpret images given such diversities. The image–
text pairs in ROCO stem from PubMed articles.
The texts are taken from the relatively short cap-
tions (average length of 20 words) associated with
images in the articles, which provide rich explana-
tory information about the content of images. In
this work, the training and validation data splits
from the original paper (Pelka et al., 2018) were
used to train PubMedCLIP, with ViT-B/32 Vision

Transformer (Dosovitskiy et al., 2021), ResNet
RN-50 (He et al., 2016), and RN-50x4 visual en-
coder back-ends. With respect to the maximum text
length accepted by CLIP, which is 76, we trimmed
any longer captions, while zero-padding shorter
ones. PubMedCLIP was trained for 50 epochs
with a batch size of 64, and Adam optimization
(Kingma and Ba, 2014) with a learning rate of
10−5. The trained models, source code as well as
further implementation details are available online
at https://github.com/sarahESL/PubMedCLIP.

Figures 2 and 3 show PCA visualizations of the
caption and image embeddings, respectively, for
the ROCO validation set. Comparing CLIP and
PubMedCLIP embeddings, PubMedCLIP appears
to obtain more semantic-aware visual and textual
features with regard to body locations. For instance,
looking at chest, abdomen, and head body loca-
tions, the corresponding embeddings form clusters
for PubMedCLIP. However, the original CLIP em-
beddings are scattered without much separation.1

4 PubMedCLIP for MedVQA

Given a MedVQA training dataset represented as
T = {(vi, qi, ai)}Di=1 of size D, where vi is a medi-
cal image, qi is the corresponding natural language
question, and ai is natural language answer, our
goal is to learn to emit correct answer ai given

1In Appendix A, we provide more information on our
approach for proxy-labeling the unannotated captions from
the ROCO dataset. The proxy-labels have been merely used
for the purpose of visualisations in this paper.
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Figure 2: PCA visualizations of image embeddings.

Figure 3: PCA visualizations of text embeddings.

image–question pair (vi, qi). For this, we assume
appropriate encoding functions to obtain fv ∈ Rn

as an n-dimensional vector encoding for image
vi and the sequence embedding of fq ∈ Rm×l

for the question qi with length l. We then cast
MedVQA as a multi-label classification function
F : Rn ×Rm×l −→ {0, 1}|A| where A is the over-
all set of possible answers and F (fv, fq) = ai for
the one-hot encoded answer ai.

Our goal is to investigate the effect of employing
PubMedCLIP as the pre-trained visual encoder in
MedVQA. To this end, we considered two promi-
nent MedVQA methods, MEVF (Zhan et al., 2020)
and QCR (Nguyen et al., 2019), that adopt MAML
as their pre-trained visual encoder and GloVe word
embeddings followed by a Recurrent Neural Net-
work (RNN) as their question encoder. We substi-
tute the pre-trained MAML module in MEVF and
QCR with the pre-trained visual encoder from Pub-
MedCLIP. A schematic architecture of our pipeline
is shown in Figure 1 (B). The representative visual
feature fv in this solution is the concatenation of
the outputs of the PubMedCLIP network and the
CDAE encoder. The objective of CDAE’s encoder

is to robustly encode the noisy version v′i of an
image vi while the decoder learns to reconstruct
the original non-noisy images. Denoting the re-
constructed image as vreci , Equation 3 defines the
image reconstruction loss of CDAE as the mean
squared error.

Lrec = ∥vi − vreci ∥2 (3)

The multimodal pooling mechanism for combin-
ing fv and fq is BAN (Kim et al., 2018) to obtain
the answer feature vector fa, as illustrated in Figure
1 (B). For answer prediction, which is a classifi-
cation task in our case, a sigmoid layer preceding
a binary cross-entropy loss is utilized in order to
allow multiple correct answers per question. Eq. 4
formulates the answer classification loss function.

