
Findings of the Association for Computational Linguistics: EACL 2023, pages 1321–1333
May 2-6, 2023 ©2023 Association for Computational Linguistics

An Intra-Class Relation Guided Approach
for Code Comment Generation

Zhenni Wang†, Xiaohan Yu†, Yansong Feng∗, Dongyan Zhao
Wangxuan Institute of Computer Technology, Peking University, China

The MOE Key Laboratory of Computational Linguistics, Peking University, China
{wangzhenni,yuxiaohan,fengyansong,zhaodongyan}@pku.edu.cn

Abstract

Code comments are critical for maintaining and
comprehending software programs, but they are
often missing, mismatched, or outdated in prac-
tice. Code comment generation task aims to
automatically produce descriptive comments
for code snippets. Recently, methods based on
the neural encoder-decoder architecture have
achieved impressive performance. These meth-
ods assume that all the information required
to generate comments is encoded in the tar-
get function itself, yet in most realistic situ-
ations, it is hard to understand a function in
isolation from the surrounding context. Fur-
thermore, the global context may contain re-
dundant information that should not be intro-
duced. To address the above issues, we present
a novel graph-based learning framework to cap-
ture various relations among functions in a
class file. Our approach is based on a common
real-world scenario in which only a few func-
tions in the source file have human-written com-
ments. Guided by intra-class function relations,
our model incorporates contextual information
extracted from both the source code and avail-
able comments to generate missing comments.
We conduct experiments on a Java dataset col-
lected from real-world projects. Experimental
results show that the proposed method outper-
forms competitive baseline models on all auto-
matic and human evaluation metrics.

1 Introduction

Code comment generation is the task of automati-
cally producing natural language descriptions for
given code snippets. Appropriate and sufficient
comments are essential for software maintenance
and understanding (Xia et al., 2018). They allow
developers to grasp the purpose of source code
quickly and accurately. However, in real-life soft-
ware projects, comments are often missing, incom-
plete or outdated (Briand, 2003). Existing com-

†Equal contribution.
*Corresponding author.

1 private void firePropertyChange (String propName,

2 Object oldValue, Object newValue) {

3 PropertyChangeEvent evt = new PropertyChangeEvent();

4 ...

5 }

6 /* Removes a time series from the map and

fires a TS_REMOVED PropertyChangeEvent.*/

7 public removeTS (String name) {

8 boolean fireChanged = false;

9 ...

10 if (fireChanged)

11 firePropertyChange(TS_REMOVED, name, name);

12 }

13 /* Removes all time series from the map and

fires an ALL_TS_REMOVED PropertyChangeEvent.*/

14 public removeAllTS() {

15 ...

16 firePropertyChange(ALL_TS_REMOVED, null, null);

17 }

Table 1: Example illustrating the importance of utilizing
class-level contextual information.

ments will also need to be adjusted as the associ-
ated programs are updated, which could cause large
time and labor costs. Hence, there is a significant
need for automatic generation technologies that can
effectively produce high-quality comments.

Recent works in code comment generation take
the neural encoder-decoder architecture as their
cornerstone (Hu et al., 2018a; Alon et al., 2019;
LeClair et al., 2020; Zhang et al., 2020; Wei et al.,
2020). However, these works only utilize the in-
formation provided by the target function itself. In
object-oriented programming, classes are the build-
ing blocks that express algorithmic intentions and
they encapsulate the interaction between functions.
Therefore, the class-level contextual information
should not be ignored when we attempt to generate
code comments. There are some existing studies
that attempt to fill this gap. Haque et al. (2020)
encode all functions in a source file using GRU
(Cho et al., 2014) and apply an attention mecha-
nism to learn associations between the encoding
results to words in the generated comment. Yu et al.
(2020) construct a class graph that connects the

1321

target function to all other functions in the same
class to aggregate contextual information. Bansal
et al. (2021) present a project-level encoder to aug-
ment existing models by introducing contextual
information.

Although the above methods have shown promis-
ing performance, the way they introduce contextual
information is somewhat crude. Since not all sur-
rounding functions are closely related to the target
function, indiscriminately utilizing the whole con-
text may introduce noise, which would hurt the
model performance. We propose that consider-
ing function relations is a better way to leverage
the contextual information. For example, Table 1
presents three functions in a Java class. Within
this class, we can observe two types of function
relations. First, the function removeTS calls
firePropertyChange in its function body.
As we can see, the word "PropertyChangeEvent"
in the human-written comment appears not in the
target function, but in the callee function. Sec-
ond, removeTS and removeAllTS perform
very similar operations, and their comments are
almost identical, with the exception of a few noun
subjects. This example illustrates that the informa-
tion required to generate a comment may be located
outside the boundary of the target code snippet and
within the related functions.

Motivated by the above observation, we define
two types of relations between a function pair: ex-
tractive relation and inductive relation. The extrac-
tive relation captures connections between source
code snippets at two levels: call dependencies and
semantic similarity, allowing us to derive external
knowledge directly from the relevant code snippets.
The inductive relation captures common program-
ming patterns within a class. We observe that devel-
opers usually create similar comments for functions
that conform to a specific programming pattern.
Therefore, comments of functions that have induc-
tive relation to the target function can be used as a
template to guide the target comment generation.

In this paper, we propose a graph-based encoder-
decoder learning framework for code comment gen-
eration. Our approach is based on a common sce-
nario where only a few functions in the class file are
documented. We construct a heterogeneous graph
to model both the extractive relation and inductive
relation among functions within a class file. In the
encoding stage, we encode all functions and avail-
able comments using bi-GRU. Then, we design

an intra-class relational GAT encoder to aggregate
information and perform a fusion of both types
of relations via a cross-graph mechanism. In the
decoding stage, we employs a GRU decoder with
a by-pointer mechanism to generate a comment
utilizing the encoding results.

To evaluate the performance of our approach,
we gather a Java dataset that preserves the class
structure. We conduct experiments on this dataset
and perform evaluation using automatic and hu-
man evaluation metrics. The experimental results
show that our model outperforms prior methods by
a significant margin, which demonstrate the effec-
tiveness of our proposed framework.

