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Abstract

Prompt tuning is an efficient method for adapt-
ing large language models, and Soft Prompt
Transfer (SPoT) further narrows the gap be-
tween prompt tuning and full model tuning by
transferring prompts learned from source tasks
to target tasks. It is nevertheless difficult and ex-
pensive to identify the source task that provides
optimal prompts. In this work, we propose to
learn a shared latent space which captures a set
of basis skills from a mixture of source tasks.
Given an instance, its embedding queries the
latent space, yielding a basis skill vector. This
vector generates soft prompts, via a lightweight
prompt generator, which modulates a frozen
model. The latent space and prompt transfor-
mation are learned end-to-end by training on
source tasks. Transfer learning from source
tasks to a target task simply amounts to fine-
tuning the prompt generator, accounting for
roughly 0.3% parameters of the frozen back-
bone model, while the shared latent space is
also frozen in finetuning. Our approach outper-
forms prior soft prompt methods by a signifi-
cant margin on a variety of tasks such as NLI,
sentence completion, QA, conference resolu-
tion, word sense disambiguation. We also find,
on various model scales, our method achieves
competitive performance compared to finetun-
ing the full model.

1 Introduction

Adapting pre-trained large language models
(LLMs) has advanced the progress in many NLP
areas (Devlin et al., 2019; Raffel et al., 2020). This
is typically done by finetuning all parameters of
a model on a downstream task (i.e., MODELTUN-
ING). This approach is however expensive, espe-
cially given the growing sizes of SOTA LLMs.

This limitation motivates recent research on
parameter-efficient methods which only tune a
small amount of parameters (Houlsby et al., 2019;
Brown et al., 2020; Karimi Mahabadi et al., 2021;

Figure 1: An illustration of SharPT. An instance, as illus-
trated by with three tokens {X1, X2, X3}, is encoded by the
instance encoder, giving e

(0)
x , and then queries the skill la-

tent space, resulting in a skill vector e(1)x . The skill vector is
transformed by a simple and lightweight prompt generator, out-
putting prompt tokens (e.g., {P1, P2}). They are prepended
to the instance tokens and modulate the pre-trained frozen
model. The instance encoder and the pre-trained model are
frozen in all scenarios. The skill vectors are tuned in source
task training and frozen in target task training. The prompt
generator is tuned in both source task and target task training.

Lester et al., 2021; Li and Liang, 2021; Ham-
bardzumyan et al., 2021). Among them, a line
of research focus on the methods that modulate a
frozen LLM via prompts (Liu et al., 2021). Brown
et al. (2020) showed that prepending an input text
with a prompt, which typically consists of a task
description and/or several examples, can effectively
adapt a frozen GPT-3. This approach nevertheless
underperforms MODELTUNING and is sensitive to
the choice of prompt wordings. Instead of actual
text (or hard prompt), Lester et al. (2021) proposed
PROMPTTUNING, which prepends a soft prompt,
consisting of k tunable tokens, to input text. The
soft prompt can be optimized with gradient-based
methods. PROMPTTUNING achieves competitive
performance to MODELTUNING when the model
size is large (e.g., over 10B parameters) but still
underperforms with smaller models.

SPOT (Vu et al., 2022) improves over PROMPT-

1244



TUNING by leveraging knowledge from source
tasks. They first learn a task-specific soft prompt
for each task in a set of source tasks. Given a target
task, they search over the set of source prompts and
use the best one or some weighted combination
to initialize the prompt for the target task and then
tune the prompt. It further narrows the performance
gap to MODELTUNING on smaller models. But it
is complicated and expensive to identify the source
task that provides optimal prompts.