Lcls = − 1

D

D∑

i=1

A∑

c=1

ai,c log(âi,c)

+(1− ai,c) log(1− âi,c)

(4)

Here, âi,c = σ(M(fa)), where σ represents the sig-
moid function. Following BAN (Kim et al., 2018),
the answer classifier M is a two-layer feed-forward
network with ReLU activation.
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The objective of MedVQA is to simultaneously
minimize the error of answer classification and
image reconstruction, denoted as:

Lvqa = Lcls + Lrec. (5)

5 Experiments

5.1 Datasets and Setup

We conducted our experiments using two well-
known MedVQA datasets:

1. VQA-RAD (Lau et al., 2018) consists of 315
images and 3,515 English language question–
answer pairs. Following previous work,
we adopt the data split proposed in MEVF
(Nguyen et al., 2019). We notice that all the
images in the test dataset are also present in
the training set. However, the set of question–
answer pairs for these images in the test set
are unseen in the training set.

2. The SLAKE (Liu et al., 2021b) dataset con-
sists of English and Chinese questions. In
this work, we utilize the English subset of the
dataset, comprising 642 images and more than
7,000 question–answer pairs. Using the orig-
inal data split, we observe that in contrast to
VQA-RAD, all the images in the test set of
SLAKE are unseen in the training set.

To ensure a fair comparison, our experiments fol-
lowed the same setups used in the original MEVF
and QCR studies. MEVF was trained for 20 epochs,
QCR for 200, both with Adam optimization. When
using PubMedCLIP as either the pre-trained visual
encoder or the text encoder, we set the learning rate
to 1× 10−3 and 2× 10−3 and the batch size to 16
and 32 in QCR and MEVF, respectively. All imple-
mentations are based on the PyTorch framework
(Paszke et al., 2019). We ran the original MEVF
and QCR on our machine and report the results
here to have a fair comparison. Due to the non-
deterministic behaviour of the cuDNN library in
CUDA convolution operations (Pham et al., 2020),
we observed non-deterministic results in different
runs of the original MEVF and QCR. For a more
robust comparison, we repeated all experiments 10
times and report the average accuracy scores.

5.2 Results and Analysis

The results of our experiments using PubMed-
CLIP’s visual encoder are given in Table 1. In

order to see the effectiveness of PubMedCLIP in
comparison to the general domain CLIP, we also
report the results when using CLIP. We provide the
overall accuracy along with the accuracy of answer-
ing only open-ended or closed-ended questions.

When using CLIP and PubMedCLIP as the pre-
trained visual encoder only, it is observed that the
results of both the MEVF and QCR approaches im-
prove. Furthermore, PubMedCLIP yields an abso-
lute improvement of up to 1% in comparison with
the original CLIP. On the VQA-RAD dataset, Pub-
MedCLIP with the ResNet-50 backend achieves
the best results, improving the overall accuracy of
MEVF up to 6% and for QCR up to 3%. Results on
the SLAKE dataset show that PubMedCLIP with
ViT-B/32 Vision Transformer encoder back-end at-
tains the best accuracy. It enhances MEVF by up
to 3% and QCR up to 2%. We witness the same
trend of improvement among overall, open-ended,
and closed-ended accuracy scores.

In Figure 4, a comparison of image embeddings
when using MAML as apposed to PubMedCLIP’s
visual encoder is shown using PCA analysis for
the VQA-RAD dataset. We find that in contrast to
the MAML encoder, PubMedCLIP’s visual encod-
ing results in organ-aware visual embeddings i.e.,
images of head, chest, and abdomen form more
coherent and distinct clusters.

In Table 2, we compare the performance of Pub-
MedCLIP with the recent state-of-the-art models in
MedVQA. All the models use BAN as the fusion
mechanism. In Table 2, PubMedCLIP refers to us-
ing PubMedCLIP as the pre-trained visual encoder
in QCR. The comparison shows that PubMedCLIP
achieves the best results on open-ended, closed-
ended, and overall accuracies.