2 Related Works

Early efforts on code comment generation are
template-based or information retrieval (IR) based
approaches (Sridhara et al., 2010; Haiduc et al.,
2010a,b; Eddy et al., 2013; Rodeghero et al., 2014;
McBurney and McMillan, 2014). In recent years,
the neural encoder-decoder architecture is em-
ployed to the code comment generation field, which
was designed for neural machine translation (NMT)
task originally. CodeNN (Iyer et al., 2016) is
an early work that attempts to adopt the encoder-
decoder architecture for generating code comments.
Followed works develop a variety of models by in-
troducing the Abstract Syntax Tree (AST) to extract
structural information of the source code (Hu et al.,
2018a; Alon et al., 2019; Allamanis et al., 2018;
Liang and Zhu, 2018; LeClair et al., 2019a). More
recently, novel code representations are learned via
well-designed encoders, such as GNN-based en-
coders (LeClair et al., 2020; Zhang et al., 2022) and
pre-training encoders (Ahmad et al., 2020; Zügner
et al., 2021; Guo et al., 2022).

Hybrid methods that integrate the IR-based and
neural-based techniques proved to perform well on
the code comment generation task. Zhang et al.
(2020) retrieve two similar code snippets of the
target function at syntax and semantics levels, then
utilize their encoding information to generate com-
ments in the decoding stage. Wei et al. (2020)
retrieve the most similar code snippet and the corre-
sponding comment to assist the generation process.
Liu et al. (2021) retrieve the most similar code-
comment pair and add it as auxiliary information
to their proposed Hybrid GNN framework.

However, these works rarely utilize contextual
information that is external to the target function.

1322

Graph
Construction

Function Graph

Comment Graph

Function
Encoder

Comment
Encoder

Target-aware
Attention

Graph Attention Network

Cross-graph
Attention

Java
Class

!! !" "#$%
GRU GRU

Attention

#&'(

#&'(

ℎ&'(

#&')

#&

Decoder

1 − ' ×) '(1 − ') × (1 −))

Figure 1: The overall architecture of our approach. Local encoders extract features from code snippets and known
comments (Section 3.3). The GAT encoder aggregates class-level information and produces final representations.
(Section 3.4). Lastly, these encoding results are fed into the decoder to create the target comment (Section 3.5).

Some of the most recent works make efforts to
bridge this gap (Haque et al., 2020; Yu et al., 2020;
Bansal et al., 2021). In contrast to these existing
approaches, our method explores function relation-
ships within a class and only incorporates related
functions. This has the advantage of avoiding noise
caused by irrelevant functions and focusing on the
valuable contextual information.

3 Approach

This section introduces our proposed framework
for code comment generation. Figure 1 illustrates
an overview of our approach.

3.1 Relation Extraction

To focus on valuable class-level contextual infor-
mation, we need to develop extraction rules for
function relations. We define the extractive rela-
tion as (1) the call dependency; (2) the TF-IDF co-
sine similarity. Call dependencies can be extracted
using the java-callgraph* toolkit, and the TF-IDF
cosine similarity between functions Xi and Xj is
calculated as:

sij =

−−−−−→
tfidf(Xi)T

−−−−−→
tfidf(Xj)

∥
−−−−−→
tfidf(Xi)∥∥

−−−−−→
tfidf(Xj)∥

∈ [0, 1] (1)

If the similarity score sij > α, we consider a ex-
tractive relation between Xi and Xj , where α is a
pre-defined threshold.

*https://github.com/gousiosg/java-callgraph/

Towards the inductive relation, we summarize
some common programming patterns and organize
them into five heuristic rules based on extensive
observations of open-source software projects. For-
mally, we consider an inductive relation between
two functions if:

(R1) the verbs in function names are antonyms,
with the same or no object entities;

(R2) the verbs in function names are the same, with
overlapping object entities;

(R3) both functions have the same parameters as
well as the same verbs in their names;

(R4) both functions have the same parameters as
well as the same return type;

(R5) the return type of one function corresponds to
the parameter type of another.

In (R1)-(R3), we conduct part-of-speech tagging on
function names using the toolkit Stanford CoreNLP
† to identify verbs and noun entities. And we use
the NLTK ‡ interface of WordNet § to get antonyms
of verbs in (R1). Appendix A provides several
examples that correspond to the preceding rules.

3.2 Graph Construction
For each class, we build a graph structure that con-
sists of two subgraphs, called function graph and

†https://stanfordnlp.github.io/CoreNLP/
‡https://www.nltk.org/
§https://wordnet.princeton.edu/

1323

https://github.com/gousiosg/java-callgraph/
https://stanfordnlp.github.io/CoreNLP/
https://www.nltk.org/
https://wordnet.princeton.edu/

comment graph. The node of the function graph
represents each function, while the node of the
comment graph represents the corresponding com-
ment. Since only a small fraction of comments
in the class are known, we use function names
to replace unknown comments. According to the
previously defined extraction rules, we add edges
between the corresponding function nodes if a pair
of functions fulfill the extractive relation, and be-
tween comment nodes if they satisfy the inductive
relation. Formally, we define a graph

G = { (vi, rfun, vj) ∪ (ui, rcom, uj) },
where v ∈ Vf is the node of function, u ∈ Vc is
the node of comment or function name, Vf ,Vc are
the sets of function nodes and comment nodes, and
rfun, rcom denote edges that represent the extrac-
tive relation between functions, and the inductive
relation between comments, respectively.

3.3 Local Encoder
Our model contains two local encoders, a func-
tion encoder and a comment encoder. They ex-
tract features from functions and comments sepa-
rately. The function encoder employs a bi-GRU
(Cho et al., 2014) to convert the source code se-
quence {x1, · · · , xn} into numerical vectors Z =
{z1, · · · , zn}, where zi = [−→zi ||←−zi] is the concate-
nation of the hidden states from both directions. We
take Z as the representation of the input function.
The comment encoder also apply a bi-GRU to the
comment sequence {w1, · · · , wm}, and produce
hidden states {r1, · · · , rm}. The last hidden state
rm is considered as the comment representation.

3.4 Intra-class Relational GAT
We propose an intra-class relational graph atten-
tion network that performs on the previously con-
structed graph.

