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Abstract

In the Multi-document summarization (MDS)
task, a summary is produced for a given set
of documents. A recent line of research intro-
duced the concept of damaging documents, de-
noting documents that should not be exposed to
readers due to various reasons. In the presence
of damaging documents, a summarizer is ide-
ally expected to exclude damaging content in
its output. Existing metrics evaluate a summary
based on aspects such as relevance and consis-
tency with the source documents. We propose
to additionally measure the ability of MDS sys-
tems to properly handle damaging documents
in their input set. To that end, we offer two
novel metrics based on lexical similarity and
language model likelihood. A set of experi-
ments demonstrates the effectiveness of our
metrics in measuring the ability of MDS sys-
tems to summarize a set of documents while
eliminating damaging content from their sum-
maries.1

1 Introduction

In the Multi-Document Summarization (MDS) task
a summary is generated for a given set of docu-
ments. The goal is for the summary to contain
the most relevant information within the input
documents. MDS was demonstrated in various
domains including news articles (Over and Yen,
2004; Fabbri et al., 2019), Wikipedia pages (Gha-
landari et al., 2020; Liu et al., 2018), and product
reviews (Bražinskas et al., 2020b; Brazinskas et al.,
2021; Shapira and Levy, 2020), including either an
extractive approach, where the summary consists
of spans from the input documents, or an abstrac-
tive approach, where the summary is synthetically
generated.

Recent studies (Carmel et al., 2022; Sauchuk
et al., 2022; Giorgi et al., 2022) have defined the

∗ Work done as an intern at Amazon.
1Resources available at https://github.com/

avshalomman/mds-damaging-eval.

concept of Damaging Documents—documents con-
taining sensitive content that should not be exposed
to readers; for example, toxic or offensive con-
tent. Furthermore, these works have emphasized
the challenge of MDS in a real-world setting, where
imperfect filtering algorithms fail to prevent dam-
aging documents from sneaking into the summa-
rizer’s input set. MDS systems are, therefore, re-
quired to summarize the input documents without
exposing any of the damaging content in the output.

MDS systems are typically evaluated using
reference-based metrics by comparing the system
summary to one or more reference summaries. A
commonly used metric is ROUGE (Lin, 2004), but
other metrics (e.g., Zhang et al., 2019; Zhao et al.,
2019; Peyrard et al., 2017) are also being used,
some of them do not require a reference summary.
The various metrics capture a summary’s quality-
aspects including relevance, coherence, faithful-
ness and more (Fabbri et al., 2021). However, to
the best of our knowledge, there is no metric that
captures how ‘contaminated’ the summary is, i.e.,
the amount of damaging content it contains.

The goal of this study is to develop a metric that
can appraise the amount of damaging content in
a summary. To do so, the notion of ‘damaging
content’ must first be defined. This is challenging
since we rely in this work on external annotations,
at the document level, which mark damaging docu-
ments (e.g. spam reviews). However, a damaging
document may contain both damaging and legiti-
mate content, and the legitimate content should be
reflected in the summary. Therefore, when dam-
aging documents appear in the input, the summa-
rizer’s task is to differentiate between legitimate
and damaging content, and the evaluation task is
to measure its success. Consider, for example, the
summary presented in Figure 1, generated from
some restaurant’s negative reviews. While it ac-
curately portrays the negative feedback on food
quality and poor service, it also undesirably ex-
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Summary: This place used to be pretty good, but over the past few years it has gone downhill. The
food is always undercooked, and the service has gone down hill. The owner is always sitting in the
corner drunk, but does not give a shit that he’s run this place into the ground. Stay away unless you are
looking to get drunk and draw far away.

Figure 1: A summary generated by the AdaSum system (Brazinskas et al., 2022) for negative restaurant reviews in
the D-Restaurants dataset (Rayana and Akoglu, 2015). Damaging content is marked in red.

poses offensive and toxic language in the reviews
that must be avoided.

Another challenge that we face is finding the
right balance between measuring the consistency
of the summary with the input, and the lack of dam-
aging content. By aggressive filtering, a summa-
rizer can reduce the damaging content in the output,
with the cost of less consistency with the input. In
contrast, by focusing on consistency, we may pre-
serve a lot of damaging content in the summary,
especially in the presence of a lot of damaging
content in the input. The metric should take into
consideration these two aspects when evaluating
the summary quality.