In this work, we propose a novel prompt-based
transfer learning method, SHARPT (Shared Latent
Space Prompt Tuning). Figure 1 illustrates the
general idea. SHARPT assumes a shared (discrete)
latent space by all source and target tasks. We call
each vector in the latent space as a skill vector,
since we assume each one captures a basis NLP
capacity or skill after training on the source tasks.
Given an instance (from either a source task or a
target task), an instance encoder embeds it into an
instance vector, which is then used to query the
latent space to find the nearest neighbor, yielding a
skill vector for this instance. A lightweight prompt
generator then generates soft prompts as a function
of the selected skill vector. The soft prompts con-
dition a frozen LLM. The latent space and prompt
generator are learned end-to-end on a mixture of
source tasks. In target task training, the latent space
is frozen and only the prompt generator is tuned.

SHARPT retains the key advantage of prior
prompt methods, parameter-efficiency. It only up-
dates approximately 0.1% to 0.3% parameters com-
pared to MODELTUNING. Different from prior
methods, we add an instance encoder to encode
each instance. The instance encoder is lightweight
and frozen in all scenarios.

SHARPT and SPOT both exploit a generic idea,
leveraging knowledge shared across tasks. The ap-
proaches to achieve this are however distinctly dif-
ferent. SPOT assumes task-to-task transfer based
on task-level prompts and the knowledge is en-
coded in task prompts. It is not straightforward
to identify a source prompt for a target task. They
illustrated two approaches: (1) SPOT-Oracle and
(2) SPOT-Retrieval. SPOT-Oracle involves us-
ing oracle test labels and expensive search (e.g.,
48 times more expensive than regular prompt tun-
ing in their experiments). In SPOT-Retrieval, they
first tuned a task prompt for each source and target
task independently and retrieved a prompt based
on prompt similarity. Note that the retrieval tun-

ing is only for searching a source prompt, which
is in addition to final prompt tuning on the target
task. In contrast, SHARPT assumes the knowledge
is encoded in a shared latent space and utilizes
instance-level prompts, which are generated based
on latent vectors from the shared space. These
designs make source-to-target transfer simple. We
learn the shared latent space with all source tasks in
a single training run. Also, the tuning on the target
task only requires a single run. Given an instance
from a target task, we use the instance embedding
to identify a skill vector, learned from all source
tasks, which is then transformed to soft prompts.

In summary, we design an instance-prompt-
based method by learning a shared skill latent space.
We apply SHARPT to a diverse set of tasks cover-
ing diverse domains and task categories. We find
that our method outperforms prior prompt-based
methods and matches full-model-tuning across
model scales.

2 Method

Suppose we have a task with data T = {(x,y)}
and a pre-trained LLM Pθ. MODELTUNING up-
dates θ to minimize L(θ) = − logPθ(y|x) 1.
PROMPTTUNING prepends to x a soft prompt, p ∈
RL×d, which has L vectors of size d. It then opti-
mizes p by minimizing L(p) = − logPθ(y|p,x).

SHARPT assumes there exists a discrete latent
space, consisting of a set of skill vectors E =
{ei ∈ Rm}Ki=1 with K vectors in total. The soft
prompt is a simple transformation of one of the skill
vectors ei, that is, p = fα(ei). The transformation
or prompt generator (fα) is a light-weight MLP.

e′i = Tanh(W1ei + b1),pl = W2(zl + e′i) + b2
(1)

where zl ∈ Rd is the position embedding for the
lth token (and randomly initialized in training) and
W1 ∈ Rd×m, W2 ∈ Rd×d. Then we have the soft
prompt p = {pl}Ll=1.

Given x, we infer its skill vector by (1) embed-
ding it via a frozen instance encoder (e.g., SimCSE
BERT-base), which yields e(0)x ; (2) querying E to
find the nearest neighbour. Formally, that is,

e(1)x = ek, k = argmin
i∈[K]

∥∥∥e(0)x − ei

∥∥∥
2
. (2)

For a target task, our method is then trained with
the following loss,

L(α) = − logPθ(y|fα(ek),x). (3)
1Summation over the data is omitted for notation clarity.
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In target task training aforementioned, E is
known and fixed. We next specify how to learn
it from source tasks. Suppose we have N source
tasks, {T (s)

j }Nj=1. We simply mix all tasks together,

T (s) =
N⋃
j=1

T
(s)
j . Given x ∈ T (s) and its embed-

ding e
(0)
x . E is learned with the following loss,

L(E) =
∥∥∥sg(e(0)x )− ek

∥∥∥
2
, (4)

where sg() is a stop gradient operator and ek is
defined in Equation (2). The overall loss in source
task learning is,

L(α,E) = L(α) + L(E) (5)

In summary, the forward pass for training on
source and target tasks are exactly the same (also
see Figure 1). The only difference is the loss func-
tion, Equation 5 (source) versus Equation 3 (target).