Node Initialization For function nodes, we
first apply the function encoder to obtain their
representations {Z1, · · · , ZK}, where Zi =
{zi1, · · · , zini} represents the i-th function. Then,
we use a target-aware attention mechanism to focus
on information in other functions that is beneficial
to the target function. We take the last hidden
state as the representation of the target function Zt,
which can be denoted as zt, and use it to compute
the attention weight as:

αt,ij =
exp(zT

t Wtzij)∑ni
k=1 exp(z

T
t Wtzik)

, (2)

4

1

5

3

6

82

7

4

1

5

3

6

82

7

!!,#$!!,%$
!!,&'

!!,#'

!!,($
!!,)'

!!,*'

!!,#' !!,%$
!!,&'

!!,#$

!!,($
!!,)'

!!,*'

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Function Graph
Attention Distribution

Function Graph

Comment Graph
Attention Distribution

Comment Graph

Figure 2: An example of updating node 1 via cross-
graph attention mechanism.

where Wt is a learnable parameter. The atten-
tion score αt,ij measures the similarity between
the target function and the j-th token in the code
sequence of the i-th function. Then, we compute
the weighted sum of all elements in Zi:

f0
i =

ni∑

j=1

αt,ij zij , (3)

and take it as the initial representation of the func-
tion node vi. Finally, we obtain a set of target-
aware initial vectors representing function nodes,
which is denoted as {f0

i | i : vi ∈ Vf}. For com-
ment nodes, the last hidden states are used directly
as the initial node representations, and we denote
them as {c0i | i : ui ∈ Vc}.

Cross-Graph Attention We employ two sepa-
rate GAT modules, one for the function graph and
the other for the comment graph, which have the
same structure. In order to interact information
between these two graphs, we design a cross-graph
attention mechanism that is applied to each layer
of the GATs. Fig. 2 illustrates an example of this
mechanism. Specifically, the l + 1-th layer of each
GAT receives a set of messages {f l

i | i : vi ∈ Vf}
or {cli | i : ui ∈ Vc} from the previous layer. Then,
we obtain two output vectors f l+1

g,i , cl+1
g,i and two

attention distributions calculated as:

efij = LeakyReLU(aT [Wa f
l
i ||Wa f

l
j]),

βf
ij = Softmax(efij) =

exp(efij)∑
k exp(e

f
ik)

,
(4)

ecij = LeakyReLU(bT [Wb c
l
i ||Wb c

l
j]),

βc
ij = Softmax(ecij) =

exp(ecij)∑
k exp(e

c
ik)

,
(5)

where a,Wa, b,Wb are trainable parameters.
Next, we exchange the attention weights and com-

1324

pute two cross-graph vectors as:

f l+1
cross,i =

∑

j:uj∈Nc(ui)

βc
ij Wd f

l
j , (6)

cl+1
cross,i =

∑

j:vj∈Nf (vi)

βf
ij We c

l
j , (7)

where ui is the corresponding comment node of
function node vi, Nf (vi) is a set of the neighbor-
ing function nodes of vi, Nc(ui) is a set of the
neighboring comment nodes of ui, and Wd,We

are trainable parameters. Finally, we aggregate the
cross-graph vector and the original GAT output vec-
tor to obtain an integral context vector that takes
into account both extractive and inductive relations:

f l+1
aggr,i = tanh(Wf [f

l+1
cross,i ||f l+1

g,i]). (8)

cl+1
aggr,i = tanh(Wc[c

l+1
cross,i || cl+1

g,i]). (9)

where Wf ,Wc are trainable weights.

Update Gate Motivated by (Cho et al., 2014),
we introduce an update gate to control how much in-
formation from the previous representation should
be transferred to the current representation:

g = Sigmoid(Wg[f
l+1
aggr,i ||f l

i]), (10)

f l+1
i = g ∗ f l+1

aggr,i + (1− g) ∗ f l
i . (11)

We also obtain cl+1
i by performing the same oper-

ation. These two representations are the outputs
of the l + 1-th layer. We repeat the above process
L times and get the final node representations, de-
noted as fL

i and cLi . Finally, we concatenate the
representation of the function node and its corre-
sponding comment node as the output of our GAT
encoder, which is denoted as gi = fL

i || cLi .

3.5 Decoder
The decoder employs a GRU to generate comment
for the target function Zt. The initial hidden state
is a concatenation of the last hidden state zt from
the function encoder and the final output gt from
the GAT encoder.

Attention We consider multiple context vectors:
czt toward the output from the function encoder,
crt toward the output from the comment encoder,
and cgt toward the output from the GAT encoder,
which can be calculated as follows:

γtj =
exp(hT

t Wsηj)∑
k exp(h

T
t Wsηk)

, (12)

cvt =
∑

j

γtj ηj , (13)

where Ws is a learnable parameter, ht is the current
decoder hidden state, and ηj represents the function
encoder output zj , the comment encoder output rj ,
and the GAT encoder output gj , respectively.

By-Pointer Since both code snippets and known
comments may contain words that are not in the
vocabulary, a portion of the predicted tokens could
be copied directly from them. Motivated by (See
et al., 2017) and (Sun et al., 2018), we design a
by-pointer mechanism to solve this problem. In the
t-th time step, the decoder takes embedding yt as
input, and the copy distribution is formulated as:

λ = Sigmoid(Wl[crt ||ht ||yt), (14)

Pcopy = λ ∗ γc + (1− λ) ∗ γf , (15)

where Wl is the trainable parameter. The γf is the
attention distribution between the current hidden
state ht and source codes, γc is the attention dis-
tribution between ht and known comments, both
calculated by Eq (12). Additionally, the generative
distribution over all vocabulary tokens is calculated
based on ht and three context vectors:

Pgen = Softmax(Wv[ht || czt || crt || cgt] + bv),
(16)

where Wv, bv are trainable parameters. Finally, we
obtain the prediction distribution as follows:

µ = Sigmoid(Wm[czt || crt || cgt ||ht ||yt]),
(17)

P (w) = µ ∗ Pgen + (1− µ) ∗ Pcopy (18)

where Wm is the trainable parameter. This mech-
anism allows our model to both generate tokens
from the vocabulary and copy tokens from two
sources during inference.