In this work we propose two novel metrics that
measure the capability of MDS systems to reduce
the amount of damaging content in their output.
The core idea behind our novelty is to add a penalty
score denoting the dependency of the summary on
damaging documents in the input. The metrics
are based on two different approaches: The first
extends the ROUGE metric (Lin, 2004) to also con-
sider lexical similarity of the summary to the dam-
aging documents. The second extends the PMI met-
ric (Tam et al., 2022) to also consider a language
model likelihood of the summary, conditioned on
the damaging documents.

We challenge our evaluation metrics in the do-
main of customer reviews, where the task is to
summarize negative reviews, some of them labeled
as spam. Experimental results reveal that the sug-
gested metrics can successfully assess the amount
of damaging content in a summary. Additionally,
we experiment in a real world setting where the in-
put data is first filtered by a spam classifier, prior to
summarization. In such a setting, choosing a thresh-
old for classification introduces a tradeoff, since
with a higher threshold many spam documents will
be filtered out, at the cost of filtering legitimate
documents as well. Our results demonstrate that
the proposed metrics are beneficial in setting the
optimal threshold for classification.

Contributions. The main contributions of this
work are:
• Presenting the challenges of evaluating MDS sys-

tems in the presence of damaging content.
• Proposing two new metrics that measure the ex-

tent to which MDS systems prevent damaging
content in their output. The metrics are grounded
on lexical similarity and likelihood-based ap-
proaches.

• Conducting experiments with multiple MDS sys-
tems over two customer review datasets, demon-
strating the effectiveness of the proposed metrics
in measuring summary contamination.

2 Background and Related Work

The task of multi-document summarization (MDS)
– generating a summary from a set of source docu-
ments – has been researched extensively, with ac-
cumulating works that introduce benchmarks and
evaluation metrics. Traditionally, the typical eval-
uation protocol estimates a summary’s quality by
measuring its relevance to the source documents,
i.e., how salient the information in the summary is.
This is done by comparing the summary with one
or more corresponding reference summaries, rep-
resenting the most salient information within the
document sources. Some widely used reference-
based metrics include ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005) and BERTScore
(Zhang* et al., 2020). Other metrics attempt to mea-
sure summary quality without reference summaries,
when they are unavailable (e.g., Gao et al., 2020;
Wu et al., 2020; Chen et al., 2021). One family of
reference-free metrics uses language models to pre-
dict a summary’s probability given the source doc-
uments (Vasilyev et al., 2020; Egan et al., 2022).

In addition to relevance, other factors must
be taken into consideration in order to assess a
summary’s quality. Early DUC2 benchmarks de-
fined readability and content responsiveness crite-
ria (Dang, 2005). More recently, Kryscinski et al.
(2019) listed the four main quality dimensions as

2https://duc.nist.gov
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1) relevance, the salience of summary content with
respect to the source, 2) coherence, the linguistic
validity of the overall summary structure, 3) flu-
ency, the linguistic quality of individual sentences
in the summary, and 4) consistency, the faithfulness
of the summary to the source, i.e., whether the sum-
mary adheres to the source documents’ informa-
tion. Consistency is often measured by comparing
the system summary to the source (Gabriel et al.,
2021), and many such metrics have been recently
proposed (e.g., Fabbri et al., 2022; Li et al., 2022).

In our work, we propose an additional evaluation
dimension for the cases where certain source docu-
ments are damaging. Examples of damaging doc-
uments include offensive, spam, adult content for
children, or classified documents for non-certified
users (Carmel et al., 2022). While the presence
of damaging documents is a known issue in infor-
mation retrieval tasks (Cormack and Lynam, 2005;
Clarke et al., 2009; Hussain et al., 2020), this is not
the case in summarization tasks. Multi-document
summarization datasets deliberately prepare docu-
ment sets that are assumed to be fully legitimate.
However, in real-life scenarios, the presence of
damaging content cannot be ignored and therefore
summarizers are expected not to expose it in their
summary. Generally, generation of toxic content,
a specific kind of damaging content, has recently
gained some attention – as posed in the HELM
framework (Liang et al., 2022).