Behavior of visual encoder back-ends. The
fact that PubMedCLIP with ResNet-50 back-end
achieves the best results for VQA-RAD, while Pub-
MedCLIP with ViT performs best on the SLAKE
dataset points us to underlying differences in the
question type distribution in these datasets. As
Figure 5 shows, the majority of the questions in
the VQA-RAD ask about the presence of an ab-
normality in the images. This requires the visual
encoder to detect local features and local abnor-
malities. Thus, the CNN-based ResNet model with
better visual localization outperforms the Vision
Transformer. However, on SLAKE, the majority
of questions are of the type “organ”, asking which
organ is present in the image. For such cases, the
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MedVQA Question Visual VQA-RAD Accuracy SLAKE Accuracy

Model Encoder Encoder Open Closed Overall Open Closed Overall

MAML + AE (*) 42.1% 73.2% 60.8% 74.1% 77.5% 75.5%

CLIP-ViT-B + AE 50.8% 75% 65.4% 75.8% 80.5% 77.7%

CLIP-RN50 + AE 47% 77.4% 65.4% 75.7% 79.6% 77.2%

MEVF GloVe+RNN CLIP-RN50x4 + AE 46.8% 76.6% 64.8% 75.9% 79.1% 77.2%

PubMedCLIP-ViT-B + AE 48.9% 76.7% 65.5% 76.5% 80.4% 78%

PubMedCLIP-RN50 + AE 48.6% 78.1% 66.5% 76.2% 79.9% 77.6%

PubMedCLIP-RN50x4 + AE 47.1% 77.8% 65.6% 76.6% 79.1% 77.6%

MAML + AE (+) 56% 77.9% 69.2% 76.8% 80.6% 78.3%

CLIP-ViT-B + AE 57.6% 79.5% 70.7% 78.6% 81% 79.5%

CLIP-RN50 + AE 58.3% 80% 71.3% 78.2% 81.5% 79.7%

QCR GloVe+RNN CLIP-RN50x4 + AE 59.9% 79.4% 71.3% 77.6% 80.5% 78.7%

PubMedCLIP-ViT-B + AE 58.4% 79.5% 71.1% 78.4% 82.5% 80.1%

PubMedCLIP-RN50 + AE 60.1% 80% 72.1% 77.8% 81.4% 79.3%

PubMedCLIP-RN50x4 + AE 60% 79.7% 71.8% 77.7% 81.3% 79.1%

Table 1: Accuracy scores on VQA-RAD and SLAKE datasets. (*) denotes the original MEVF (Nguyen et al.,
2019) and (+) denotes the original QCR (Zhan et al., 2020). Bold numbers represent the rows that achieved best
overall accuracy. Light cyan, yellow, and green highlight correspond to the results when using MAML, CLIP and
PubMedCLIP as the visual encoder only, respectively.

Figure 4: PCA visualizations of MAML and PubMedCLIP image embeddings for VQA-RAD dataset.

MedVQA VQA-RAD Accuracy SLAKE Accuracy

Model Open Closed Overall Open Closed Overall

MEVF (Nguyen et al., 2019) 42.1% 73.2% 60.8% 74.1% 77.5% 75.5%

QCR (Zhan et al., 2020) 56% 77.9% 69.2% 76.8% 80.6% 78.3%

MMQ (Do et al., 2021) 53.7% 75.8% 67% — — —

VQAMix (Gong et al., 2022) 56.6% 79.6% 70.4% — — —

PubMedCLIP + BAN (ours) 60.1% 80% 72.1% 78.4% 82.5% 80.1%

Table 2: Comparison of PubMedCLIP with state-of-the-art MedVQA models. Results for the SLAKE dataset are
not reported in the MMQ and VQAMix papers.
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Figure 5: Distribution of top 5 most frequent question
types in VQA-RAD and SLAKE.

visual encoder needs to be able to acquire a holistic
overall understanding of the image and thus capture
long-range dependencies of image patches. Vision
Transformers indeed are capable of accounting for
such features (Yu et al., 2021), and hence perform
better on the SLAKE dataset.