4 Experimental Setup

4.1 Dataset
Due to most public datasets only consist of inde-
pendent code snippets, we collect a dataset from
Google Code Archive that preserves class-level in-
formation. With the help of Sourcerer (Bajracharya
et al., 2014), we are able to trace and recover the en-
tire architecture of 1,000 real-world JAVA projects.
We assume that only 10% of functions or at least
one function have comments in each class. To
determine which functions will be treated as com-
mented, we use two different sampling settings. (1)

1325

Random Sampling: we randomly sample 10% of
functions in each class as commented based on the
assumption that commenting is a stochastic behav-
ior for developers; (2) Degree Sampling: since
functions that connect to others more frequently
often play a key role in programming, we calculate
function degrees in the class graph and rank them
in descending order. Then we sample the top 10%
of functions as commented. After sampling, we
split our dataset by projects according to a ratio of
8:1:1. The more detail of our dataset is provided in
the Appendix B.

4.2 Baselines

Retrieval-based Models RandomCopy ran-
domly copies comments from a known comment
set. MaxCopy computes the ROUGE-L score be-
tween the golden comment and known comments,
then copies the comment with the highest score.
NNGen (Liu et al., 2018) is a IR-based method for
generating commit messages that can also be used
in the code comment generation task.

Generation-based Models Seq2Seq (Sutskever
et al., 2014) is a bi-GRU with an attention mech-
anism. ASTGNN (LeClair et al., 2020) applys a
GRU encoder for the source code sequence, a GCN
(Kipf and Welling, 2017) encoder for the AST and
a GRU decoder for generation. Rencos (Zhang
et al., 2020) retrieves two similar functions from
a code retrieval base to enhance the neural gen-
eration. ClassGAT (Yu et al., 2020) employs a
local bi-GRU encoder and a global GNN encoder
to obtain two different levels of function represen-
tation. The encoder outputs are fed into a GRU
decoder with an attention and copy mechanism.
CodeBERT (Feng et al., 2020) is a pre-trained
model that can be adapted to a variety of NL-PL
applications. GypSum (Wang et al., 2022) learns
representations from source codes and ASTs using
a pre-trained encoder and a GAT encoder. The en-
coding results are fused in a Transformer decoder
to generate comments.

with Known Comments The baseline models
mentioned above only work on the source code
itself, whereas our approach incorporates known
comments additionally. To explore the influence
of known comments, we perform a modification
that introduces them into multiple baselines. For
Seq2Seq, we produce a comment by combining
the target function representation and the weighted

sum of known comment representations. Towards
ClassGAT, we take the initial node representation
as (i) a concatenation or (ii) a weighted sum of the
function representations and their corresponding
comment representations, then report the best per-
formance. As for CodeBERT, we set its input as
a concatenation of the target function and known
comments within the class.

with CodeBERT We also incorporate Code-
BERT into our model for verifying whether func-
tion relations still provide benefits when employing
a strong pre-training model. Specifically, we use
the CodeBERT and a transformer decoder to re-
place the bi-GRU encoder and the GRU decoder,
respectively.

4.3 Implementation Details

The value of threshold α is set to 0.7. Word em-
beddings are randomly initialized, the size of em-
beddings and hidden states are set to 256. Both the
encoder and decoder GRUs have a single layer and
the GAT has 3 layers. We use Adam (Kingma and
Ba, 2015) optimizer to train our model with the
weight decay rate being 1e-6. We set the learning
rate to 1e-4 and the dropout (Srivastava et al., 2014)
rate is 0.3. There is also a scheduler that reduce
learning rate when the BLEU on the validation set
stops improving for 3 epochs, and the learning rate
will not be less than 1e-6. All our experiments were
trained on Nvidia A40 GPUs.

4.4 Evaluation Metrics

We evaluate the quality of generated comments
based on BLEU (Papineni et al., 2002) and
ROUGE-1, -2, -L (Lin, 2004). We also report
1,2,3,4-gram precisions to determine how many
n-grams in the generated text overlap with the ref-
erence text. For human evaluation, we invited three
experienced raters to score fifty samples randomly
selected from the test dataset. For each gener-
ated comment, raters assign scores in three aspects:
(i) Fluency, which measures comment quality in
terms of grammaticality and readability; (ii) Rel-
evance, which examines whether the generated
comment accurately summarizes the functionality
of the code snippet; (iii) Informativeness, which
evaluates whether the comment offers concrete in-
formation that is free of redundancy or repetition.
These human evaluation metrics have a scale of 0
to 2 (where 2 indicates highly satisfied and 0 means
highly unsatisfied).

1326

Degree-Sampling

Model BLEU p1 p2 p3 p4 ROUGE-1 ROUGE-2 ROUGE-L

RandomCopy 13.08 30.0 14.4 9.2 7.4 30.72 14.04 29.41
MaxCopy 14.65 32.2 16.2 10.4 8.4 33.60 16.20 32.26
NNGen 16.11 29.1 16.4 13.1 12.1 30.29 17.68 29.48

Seq2Seq 15.10 37.1 18.1 11.9 9.9 37.49 18.47 36.05
ASTGCN 16.05 39.5 18.9 12.2 9.6 41.76 20.65 39.71
Rencos 16.08 39.1 20.9 14.4 12.3 37.83 20.06 36.63
ClassGAT 17.38 40.7 20.5 13.6 11.1 42.70 21.65 40.51
CodeBERT 18.29 46.9 25.2 16.8 13.5 45.00 24.01 43.25
GypSum 18.95 44.6 23.9 15.5 12.0 45.44 24.22 43.60

Seq2Seq+KC 16.51 39.4 20.4 12.9 10.6 39.82 20.76 38.37
ClassGAT+KC 18.52 42.8 22.1 14.9 12.6 43.34 22.67 41.05
CodeBERT+KC 19.64 51.9 29.0 18.3 13.6 49.95 27.54 47.87

Ours 21.39 47.3 26.6 18.6 15.9 46.78 25.72 44.87
+ CodeBERT 25.60 51.9 31.8 22.8 18.8 51.87 31.54 49.89

Table 2: Comparison between our model and baselines. "KC" refers to the known comments.