In this work we are interested in the ability of a
summarizer to disregard damaging pieces of text
in the input. Traditional unsupervised summariza-
tion methods (Erkan and Radev, 2004; Verma and
Om, 2019), initially treat all parts of the input
equally, and may hence fail to omit damaging con-
tent. Meanwhile, supervised systems (Zhang et al.,
2020; Brazinskas et al., 2022; Xiao et al., 2022) are
faithful to the examples they were trained on, and
can therefore generate outputs with certain kinds of
content or style. For example, systems may be im-
plicitly trained to output only non-harmful content.
Other systems use a pipeline method, where certain
text spans are filtered out as a first step (Lebanoff
et al., 2018; Dong et al., 2021). Such an approach
can attempt to leave out damaging content if de-
sired. Our proposed evaluation framework aims to
assess a summarizer’s ability to remain consistent
with allowed source documents and penalizes it for
being consistent with forbidden source documents.
In §5 we analyze this ability on the three described

summarizing approaches.
Specifically, we demonstrate our evaluation

framework in the domain of customer reviews,
where the task is to summarize a set of reviews,
partly consisting of spam reviews. Due to the clear
potential utility of customer review summarization,
a rich line of research has addressed this task (e.g.,
Angelidis and Lapata, 2018; Chu and Liu, 2019;
Bražinskas et al., 2020b; Oved and Levy, 2021;
Brazinskas et al., 2022), however, to the best of
our knowledge, we are the first to view the task in
the presence of spam reviews. Most of the more
recent works on review summarization evaluate
on product and service review datasets (Bražin-
skas et al., 2020a). These datasets contain sum-
maries per sets of eight reviews, enabling the use
of common summarization evaluation metrics, as
described above. While most works focus on eval-
uating summary relevance, Oved and Levy (2021)
emphasized the tendency of opinion summarizers
to disappoint with quality issues concerning consis-
tency and coherence. We address a more specific
type of consistency-checking with our proposed
evaluation scheme.

3 Evaluating MDS in the Presence of
Damaging Content

Given a set of documents D, the task of MDS is
to generate a summary S of D, such that S con-
tains the most salient information in D (relevance),
and only information from D (consistency). In
this work, we further assume that D can be parti-
tioned into two subsets, unknown to a summariza-
tion system. One subset consists of the legitimate
documents L, and the other of the damaging doc-
uments B, where L ∪ B = D and L ∩ B = ∅. In
this setting, a summary should be evaluated for its
consistency with L and its avoidance of damaging
content in B. As is common in summarization,
where consistency is typically measured by approx-
imating the content overlap between the summary
and source document(s) (Maynez et al., 2020), in
our case “consistency” and “avoidance” can be cap-
tured through the content overlap between the sum-
mary and the two marked subsets of documents.

In the rest of this section we present two metrics
that exemplify the desired evaluation. The metrics
measure a summary’s consistency with the legiti-
mate documents, penalizing for its consistency with
damaging documents. The first metric is based on
ROUGE (Lin, 2004) and the second is based on
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PMI (Tam et al., 2022).

3.1 Penalizing-ROUGE

ROUGE. The ROUGE family of metrics mea-
sures lexical similarity between texts by determin-
ing word-level overlap. It is commonly used to
evaluate the performance of summarization sys-
tems by comparing system summaries to their cor-
responding reference summaries.

In this work we focus on ROUGEN variants,
which measure N -gram overlap between two texts,
N ∈ {1, 2}. Moreover, since ROUGE does not
effectively measure consistency when used with
reference summaries (Maynez et al., 2020), we
compare a summary to its source documents to bet-
ter approximate the summary’s consistency. Given
a text T , we denote by TN the set of N -grams in
T . Then, ROUGEN is defined as follows:

PrecN (S,D) = 1
|D|

∑
D∈D |SN ∩DN |/|SN |

RecallN (S,D) = 1
|D|

∑
D∈D |SN ∩DN |/|DN |

ROUGEN (S,D) =
2 ∗ PrecN (S,D) ∗ RecallN (S,D)

PrecN (S,D) + RecallN (S,D)
(1)

ROUGEN (S,D) approximates the consistency of
summary S with document set D by measuring
the average precision and recall of N -gram overlap
across all documents in D, and computing their
harmonic mean.