PubMedCLIP as the text encoder. We ex-
panded our experiments to investigate the effects
of PubMedCLIP’s text encoder in MedVQA. To
this end, we replaced the question encoder in the
MEVF model with PubMedCLIP’s text encoder,
i.e., instead of using GloVe word embeddings and
an RNN network to model the question, we use
PubMedCLIP’s text tokenizer and encoder, which
receives the question qi with l words and outputs
a sequence-level embedding fq ∈ Rm. Note that
the size of image and text embeddings when using
PubMedCLIP is equal. The results of our exper-
iments in Table 3 suggest that invoking PubMed-
CLIP to encode questions in MedVQA is not as
successful as using it for images. Furthermore, Ta-
ble 3 shows that using both the visual and textual
encoders of PubMedCLIP achieves absolute im-
provements of up to 5% in comparison to the orig-
inal MEVF model. However, the best results are
achieved with PubMedCLIP as the visual encoder
together with GloVe+RNN for encoding questions.

In order to have a better understanding of the
PubMedCLIP’s text encoder, a PCA visualization
of the question embeddings is provided in Figure
6. The top row shows the embeddings when an-
notated according to their respective body location
and the bottom row depicts them when labeled
with question types, i.e., whether the question asks

Visual Question VQA-RAD Accuracy

Encoder Encoder Open Closed Overall

GloVe+RNN(*) 42.1% 73.2% 60.8%

MAML PubMedCLIP 26.5% 72.9% 54.3%

GloVe+RNN 48.6% 78.1% 66.5%

PubMedCLIP PubMedCLIP 48% 77.4% 65.6%

Table 3: Accuracy of PubMedCLIP as text encoder in
the MEVF model. (*) denotes the original MEVF.

about the Presence of abnormality, Position of ab-
normality, type of Abnormality, etc. For having a
comprehensible analysis, we visualize the top five
frequent question types shown in Figure 5. Obser-
vations from Figure 6 suggest that PubMedCLIP’s
text encoder emits organ-aware textual embeddings
in contrast to GloVe+RNN. However, PubMed-
CLIP does not separate embeddings based on the
question type, while GloVe+RNN results in better
question type clusters. These findings suggest that
question type awareness when encoding questions
might be more beneficial than organ awareness for
the MedVQA task. Based on our experiments, ex-
ploiting PubMedCLIP as the visual encoder in the
QCR model is the most effective solution.

Furthermore, we sampled a few questions from
the VQA-RAD test set and compared their pair-
wise cosine similarities when using GloVe+RNN
versus PubMedCLIP encoding. We seek to ex-
amine the power of PubMedCLIP text encoder in
identifying semantic differences. Figure 7 reports
the cosine similarities when using PubMedCLIP
in contrast to GloVe+RNN embeddings. As can
be seen, when using PubMedCLIP text encoder,
different questions about “lung abnormality” and
“image plane” are equally similar to the “rib frac-
ture” question, i.e., 0.77, and the encoder does not
distinguish them. However, the cosine similarities
are more intuitive when using GloVe+RNN. For
instance, questions “Is there a rib fracture?” and
“Describe the lung abnormalities?” have a small
similarity of 0.27, while questions “Which plane is
this image taken?” and “What is the plane of this
image?” have a high similarity of 0.86.

In addition, it is observed that PubMedCLIP
generally results in embeddings that are highly
close to each other, with cosine similarities of more
than 0.7 for different questions on disparate top-
ics. In contrast, similarities of GloVe+RNN encod-
ing are spread in the range of [−0.09, 1], meaning
that these embeddings are scattered over the m-
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Figure 6: PCA of question embeddings. (Top) Labeled with body locations. (Bottom) Labeled with question types.

dimensional embedding space. We conclude that
GloVe+RNN distinguishes the semantics of ques-
tions more effectively in comparison to PubMed-
CLIP’s text encoder for the MedVQA task.