Model Fluency Relevance Informativeness

Seq2Seq 1.19 (±0.86) 0.72 (±0.75) 0.93 (±0.79)
ClassGAT 1.27 (±0.82) 0.81 (±0.75) 1.01 (±0.76)
CodeBERT 1.39 (±0.78) 1.13 (±0.77) 1.31 (±0.75)
Ours 1.54 (±0.77) 1.21 (±0.87) 1.36 (±0.72)

Table 3: Results of human evaluation (standard devia-
tion in parentheses).

5 Results and Analysis

5.1 Automatic Evaluation

The comparative results are summarized in Table
3. Overall, our model outperforms all baselines
by a large margin. Retrieval-based models have
relatively poor results since they do not adequately
exploit the semantic information of the source code.
In comparison, generation-based models perform
better. ASTGCN surpasses Seq2Seq by incorporat-
ing structural information from the AST. Rencos
and ClassGAT improve their performance with the
assistance of external information. CodeBERT and
GypSum exceed other baselines by utilizing their
extensive pre-training knowledge. After aggregat-
ing related contextual information, our model out-
performs all baseline models. This suggests that
considering function relations is an effective way to
enhance the comprehension of the target function.

We discover that introducing known comments
can improve the performance of some baselines.
As shown in Table 2, all of the methods achieve an
improvement on BLEU and ROUGE. Due to the
vast knowledge gained during the pre-training pro-
cess, CodeBERT significantly improves ROUGE-L
from 43.25 to 47.87 (+ 4.62%). This result suggests
that known comments from the class context can
help with code comment generation. We also ana-

lyze the effect of known comments on our model
in the Appendix C.

Although these models present competitive per-
formance with the incorporation of known com-
ments, our model equipped with CodeBERT still
manages to make a further improvement and
achieves the best BLEU and ROUGE scores among
all the involved models. This shows that combin-
ing our framework with the pre-trained model can
effectively absorb both the contextual information
and the pre-training knowledge, which allows our
approach to collaborate with more advanced pre-
trained models in the future.

5.2 Human Evaluation
We further conduct human evaluation to assess the
quality of comments generated by different mod-
els, as shown in Table 3. Our model surpasses
the baseline models on all metrics. The Seq2Seq
model has a much lower score than others, because
it only utilizes local information contained in the
source code, whereas other models incorporate con-
textual information or pre-training knowledge as
well. Since the by-pointer mechanism enables our
model to copy tokens from both the source code
and known comments, it significantly improves
the fluency of generated comments. Besides, the
highest relevance and informativeness score indi-
cates that our model can effectively summarize the
behavior of a given function.

5.3 Ablation Study
To examine the contribution of components in our
framework, we evaluate the performance after re-
moving each of them, as shown in Table 4. We dis-
cover that removing any of the modules has a neg-

1327

Model BLEU p1 p2 p3 p4 ROUGE-1 ROUGE-2 ROUGE-L

Ours 21.39 47.3 26.6 18.6 15.9 46.78 25.72 44.87
w/o function encoder 16.39 42.2 21.4 13.1 10.0 43.45 22.44 41.40
w/o GAT encoder 16.75 44.3 22.0 13.4 10.1 45.09 22.20 42.84
w/o target-aware attention 19.35 46.3 24.7 16.2 12.9 46.41 24.72 44.24
w/o cross-graph attention 18.81 45.0 24.1 15.8 12.6 45.14 23.74 43.06
w/o by-pointer mechanism 20.27 46.9 25.7 17.4 14.7 46.58 25.20 44.53

Table 4: Ablation study results of our approach.

ative impact on the model performance. Without
the function encoder or GAT encoder, the perfor-
mance drops significantly, suggesting that both are
critical components in our framework. Removing
the target-aware attention or cross-graph attention
mechanism also results in a noticeable performance
degradation, indicating that both mechanisms con-
tribute to overall performance. Besides, we observe
a slight drop in performance without the by-pointer
mechanism, confirming that this component can
effectively copy tokens from the source code and
known comments to improve comment generation.

5.4 Threshold α

The hyper-parameter α determines the lower limit
of TF-IDF similarity scores. To explore how model
performance varies with α, we run a series of ex-
periments with different values of α, while keeping
other hyper-parameters constant. Fig. 3 shows the
corresponding results. It illustrate that α = 0.7
achieves peak performance in both BLEU and
ROUGE-L. When α is equal to 0.5 or 0.9, our
model performs poorly in both metrics. This may
be because when the α is too small or too large,
there are too many or too few functions associated
with the target function, and the model is unable to
make effective use of contextual information.

5.5 Sampling Settings

To investigate the impact on our approach when
programmers select functions to be commented
in different ways, we conduct a series of experi-
ments under random and degree sampling settings.
The experimental results are reported in Fig. 4.
Compared to the competitive baselines, our model
presents better performance under both settings.
Since our model is able to capture function rela-
tions within a class, even randomly commenting
functions can help improve the quality of gener-
ated comments. Furthermore, it clearly shows that
our model performs much better under degree sam-
pling than random sampling, due to the reason that
commenting functions with higher degrees can ben-

0.5 0.6 0.7 0.8 0.9
 value

16

18

20

22

24

BL
EU

0.5 0.6 0.7 0.8 0.9
 value

40

42

44

46

48

RO
UG

E-
L

Figure 3: Performance of our model with different
threshold α.

ClassGAT ClassGAT+KC Ours
0

5

10

15

20

25

BL
EU

Random Sampling
Degree Sampling

ClassGAT ClassGAT+KC Ours

36

38

40

42

44

46

RO
UG

E-
L

Random Sampling
Degree Sampling

Figure 4: Performance of different models under ran-
dom sampling and degree sampling.

Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Ours 21.39 46.78 25.72 44.87
w/o TF-IDFSim 19.21 46.11 24.64 43.95
w/o R1 19.70 45.86 24.09 43.81
w/o R2 20.52 46.48 25.67 44.37
w/o R3 20.28 46.22 24.98 44.03
w/o R4 20.48 46.39 25.09 44.30
w/o R5 21.09 46.68 25.72 44.54
fully connected 17.73 45.60 23.73 43.42

Table 5: Impact of different types of edges.

efit more functions in the same class. This finding
implies that when engineering in the real world, it
may be a good idea to start by writing comments
for functions with higher degrees.