Penalizing-ROUGE. In the presence of damag-
ing content, we would like to account for how
much a summary is consistent with the legiti-
mate documents, and refrains from consistency
with the damaging documents. In this regard,
we consider any N -gram that appears in a le-
gitimate document valid, regardless of whether
it appears in a damaging document. Therefore,
we define the set of damaging N -grams to be
BN = ∪D∈BDN \ ∪D∈LDN . The contribution
of the damaging fraction of the summary S to its
precision, with respect to the source documents, is

D-PrecN (S,B) = 1

|B|
∑

B∈B
|SN ∩BN |/|SN |.

Ideally, we would like to subtract the damaging
precision from the legitimate precision, account-
ing for how much the summary is consistent with
the legitimate documents, but not with the dam-
aging documents. However, when the damaging
precision is greater than the legitimate precision
the resulting value is negative. In such a case the
harmonic mean would be undefined since the op-
eration is intended for positive values only. To

alleviate this issue, we first define the penalized
precision (PP ) as:

PPN (S,L,B) = PrecN (S,L)− D-PrecN (S,B) (2)

Then, we define Penalizing-ROUGE as follows:
P -ROUGEN (S,L,B) =




2 ∗ PPN (S,L,B) ∗ RecallN (S,L)
PPN (S,L,B) + RecallN (S,L) if PPN (S,L,B) > 0

PPN (S,L,B) otherwise
(3)

We note that P-ROUGEn is in the range of [−1, 1].3

3.2 Penalizing-PMI
Contrary to ROUGE which was not initially de-
signed for measuring consistency, there has been a
line of research dedicated to measuring summary
consistency. In one such work, Tam et al. (2022)
introduced a metric based on Pointwise Mutual In-
formation (PMI) that uses a large language model
to compute the probability of a summary given
the source documents. The main hypothesis is
that a good summary, especially one that is con-
sistent with its source, should appear as a natu-
ral complementary extension to the source docu-
ments, while a bad summary has a lower likelihood
to complement the documents. We first assume
the existence of a general-purpose pre-trained lan-
guage model, LM ,4 which is capable of estimat-
ing PLM (ti+1|t1, . . . , ti)—the probability of a to-
ken ti+1 given a sequence of tokens (t1, . . . , ti).
The Mean Log Likelihood (MLL) of a summary S,
given source documents D is defined as
MLLLM(S|D) := 1

T

∑T
i=1 logPLM (ti|D, t1, . . . , ti−1),

where T is the number of tokens in S, and docu-
ments in D are concatenated in an arbitrary order,
followed by the summary prefix (t1..ti−1). In the
following, we remove dependency on LM for clar-
ity. The PMI metric is then defined as

PMI(S;D) = MLL(S|D)−MLL(S|∅) (4)

which factors out the inherent probability of the
summary text, independently of D.

Next, we would like to evaluate the unique
contribution of damaging documents to the sum-
mary. In our use case, we would like to erase
the contribution of legitimate documents to the
summary. Pointwise Conditional Mutual Infor-
mation (PCMI) is an information theory metric

3The penalized precision PPN lies within [−1, 1] since
it is a subtraction of two values in [0, 1], and the recall is in
[0, 1].

4We used the GPT-Neo LM for our metric implementation.
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that measures the information in the text that is
uniquely attributable to a specific variable, and
can be computed using a language model as well
(Paranjape and Manning, 2021). For our use case,
given a summary S, a set of legitimate documents
L and a set of damaging documents B, we de-
fine PCMI(S;B|L) = PMI(S;B ∪ L)− PMI(S;L).
This measurement represents the contribution of
the damaging documents in B to the summary S,
while factoring out the contribution of the legiti-
mate documents L.