CLIP versus PubMedCLIP. In order to better
see the impact of fine-tuning PubMedCLIP, we
additionally looked into the intermediate task of
image–text matching using nearest neighbors vec-
tor retrieval. Considering that the pre-training ob-
jective in CLIP and PubMedCLIP is to minimize
the cosine distance between paired image and text
embeddings while maximizing this distance for
non-paired image–text combinations, we argue that
with a rich representation learning model, a nearest
neighbor approach using the cosine distance metric
should be fairly successful in retrieving matching
image–text pairs. We randomly selected a subset
of D′ = 10, 000 samples from the ROCO train-
ing data and used them to compare the outcomes
of image–text matching in the medical domain.
We exploit the text encoder as well as the visual
encoder in CLIP and PubMedCLIP. Using Faiss
(Johnson et al., 2019b) for vector retrieval, we in-
vestigated KNN with K = 1 on batches of size b.
For each batch, the objective was to find the closest
encoded text for a given encoded image, using the
cosine distance metric. The evaluation metric for
this setting is the overall accuracy of image–text
matching over all batches:

acc =

∑S
i=1 # correct matches in batch i

D′ , (6)

V-L Batch ViT-B/32 RN50 RN50x4

encoder size

8 58.1% 49.1% 57.7%

CLIP 16 44% 36.1% 45.1%

32 21.6% 25.5% 33.1%

8 93.1% 89.2% 92.2%

PubMedCLIP 16 87.6% 81.1% 85.7%

32 80.1% 70.6% 76.2%

Table 4: Accuracy scores of image-text matching using
CLIP and PubMedCLIP vision–language encoders.

where S = ⌈D′
b ⌉. Table 4 summarizes the results

for batch sizes of 8, 16, and 32. PubMedCLIP
achieves over 40% improvement in comparison
to CLIP across all batch sizes, with the ViT-B/32
back-end achieving the best results. This shows the
effectiveness of our fine-tuning in PubMedCLIP.

Comparison of qualitative examples. In Fig-
ure 8, examples from the VQA-RAD and SLAKE
datasets are provided that illustrate the performance
of the original MEVF and QCR in comparison
with PubMedCLIP, used here as either the visual or
question encoder for QCR. PubMedCLIP_TE_VE,
PubMedCLIP_TE and PubMedCLIP_VE refer to
the scenarios of PubMedCLIP as both visual and
textual encoders, as textual encoder only, and as
the visual encoder only, respectively.

We find that the MEVF model often has diffi-
culties discerning which organ is depicted in the
image. For instance, regardless of the asked ques-
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 Is this an axial plane?

 Is there a rib fracture?

 Is there evidence of any fracture of the ribs?

 Describe the lung abnormalities?

 What abnormalities are seen whithin the lungs?

 Which plane is this image taken?

 What is the plane of this image?

1 0.14 0.08 0.06 -0.1 0.59 0.38

0.14 1 0.74 0.27 0.08 0.13 0.09

0.08 0.74 1 0.35 0.33 0.17 0.21

0.06 0.27 0.35 1 0.62 -0.1 -0.09

-0.1 0.08 0.33 0.62 1 0 0.01

0.59 0.13 0.17 -0.1 0 1 0.86

0.38 0.09 0.21 -0.09 0.01 0.86 1

GloVe+RNN
1 0.77 0.77 0.77 0.77 0.88 0.92

0.77 1 0.94 0.77 0.76 0.77 0.79

0.77 0.94 1 0.79 0.79 0.75 0.79

0.77 0.77 0.79 1 0.95 0.73 0.77

0.77 0.76 0.79 0.95 1 0.74 0.78

0.88 0.77 0.75 0.73 0.74 1 0.96

0.92 0.79 0.79 0.77 0.78 0.96 1

PubMedCLIP

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Pair-wise cosine similarities of questions from VQA-RAD encoded with GloVe+RNN compared with
PubMedCLIP. Each question is associated with a symbol and represented only by the symbol on the horizontal axis.