5.6 Relation Types

To examine the utility of edges constructed by TF-
IDF similarity and five types of inductive relations,
we remove them from the class graph to observe
how it affects model performance, as presented
in Table 5. It demonstrates that removing either
type of edge leads to a drop in BLEU and ROUGE
scores. Specifically, the performance degradation
is greatest after dropping edges of type TF-IDFSim
and R1, indicating that they are the most influen-
tial relation types. While removing R5 edges has
the least impact on model performance, this can

1328

Case 1 Case 2

Target
Function

public boolean isCurrent() {
boolean result = false;
if (this.getNumber().intValue() ==

EasyCalendar.getOne().getCurrentYear()) {
result = true ;

}
return result;

}

public Vector parse (final String str, char separator) {
if (str == null) {

return new Vector();
}
return parse(str.toCharArray(), separator);

}

Class
Context

Related Function:
public Month getCurrentMonth() {

Month month = null;
if (isCurrent()) {

int currentMonthNumber = EasyCalendar.getOne()
.getCurrentMonth();

month = getMonth(currentMonthNumber);
}
return month;

}

Known Comment:
gets the current month , but only if this year is the current one

Related Function:
public Vector parse (final char[] chars, int offset,

int length, char separator) {
if (chars == null) {

return new Vector();
}
Vector params = new Vector();
... ...
return params;

}

Known Comment:
extracts a list of name value pairs from the given array of characters

Graph
C

T

C

T

Function Graph Comment Graph

C

T

Function Graph Comment Graph

C

T

Golden checks if this year is the current year extracts a list of name value pairs from the given string
Seq2Seq gets the value of the attribute parses a string from the given
ClassGAT returns true if the current has the desired result extracts a character value at the given character
CodeBERT returns the current year extracts a vector from the string buffer
Ours returns true if this year is current one extracts a list of name value pairs from the given string

Table 6: Examples of the source codes, graph structure and generated comments. "T" refers to the target function
and "C" refers to the commented function in the class context.

be attributed to the low occurrence of this relation
type in the dataset. Furthermore, we conduct an
experiment to investigate the impact of exploiting
contextual information in a crude manner. To be
more specific, rather than modeling functional re-
lations, we construct a fully connected graph to
introduce the entire class context. Our model suf-
fers greatly as a result of this operation, with the
BLEU and ROUGE-L dropping 3.66% and 1.45%,
respectively. This performance loss verifies the ef-
fectiveness of our design for utilizing class-level
contextual information.

5.7 Case Study

Table 6 shows two examples of generated code
comments. In the first case, there is a commented
function in the class that is the caller of the tar-
get function. The second half of its comment pro-
vides an accurate description of the target function
isCurrent. Although there is no direct connec-
tion between these two functions in the comment
graph, our model is still able to extract information
from the known comment through the cross-graph
attention mechanism and generate a high-quality
comment. In contrast, baseline models do not cap-
ture the true functionality of the source code and
their generation results has a large deviation from
the original intention.

In the second case, it is difficult to figure out the
purpose of target function solely from the source
code. Since there is a defined (R1) pattern between
the target function and a commented function from
the class context, the constructed edge in the com-
ment graph allows our model to aggregate com-
ment of this related function. Therefore, our model
successfully generates "a list of name value pairs",
whereas other models fail to capture this key infor-
mation and produce meaningless comments. More-
over, it is worth noting that our model is unaffected
by irrelevant information in the known comment,
yielding the true object "string" rather than "array
of characters". The final output of our model is
exactly same as the human-written comment.

6 Conclusion

In this paper, we propose a graph-based learning
framework for code comment generation. Our ap-
proach targets a practical scenario where only a
few functions in the class file have human-written
comments. To identify valuable information from
the class context, we model function relations and
develop a graph attention network to aggregate
class-level contextual information. We conducted
experiments on Java programs collected from real-
world projects and the results demonstrate that our
approach outperforms prior methods.

1329

Limitations

There are four main limitations of our work. First,
we only evaluate our model on Java code snippets.
Although we expect that our approach could be gen-
eralized to other programming languages, further
experiments is required to confirm this hypothe-
sis. Second, our model does not utilize syntactic
information (e.g. ASTs) of the source code. Thus,
our next effort will incorporate this type of infor-
mation into our framework to advance comment
generation. Third, we do not employ Transformers
in our approach due to limited resources. This will
also be left to our future work. Fourth, in compar-
ison with the widely used datasets TL-CodeSum
(Hu et al., 2018b), CodeSearchNet(Husain et al.,
2019) and Funcom(LeClair et al., 2019b), the size
of our collected dataset is relatively small (Table
7). A large-scale code comment generation dataset
that retains class structure information is needed in
future studies.

Dataset Ours TL-CodeSum CodeSearchNet Funcom

Examples 40,328 87,136 496,688 2.1 M

Table 7: Number of dataset examples.

Acknowledgements

This work is supported in part by National Key
R&D Program of China (No. 2020AAA0106600)
and NSFC (62161160339). We would like to thank
the anonymous reviewers for their insightful com-
ments and helpful suggestions.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,

and Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007. As-
sociation for Computational Linguistics.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2018. Learning to represent pro-
grams with graphs. In Proceedings of the Interna-
tional Conference on Learning Representations.

Uri Alon, Omer Levy, and Eran Yahav. 2019. code2seq:
Generating sequences from structured representa-
tions of code. In Proceedings of the 7th International
Conference on Learning Representations.

Sushil Bajracharya, Joel Ossher, and Cristina Lopes.
2014. Sourcerer: An infrastructure for large-scale

collection and analysis of open-source code. Sci.
Comput. Program., 79:241–259.

Aakash Bansal, Sakib Haque, and Collin McMillan.
2021. Project-level encoding for neural source code
summarization of subroutines. In Proceedings of the
IEEE/ACM 29th International Conference on Pro-
gram Comprehension (ICPC), pages 253–264.