Finally, we propose the Penalizing-PMI (P-PMI)
metric, which measures PMI between the summary
and the legitimate documents, and subtracts the
contribution of the damaging documents. Specifi-
cally, we define

P-PMI(S;L;B) = PMI(S;L)− PCMI(S;B|L) (5)

We remark that Equation 5 is similar in spirit to the
damaging precision defined in Equation 2. We start
by measuring the summary’s dependency on the
legitimate documents, and then subtract the depen-
dency on the damaging document while excluding
the legitimate content. In the P-PMI case, depen-
dency is measured by the summary’s likelihood
conditioned on a given input and not via lexical
matching, but the core concept is the same.

4 Experimental Setup for Metric
Assessment

Our next step is to assess the proposed metrics for
MDS in the presence of damaging content. For that,
we aim to answer the following research questions:

• How sensitive are the metrics to the amount of
damaging content in the source documents?

• Can the metrics distinguish between sum-
maries according to the amount of damaging
content in their output?

• What is the level of agreement between the
suggested metrics?

To answer these questions we evaluate our pro-
posed metrics over several MDS systems on real-
world datasets containing damaging documents.
Specifically, we experiment with two customer re-
view datasets that contain a substantial amount of
spam reviews – to be considered as damaging docu-
ments. The rest of the section includes a description
of our experimental setup including the summariza-
tion systems and the datasets. §5 discusses the
experiments conducted to address the above ques-
tions.

4.1 Summarization Systems
In our experiments, we apply the proposed metrics
on the following MDS systems:

AdaSum (Brazinskas et al., 2022). An abstrac-
tive review summarization system, employing a
BART (Lewis et al., 2019) model with a self-
supervised adapter. AdaSum was pre-trained on a
large unlabeled corpora of customer reviews, and
then was fine-tuned on a small annotated dataset.
It yields state-of-the-art ROUGE scores for review
summarization over several common benchmarks.

CopyCat (Bražinskas et al., 2020b). An abstrac-
tive, unsupervised summarization system which
uses a hierarchical continuous latent representation
of products and individual reviews.

COOP-BiMeanVAE (Iso et al., 2021). An ap-
proach for generating abstractive summaries from
review representations encoded in a latent space. It
consists of searching for a convex combination of
latent review vectors that maximizes word overlap
between the reviews and the generated summary.
We denote this system as COOP for the rest of the
paper.

LexRank (Erkan and Radev, 2004). LexRank
is an extractive, unsupervised system. It uses a
graph composed of the documents’ sentences as
nodes. Edges represent the tf-idf similarity scores
between the nodes. A summary is formed by select-
ing sentences based on a graph centrality measure.

System ROUGE1 ROUGE2

AdaSum 0.398 0.108
CopyCat 0.320 0.058
COOP 0.366 0.072

LexRank 0.287 0.055

Table 1: Self-reported ROUGE1 and ROUGE2 scores of
the tested summarization systems on a product review
summarization benchmark (Bražinskas et al., 2020a).

As a point of reference, Table 1 presents the
ROUGE1 and ROUGE2 scores of the different sys-
tems on the Amazon product review summarization
benchmark (Bražinskas et al., 2020a). System sum-
maries were evaluated against crowdsourced refer-
ence summaries. With respect to these two metrics,
there is a large gap in favor of the AdaSum system.

4.2 Review Datasets
In our experiments, we focus on the task of sum-
marizing negative reviews, with 1 or 2 stars (on a
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1-5 Likert scale). It is known from previous stud-
ies (Bražinskas et al., 2021) that negative reviews
are notoriously harder for automatic systems to
summarize. Part of this complexity follows from
the fact that spam or toxic content is prevalent in
negative reviews, thus making it harder to create a
summary that captures the negative attitude while
avoiding the damaging content (see Figure 1).

We use two datasets for assessing the pro-
posed metrics. The first dataset, D-Products,
consists of 3.7K products from the Amazon.com
website, each accompanied with some reviews
marked with a binary spam label.5 The second
dataset, D-Restaurants, consists of restaurants and
their reviews, annotated with spam labels denot-
ing fake/suspicious reviews (Rayana and Akoglu,
2015).6 We denote by entity a product in the
D-Products dataset and a restaurant in the D-
Restaurants dataset, specifying the granularity on
which reviews are summarized. For the rest of
this section we use the terms spam and damaging
interchangeably.