3 Experiments

High-to-Low Resource Transfer In this setting,
the target tasks are low-resource tasks (less than
10K training examples), while the source tasks are
high-resource tasks. It consists of 25 tasks in total.
There are 15 source tasks (e.g., DocNLI, DROP)
and 10 target asks (e.g., BoolQ, ColA). Please see
Appendix A for the complete list or Table 1 for the
target tasks. We keep the setting to be almost the
same as a major experiment in Vu et al. (2022) for a
fair comparison, with the exception that we exclude
C4 from the source task since it is a much larger
dataset than other tasks. Excluding C4 does not
affect SPOT performance since it does not provide
an optimal source prompt for any target task.

Transfer across Different Task Categories We
here investigate the transferability from datasets
in some task categories to datasets in other held-
out task categories. Following Sanh et al. (2022),
we assume datasets in each category measures a
general NLP ability, and use the same taxonomy
defined in Sanh et al. (2022). The source tasks
include (1) QA tasks: ReCoRD, SQuAD, DROP,
MultiRC, and RACE; (2) sentiment analysis tasks:
Yelp-2 and SST-2; (3) a paraphrase detection task:
QQP; (4) a semantic similarity task: CXC. The
target tasks include (1) a sentence completion task:
COPA; (2) NLI tasks: CB and RTE; (3) a coref-
erence resolution tasks: WSC; (4) a word sense
disambiguation task: WiC.

Training Details As in prior works (Raffel et al.,
2020; Lester et al., 2021), all datasets are converted
to a text-to-text format. All experiments are con-
ducted with T5-base-LM-adapted as the backbone
unless stated otherwise. We use a SimCSE (Gao
et al., 2021) model (BERT-base) as the instance
encoder. Since the instance encoder is always
frozen, we can pre-compute the embeddings of
all instances and only keep the embeddings. How-
ever, we find that memory and time saved in this
approach is negligible 2. In source task training,
the model (skill latent space and prompt genera-
tor) is simply tuned on the mixture of all source
tasks for each setting. The model is tuned for 80K
steps. In learning and testing on target tasks, we
closely follow the procedure in Vu et al. (2022).
The model is tuned for 100K on each target task.
We save a checkpoint every 500 steps and report
results on the checkpoint with the highest valida-
tion performance. The prompt generator generates
64 soft tokens. The following hyperparameters are
shared in all target and source task training: learn-
ing rate (0.3), the number of warmup steps (4000),
optimizer (Adam).

4 Results

High-to-Low Resource Transfer The results are
shown in Table 1. We first compare our method,
SHARPT, to methods with comparable compute-
and parameter-efficiency, PROMPTTUNING and
SPOT-Retrieval. Our method has a clear improve-
ment over the two methods across most tasks
and on the average performance. We next com-
pare SHARPT with much more expensive meth-
ods, SPOT-Oracle and MODELTUNING. Note that
SPOT-Oracle is significantly more expensive than
our method since it tunes on each target task with
each possible task prompt (e.g., it requires roughly
48 times more training time), and utilizes oracle
labels. While being much more efficient, SHARPT
matches or outperforms SPOT-Oracle. Also, our
method performance is on par with the MODEL-
TUNING performance which requires to tune the
entire model. These results indicate SHARPT is an
efficient and competitive approach.

Transfer across Different Task Categories The
results are shown in Table 2. Our method outper-
forms both PROMPTTUNING and SPOT methods.