A

Question:

Answer:

MEVF:

QCR:

PubMedCLIP_TE_VE:

PubMedCLIP_TE:

PubMedCLIP_VE:

B C

What are the bright white,

structures, almost forming an X?

lateral ventricles

chest tightness ... ✗

extremities ✗

diffuse ✗

extremities ✗

lateral ventricles ✓

Where does the image 

represent in the body?

chest

atelectasis, effusion ✗

lower left lung ✗

no ✗

no ✗

chest ✓

Are there multiple or

just 1 metastatic focus?

one

right chest ✗

no ✗

yes ✗

both sides ✗

yes ✗

Figure 8: (A) Example from VQA-RAD dataset. (B) Example from SLAKE dataset. (C) Example from VQA-RAD
dataset that all models fail to answer correctly.

tion in Figure 8 (A), MEVF provides an answer
related to the chest region, while the image is of
the brain. This behaviour is also seen in Figure 8
(B) and 8 (C). From this perspective, QCR appears
to be providing answers that are at least relevant
to the given image. As Figure 8 (B) shows, the an-
swer provided by QCR is related to the chest X-ray,
although it is not a correct answer. Furthermore,
it is observed that when PubMedCLIP is used as
the question encoder, the model has difficulties pro-
viding the correct answers and often misinterprets
open-ended questions as close-ended. In contrast,
PubMedCLIP as the visual encoder successfully
yields the correct answers.

Figure 8 (C) shows an example from the VQA-
RAD that all models fail to answer correctly.
MEVF again provides irrelevant answers about
body organs not present in the image. QCR and
PubMedCLIP misinterpret the question as a yes/no
one. In spite of this, the fact that PubMedCLIP_VE
answers with “yes" may illustrate that it has at least

detected the “one" metastatic focus in the image. In
comparison, QCR answers with “no", showing its
troubles in interpreting the image and recognizing
the metastatic focus. Figure 8 (C) reveals that these
models still have shortcomings in understanding
questions and correctly relating them to the images.

6 Conclusion

This work introduces PubMedCLIP, a pre-trained
vision–language encoder for the medical domain
trained via contrastive learning of medical image–
caption pairs from PubMed articles. We demon-
strated that PubMedCLIP results in organ-aware vi-
sion and language embeddings and evaluated its ef-
fectiveness for the task of MedVQA in comprehen-
sive experiments across two heterogeneous Med-
VQA benchmarks. While PubMedCLIP’s text en-
coder is found to be less powerful for MedVQA, we
showed that PubMedCLIP’s visual encoder outper-
forms previously used pre-trained visual encoders
by up to 3%, leading to state-of-the-art results.
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Limitations

Although we envision that in the long term, Med-
VQA systems can be sufficiently successful and
trustworthy to aid medical practitioners towards
better interpreting medical images and providing
better healthcare, we emphasize that the develop-
ment of these systems is still in its infancy stage and
they are not yet ready for fully automated and unsu-
pervised use in real-world clinical settings. Despite
the notable improvement of accuracy in MedVQA
brought by PubMedCLIP, further evaluations of
these models from the vantage points of scalability,
trustworthiness, explainability, and generalizabil-
ity are required before they can be deployed for
sensitive clinical tasks. In future work, we plan
to perform further analysis of these models using
explainable AI techniques such as Grad-CAM vi-
sualizations to assess the regions of focus within
the image from the class activation maps. Fur-
thermore, due to a lack of suitable data to train
large-scale models for other languages, our cur-
rent experiments are limited to English language
MedVQA, so different findings may be observed
for typologically different languages. By releasing
PubMedCLIP, we hope to enable further research
investigating these aspects as well as its effective-
ness in other use cases, e.g., image classification for
medical diagnosis and radiology report generation.

Discussions on Ethics

As remarked above, MedVQA models are still in
their early stages of development and have limita-
tions that should be considered before being used
in any real-world scenarios.
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A Proxy-labeling ROCO dataset for
visualization purposes

In order to have a better analysis of the PCA visual-
izations when comparing CLIP and PubMedCLIP
encodings, we created proxy body location labels
by identifying organ-specific keywords in ROCO
captions. The complete list of keywords used for
each body location is provided in Listing 1. Fur-
thermore, the distribution of these proxy labels in
the ROCO validation dataset is shown in Figure 9.