In order to balance the data, we selected entities
having enough legitimate and damaging reviews
in order to evaluate summarization systems under
different configurations. Hence, only entities with
at least 4 damaging reviews were selected. For the
qualifying entities we sampled the same number of
legitimate reviews, creating balanced datasets.7 Ad-
ditional information about the size of each dataset
is provided in Table 2.8

Dataset Entity Type # Entities # Reviews

D-Products product 3, 743 44, 464
D-Restaurants restaurant 896 11, 134

Table 2: Review dataset statistics. Number of damaging
and legitimate reviews per entity is balanced.

4.3 Varying Portions of Damaging Documents
The purpose of our metrics is to detect the amount
of damaging content within a summary. We make
the assumption that if a summarizer is exposed to
more damaging documents in the input, its sum-
mary will contain more damaging content as well.

5The D-Products dataset does not represent the Amazon
customer reviews corpus, Specifically, spam reviews contained
within it are not part of that corpus.

6Based on publicly available data.
7We consider only reviews with 10 to 150 words.
8The final D-Restaurants dataset can be repro-

duced at https://github.com/avshalomman/
mds-damaging-eval.

Therefore, it is desirable for our metric to distin-
guish between different proportions of damaging
documents that the summarizer gets as input. To
this end, we create dataset subsets Ax, where for
each entity, a portion of x reviews are spam and
a portion of 1 − x reviews are legitimate. A0 de-
notes that only legitimate reviews are considered
per entity, while a A1 denotes that only spam re-
views are considered. Overall, five dataset sub-
sets with varying spam portions were constructed
(A0, A0.33, A0.5, A0.67, A1). We ran our summa-
rization systems over these datasets, generating
92, 775 summaries overall.

5 Experiments for Metric Assessment

5.1 Sensitivity to Damaging Content

In the first experiment we evaluate the metrics’ sen-
sitivity to damaging content. For that, we measure
their ability to rank a pair of review summaries,
according to the amount of damaging content they
contain. We assume that for any MDS, the more
spam in the input, the more spam we can expect in
the summary.

We experiment with the vanilla metrics (ROUGE
and PMI) and their penalizing versions (P-ROUGE
and P-PMI). For the vanilla metrics, we measure
the summary consistency with the legitimate re-
views, i.e. applying Equations 1 and 4 using L
as the reference set. For each entity, we generate(
5
2

)
pairs of summaries, (sx, sy), based each on a

different spam ratio; sx is generated for the corre-
sponding reviews in Ax, and sy for the correspond-
ing reviews in Ay. For example, the pair (s0, s1)
denotes that one summary is generated from the en-
tity’s ham (i.e., legitimate) reviews while the other
from the entity’s spam reviews. Given such a pair
of summaries, we rank them based on the metric
scores and observe if their ranking matches the ex-
pected ranking according to the spam portion of
their corresponding subsets (“oracle order”), i.e.,
according to the natural order between x and y. We
expect the penalizing metrics to excel in agreement
with the oracle order as they are designed to capture
the existence of damaging content in the summary.
The average accuracy of matching orders over all
pairs, in each dataset, are depicted in Table 3.

It can be seen that the accuracy varies among
systems and metrics; the most prominent results
are for AdaSum and LexRank, while CopyCat and
COOP systems yield much lower accuracy. In
all the examined cases (excluding CopyCat on D-

6

www.amazon.com
https://odds.cs.stonybrook.edu/yelpzip-dataset/
https://github.com/avshalomman/mds-damaging-eval
https://github.com/avshalomman/mds-damaging-eval


Dataset System P-PMI PMI P-ROUGE1 ROUGE1 P-ROUGE2 ROUGE2

D-Products

AdaSum 82.44 77.59 84.95 82.16 84.57 80.8
LexRank 83.39 81.82 82.97 80.5 85.17 83.86
COOP 57.79 55.35 75.96 74.02 67.77 62.23

CopyCat 50.9 52.24 61.32 60.4 55.55 53.49

D-Restaurants

AdaSum 80.48 72.67 83.68 80.05 83.7 78.54
LexRank 84.77 83.67 84.79 81.01 86.79 86.05
COOP 57.53 53.64 75.1 72.65 66.22 61.59

CopyCat 54.98 53.55 59.95 57.24 55.85∗ 53.65∗

Table 3: Ranking accuracy of the different metrics, measured by matching with the oracle order. Bold indicates
better results between the vanilla metric and its penalizing variant. ∗ marks a non-statistically significant difference
(McNemar test of homogeneity with p-value < 0.05).