2For instance, removing the instance encoder in training
(by pre-computing the instance embeddings) does not allow a
larger batch size compared to including the instance encoder.
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BoolQ CB CoLA COPA CR MRPC RTE STS-B WiC WSC Average

ModelTuning 81.4 94.0 51.1 71.2 94.1 87.5 81.5 89.4 68.3 80.8 79.9
SPoT-Oracle 77.6 97.0 55.6 69.3 93.9 88.7 74.7 90.0 70.2 77.2 79.4

PromptTuning 73.0 92.7 52.9 56.7 93.5 86.1 68.7 88.1 63.6 71.5 74.7
SPoT-Retrieval 74.2 95.4 54.8 58.3 93.6 88.4 71.6 90.0 66.7 72.9 76.6
SHARPT 78.9 94.6 58.2 67.0 94.5 89.7 79.4 89.1 68.8 81.6 80.2

Table 1: Results on the high-to-low transfer learning setting. Methods in the upper panel are significantly more expensive than
those in the lower panel. The best performance is in bold, and the second best is underlined.

COPA CB RTE WSC WiC

ModelTuning 71.2 94.0 81.5 80.8 68.3
SPoT-Oracle 63.0 92.9 72.0 77.2 70.2

PromptTuning 56.7 92.7 68.7 71.5 63.6
SPoT-Retrieval 61.2 89.4 71.4 73.6 66.7
SHARPT 65.0 94.6 79.4 79.0 69.8

Table 2: Results on transferring across task categories.

Figure 2: Results on models of different sizes.

The improvement over SPOT methods is larger in
this setting than in the high-to-low transfer setting.
This might be because SPOT relies more on knowl-
edge shared by tasks in the same category, while
SHARPT learns a shared latent space across all
source tasks and is more suitable to leverage knowl-
edge shared across datasets of different categories.

Across Model Scales In the experiments above,
we show that our method can close the performance
gap between full model tuning and prompt-based
methods on a mid-sized model, T5-base (220M).
Here conducts experiments with larger models,
T5-large (800M) and T5-xl (3B), and compare
SHARPT to MODELTUNING and PROMPTTUN-
ING. As shown in Figure 2, SHARPT matches
or slightly outperforms MODELTUNING under the
three model scales. Our method also shows consid-
erable improvements over PROMPTTUNING.

Ablations We ablate two key components of
SHARPT: (1) training on source tasks; (2) skill
latent space that captures shared knowledge. See
the results in Table 3. Clearly, knowledge learned
from source tasks and encoded in the latent space
is critical for target task performance.

BoolQ CB CoLA COPA

SHARPT 78.9 94.6 58.2 67.0
No Source Task Training 64.3 89.3 10.3 58.0
No Latent Space 67.9 82.4 17.6 61.0

Table 3: Ablation results.

Figure 3: A heatmap of task relations based on skill vector
usage of each task.

Task Relations We investigate if the latent space
captures source and target task relations to allow
knowledge transfer. Each instance queries the la-
tent space and selects one latent skill. We convert
this selection to a one-hot vector and treat it as
an instance encoding. A task representation is the
average of instance encodings in the task. The co-
sine similarity between two task representations is
computed as their relation. The relations between
source and target tasks are visualized in Figure 3.
It seems that more complicated source tasks such
as QA and NLI tasks transfer more knowledge to
target tasks via the skill latent space.

5 Conclusion

We introduce SHARPT, which learns a shared la-
tent space which captures a set of basis NLP capaci-
ties from a mixture of source tasks. Target instance
queries this space to retrieve a skill vector, which
then generates prompt tokens to condition a frozen
LLM. Our approach outperforms prior soft prompt
methods by a significant margin on a variety of
tasks. Our method also matches full-model-tuning
across model scales.
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Limitations

Although our method is much simpler than SPOT,
PROMPTTUNING is still arguably the simplest
method for adapting LLMs to downstream tasks.
It would be a fruitful research direction to design
transfer learning approaches that retain (or even im-
prove) our method’s performance and meanwhile
further simplify our method, getting closer to the
simplicity of PROMPTTUNING.
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