Lionel C. Briand. 2003. Software documentation: how
much is enough? In Proceedings of the 7th Eu-
ropean Conference on Software Maintenance and
Reengineering, pages 13–15. IEEE.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734. Association for Computational Linguistics.

Brian P. Eddy, Jeffrey A. Robinson, Nicholas A. Kraft,
and Jeffrey C. Carver. 2013. Evaluating source code
summarization techniques: Replication and expan-
sion. In Proceedings of the 21st International Con-
ference on Program Comprehension (ICPC), pages
13–22. IEEE.

Zhangyin Feng et al. 2020. CodeBERT: A pre-trained
model for programming and natural languages. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1536–1547. Associa-
tion for Computational Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 7212–7225.
Association for Computational Linguistics.

Sonia Haiduc, Jairo Aponte, and Andrian Marcus.
2010a. Supporting program comprehension with
source code summarization. In Proceedings of the
IEEE/ACM 32nd International Conference on Soft-
ware Engineering, ICSE ’10, pages 223–226. Asso-
ciation for Computing Machinery.

Sonia Haiduc, Jairo Aponte, Laura Moreno, and An-
drian Marcus. 2010b. On the use of automated text
summarization techniques for summarizing source
code. In Proceedings of the 17th Working Conference
on Reverse Engineering, WCRE ’10, pages 35–44.
IEEE Computer Society.

Sakib Haque, Alexander LeClair, Lingfei Wu, and
Collin McMillan. 2020. Improved automatic summa-
rization of subroutines via attention to file context.
In Proceedings of the 17th International Conference
on Mining Software Repositories, MSR ’20, pages
300–310. Association for Computing Machinery.

1330

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://doi.org/10.1109/ICPC52881.2021.00032
https://doi.org/10.1109/ICPC52881.2021.00032
https://doi.org/10.1109/CSMR.2003.1192406
https://doi.org/10.1109/CSMR.2003.1192406
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1145/1810295.1810335
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1145/3379597.3387449
https://doi.org/10.1145/3379597.3387449

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In Proceedings of
the IEEE/ACM 26th International Conference on Pro-
gram Comprehension, ICPC ’18, pages 200–210. As-
sociation for Computing Machinery.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred api knowledge. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, IJCAI’18, page 2269–2275. AAAI Press.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2073–2083. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3th International Conference on Learning Rep-
resentations.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of the 5th International
Conference on Learning Representations.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings
of the IEEE/ACM 28th International Conference on
Program Comprehension, ICPC ’20, pages 184–195.
Association for Computing Machinery.

Alexander LeClair, Siyuan Jiang, and Collin McMil-
lan. 2019a. A neural model for generating natural
language summaries of program subroutines. In Pro-
ceedings of the IEEE/ACM 41st International Con-
ference on Software Engineering, ICSE ’19, pages
795–806. IEEE Press.

Alexander LeClair, Siyuan Jiang, and Collin McMil-
lan. 2019b. A neural model for generating natural
language summaries of program subroutines. In Pro-
ceedings of the 41st International Conference on Soft-
ware Engineering, ICSE ’19, page 795–806. IEEE
Press.

Yuding Liang and Kenny Q. Zhu. 2018. Automatic
generation of text descriptive comments for code
blocks. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence. AAAI Press.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Proceedings of
the Workshop on Text Summarization Branches Out,
pages 74–81. Association for Computational Linguis-
tics.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow,
and Yang Liu. 2021. Retrieval-augmented generation
for code summarization via hybrid GNN. In Proceed-
ings of the 9th International Conference on Learning
Representations.

Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo,
Zhenchang Xing, and Xinyu Wang. 2018. Neural-
machine-translation-based commit message genera-
tion: How far are we? In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, page 373–384. As-
sociation for Computing Machinery.

Paul W. McBurney and Collin McMillan. 2014. Au-
tomatic documentation generation via source code
summarization of method context. In Proceedings of
the 22nd International Conference on Program Com-
prehension, ICPC 2014, pages 279–290. Association
for Computing Machinery.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318. Association for
Computational Linguistics.

Paige Rodeghero, Collin McMillan, Paul W. McBurney,
Nigel Bosch, and Sidney D’Mello. 2014. Improving
automated source code summarization via an eye-
tracking study of programmers. In Proceedings of
the 36th International Conference on Software Engi-
neering, ICSE 2014, pages 390–401. Association for
Computing Machinery.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, pages 1073–1083. Association for Com-
putational Linguistics.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori
Pollock, and K Vijay-Shanker. 2010. Towards auto-
matically generating summary comments for java
methods. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, ASE ’10, pages 43–52. Association for Comput-
ing Machinery.

Nitish Srivastava et al. 2014. Dropout: A simple way to
prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958.

Fei Sun, Peng Jiang, Hanxiao Sun, Changhua Pei,
Wenwu Ou, and Xiaobo Wang. 2018. Multi-source
pointer network for product title summarization. In
Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management,
CIKM ’18, pages 7–16. Association for Computing
Machinery.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.

1331

https://doi.org/10.1145/3196321.3196334
https://dl.acm.org/doi/abs/10.5555/3304889.3304975
https://dl.acm.org/doi/abs/10.5555/3304889.3304975
https://doi.org/10.48550/ARXIV.1909.09436
https://doi.org/10.48550/ARXIV.1909.09436
https://doi.org/10.48550/ARXIV.1909.09436
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://dl.acm.org/doi/abs/10.5555/3504035.3504676
https://dl.acm.org/doi/abs/10.5555/3504035.3504676
https://dl.acm.org/doi/abs/10.5555/3504035.3504676
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://doi.org/10.1145/3269206.3271722
https://doi.org/10.1145/3269206.3271722
https://dl.acm.org/doi/10.5555/2969033.2969173

In Proceedings of the 27th International Conference
on Neural Information Processing Systems, NIPS’14,
pages 3104–3112. MIT Press.

Y. Wang, Y. Dong, X. Lu, and A. Zhou. 2022. Gypsum:
Learning hybrid representations for code summariza-
tion. In 2022 IEEE/ACM 30th International Confer-
ence on Program Comprehension, pages 12–23.

Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi
Jin. 2020. Retrieve and refine: Exemplar-based
neural comment generation. In Proceedings of the
IEEE/ACM 35th International Conference on Auto-
mated Software Engineering, ASE ’20, pages 349–
360. Association for Computing Machinery.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing,
Ahmed E. Hassan, and Shanping Li. 2018. Mea-
suring program comprehension: A large-scale field
study with professionals. In Proceedings of the 40th
International Conference on Software Engineering,
ICSE ’18, page 584. Association for Computing Ma-
chinery.

Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong
Feng, and Dongyan Zhao. 2020. Towards context-
aware code comment generation. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 3938–3947. Association for Computa-
tional Linguistics.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
and Xudong Liu. 2020. Retrieval-based neural
source code summarization. In Proceedings of the
IEEE/ACM 42nd International Conference on Soft-
ware Engineering, ICSE ’20, pages 1385–1397. As-
sociation for Computing Machinery.

Kechi Zhang, Wenhan Wang, Huangzhao Zhang, Ge Li,
and Zhi Jin. 2022. Learning to represent programs
with heterogeneous graphs. In Proceedings of the
IEEE/ACM 30th International Conference on Pro-
gram Comprehension, pages 378–389.

Daniel Zügner, Tobias Kirschstein, Michele Catasta,
Jure Leskovec, and Stephan Günnemann. 2021.
Language-agnostic representation learning of source
code from structure and context. In Proceedings of
the 9th International Conference on Learning Repre-
sentations.

A Examples of the inductive relation

Table 8 shows examples that correspond to the five
inductive relation rules defined in Section 3.1.

B Dataset

In order to better suit the scenario of our task, only
well-commented JAVA classes are retained, which
means classes containing more than three functions
and at least 70% of them have manually written
comments. The detailed statistics of our dataset are

0 50 100 150 200 250
Function Length

0

1000

2000

3000

4000

5000

6000

Co
un

t

0 5 10 15 20 25 30 35 40
Comment Length

0

500

1000

1500

2000

2500

3000

3500

4000

Co
un

t

Figure 5: Length distribution of functions and com-
ments in the dataset

.

shown in Table 9. Figure 5 shows the length distri-
bution of target function and golden comment of
our dataset. The length of functions is basically less
than 100 and the length of comments are mainly
between 3 and 25.

The data is preprocessed in following ways: for
each function, (1) we extract the summative content
in the Javadoc and take the first sentence as the
comment; (2) we remove all the format controlling
tokens and only retain comments having at least
three words; (3) we serialize the function-comment
pairs, remove non-alphabetical characters, and split
tokens written in camelCase or underscore style;
(4) we truncate the source code sequences to 200
tokens.

C Known Comments

As shown in the section 5.1, incorporating known
comments into comment generation can signifi-
cantly improve baseline model performance. To
further demonstrate the effect of known comments,
we remove them from our model and evaluate
model performance. Specifically, we use function
names instead of known comments for comment
nodes during the graph construction step while leav-
ing other settings unchanged. The experimental
results are shown in Table 10. It illustrates that
removing known comments reduces BLEU and
ROUGE-L scores by 4% and 3%, respectively, in-

1332

https://doi.org/10.1145/3524610.3527903
https://doi.org/10.1145/3524610.3527903
https://doi.org/10.1145/3524610.3527903
https://doi.org/10.1145/3324884.3416578
https://doi.org/10.1145/3324884.3416578
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.18653/v1/2020.findings-emnlp.350
https://doi.org/10.18653/v1/2020.findings-emnlp.350
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3524610.3527905
https://doi.org/10.1145/3524610.3527905
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF

Function 1 Function 2

Rule 1

/* Adds a service to the framework. */
public void add Service (Service service) {

Settings settings = service.getSettings();
servicesMap.put(settings.getName(), service);
settingsMap.put(settings.getName(), settings);

}

/* Removes a service from the framework.
public remove Service (Service service) {

Settings settings = service.getSettings();
servicesMap.remove(settings.getName());
settingsMap.remove(settings.getName());

}

Rule 2

/* Get degrees of latitude in different formats. */
public String get LatDeg (int format) {

switch (format) {
case DD :

return Double.toString(this.getLatDec());
...
case DMS :

return getDMS(getLatDec(), 0, format);
default :

return "";
}

}

/* Get degrees of longitude in different formats. */
public String get LonDeg (int format) {

switch (format) {
case DD :

return Double.toString(this.getLonDec());
...
case DMS :

return (((getLonDec() < 100.0) &&
(getLonDec() > -100.0)) ? "0" : "") +

getDMS(getLonDec(), 0, format);
default :

return "";
}

}

Rule 3

/* Method to calculate the bearing of a waypoint. */
public double get Bearing(CWPoint dest) {

if (!this.isValid() || dest == null || !dest.isValid())
return 361;

return GeodeticCalculator.calculateBearing(
TransformCoordinates.WGS84, this, dest);

}

/* Method to calculate the distance to a waypoint. */
public double get Distance(CWPoint dest) {

...
return GeodeticCalculator.calculateDistance(

TransformCoordinates.WGS84, this, dest) / 1000.0;
}

Rule 4

/* Returns the Action at the specified index. */
public Action get(int i) {

...
return (Action)m_actions.get(i);

}

/* Removes the Action at the specified index. */
public Action remove(int i) {

...
return (Action)m_actions.remove(i);

}

Rule 5

/* Add a Log to the list. */
public int add(Log log) {

resetRecommendations();
if (log != null && log.getLogType() != null) {

return merge(log);
}
return -1;

}

/* Get the Log at a certain position in the list. */
public Log getLog(int i) {

...
return logList.get(i);

}

Table 8: Examples of function pairs with the inductive relation

Item Number

Classes 3,344
Functions 40,328
Training examples 25,247
Validation examples 3,900
Test examples 2,770

Avg functions per class 12.4
Avg tokens per function 62.8
Avg tokens per comment 8.14

Table 9: Statistics of Our Dataset

Model BLEU p4 R-1 R-2 R-L

Ours 21.39 15.9 46.78 25.72 44.87
w/o KC 17.55 11.4 43.88 22.67 41.79

Table 10: Effect of known comments.

dicating that known comments are quite essential
for our model to capture code features and generate
accurate comments.

1333