1 chest = ['breast ', 'lung', 'rib', 'thoracotomy ', 'pulmonary ', 'mediastinal ',
2 'bronchus ', 'bronchoscopic ', 'bronchiectasis ', 'bronchial ',
3 'tuberculosis ', 'heart ', 'ventricle ', 'myocardial ', 'valve ',
4 'thorax ', 'thoracic ', 'echocardiogram ', 'echocardiography ',
5 'angioplasty ', 'diaphragm ', 'coronary ', 'cardiac ', 'coronaries ',
6 'thoracique ', 'chest ', 'mitral annulus ', 'empyema ']
7 #####################
8 abdomen = ['gastro -oesophageal ', 'gastrointestinal ', 'gastric ',
9 'abdomen ', 'abdomenal ', 'abdominal ', 'bowel ', 'colon ', 'liver ',

10 'kidney ', 'renal ', 'stomach ', 'ventral ', 'esophagus ', 'pancreas ',
11 'pancreatic ', 'pancreatitis ', 'hernia ', 'bladder ', 'gallstones ',
12 'gallbladder ', 'spleen ', 'splenic ', 'appendi ', 'intestine ',
13 'duodenum ', 'ileum ', 'jejunum ', 'rectum ', 'ovary ', 'uterus ',
14 'vagina ', 'cervix ', 'pregnancy ', 'cervical ', 'prostate ', 'penis ',
15 'testicle ', 'testis ', 'testicular ', 'urethrogram ', 'urethra ',
16 'ureteral ', 'ureter ', 'peritoneum ']
17 #####################
18 head = ['head', 'skullbase ', 'skull ', 'zygoma ', 'parieto -occipital ',
19 'parietooccipital ', 'parieto occipital ', 'cerebellar ', 'cerebellum ',
20 'brain ', 'caudate nucleus ', 'caudate ', 'ear', 'auditory canal',
21 'facial ', 'eye', 'sinus ', 'gland ', 'temporal lobe', 'frontal lobe',
22 'frontal bone', 'parietal bone', 'parietal lobe', 'occipital lobe',
23 'lymph ', 'nose', 'nasal ', 'mouth ', 'tongue ', 'cheek ', 'jaw',
24 'root canal', 'tooth ', 'teeth ', 'obturation ', 'periapical ', 'premolars ',
25 'dental ', 'parotid ', 'orthopantomograph ', 'orthopantomogram ',
26 'myelinolysis ']
27 #####################
28 neck = ['neck', 'throat ', 'theroid ', 'thyroid ', 'carotid ']
29 #####################
30 spine = ['foraminal ', 'spine ', 'disk', 'disc', 'spinal ', 'lumbosacral ',
31 'thoracic spine', 'lubmar ']
32 #####################
33 pelvic = ['pelvic ', 'pelvis ', 'hip', 'perineum ', 'iliac ', 'gluteal ']
34 #####################
35 hand = ['arm', 'shoulder ', 'elbow ', 'wrist ', 'hand', 'nail', 'finger ',
36 'humerus ', 'thumb ']
37 #####################
38 leg = ['tibias ', 'leg', 'thigh ', 'foot', 'feet', 'talus ', 'toe', 'knee',
39 'calcaneus ', 'fibula ', 'femur ', 'femoral ', 'femural ', 'prosthesis ',
40 'prostheses ', 'limb']
41 #####################
42 vein = ['vein', 'vessel ', 'vascular ', 'artery ', 'angioplasty ', 'angiography ',
43 'artial ', 'aorta ', 'aortogram ']
44 #####################
45 bone = ['bone']

Listing 1: Proxy-label keywords

ot
he

r
ch

es
t

ab
do

m
en

he
ad ve
in

pe
lvi

c
leg ne
ck

sp
in

e
ha

nd
bo

ne

0

500

1000

1500

2000

Figure 9: Distribution of proxy labels in ROCO.
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