Figure 2: Mean values of vanilla (dashed line) and
penalizing (solid line) metrics as a function of spam
portion, for the D-Products (left) and D-Restaurants
(right) datasets. The sleeve around the lines denotes a
95% confidence-interval of each line.

Products) the penalizing metric outperforms the
vanilla version, indicating that it better captures the
occurrence of damaging content in the generated
summary. P-ROUGE1 and P-ROUGE2 outperform
P-PMI for most systems and across datasets, sug-
gesting that spam is more easily detected through
text overlap rather than by a contextual likelihood
measurement.

We further compare the metrics sensitivity for
varying spam portions in the input. Figure 2 shows
the metrics’ value, averaged over all summaries
in each of the subsets, as spam portion increases.
The top row presents PMI (dashed line) and P-PMI
(solid line) scores, as a function of the spam portion,
for the two datasets. The two bottom rows present
ROUGE and P-ROUGE scores for unigrams and
bigrams, respectively.

It can be clearly seen that for all metrics
LexRank and AdaSum scores decrease significantly
as spam portion grows. Recall that the vanilla met-
rics measure consistency with the legitimate doc-
uments only, therefore a decrease in these metric
values is observed when spam portion increases.
However, the larger decrease is observed for the
penalizing metrics, indicating their superior sensi-
tivity to damaging content in the summaries.

An interesting phenomenon can be observed
for COOP and CopyCat systems. ROUGE1 and
P-ROUGE1 degrade for these systems as spam
portion increases, similarly to their behavior for
AdaSum and LexRank (although with a less steep
slope). On the other hand, ROUGE2 and the PMI
are stable for these systems, unaffected by the in-
crease in spam portion. There is a possibility that
these systems are almost indifferent to spam, as
changes in the amount of damaging content are
barely noticed.

Another interesting observation is that while P-
ROUGE is always less than or equal to ROUGE (by
definition), P-PMI is higher than PMI, across all
systems and datasets, when no spam documents ap-
pear in the input (leftmost point on the graphs).
In such a case, when damaging documents are
considered in the reference set, while there is no
damaging content in a summary, the likelihood of
such a summary S∗ degrades when conditioned
on the damaging documents, PMI(S∗;B ∪ L) ≤
PMI(S∗;L). It follows that PCMI(S∗;B|L) ≤ 0,
and therefore, P-PMI(S∗;B∪L) = PMI(S∗;L)−
PCMI(S∗;B|L) ≥ PMI(S∗;B ∪ L).

Finally, we calculate the Pearson correlation be-
tween the metric scores for all summaries of all sys-
tems, over all subsets with varying spam portions;
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Figure 3: Filter-then-summarize pipeline results for different spam ratios, as determined by the different classifica-
tion thresholds. Sleeve around the lines denotes 95% confidence interval.

Dataset Metric PMI P-PMI

D-Products

ROUGE1 0.54 0.46
P-ROUGE1 0.51 0.57

ROUGE2 0.68 0.56
P-ROUGE2 0.51 0.70

D-Restaurants

ROUGE1 0.41 0.37
P-ROUGE1 0.44 0.52

ROUGE2 0.68 0.55
P-ROUGE2 0.52 0.74

Table 4: Pearson correlation between the different met-
rics over the D-Products and D-Restaurants datasets.
All correlation results are statistically significant (p-
value < 0.01). Bold denotes the highest value with
respect to a given pair of metrics (penalizing and vanilla
versions).

results are depicted in Table 4. Penalizing metrics
are better correlated among themselves; this also
holds for vanilla metrics. Moreover, the correlation
among penalizing versions is higher than among
vanilla versions, indicating that the evaluation cri-
teria taken by ROUGE and PMI are less consistent
than those taken by their penalizing versions.

5.2 Filter Then Summarize

A common practical approach to prevent damaging
content from seeping into a summary is to filter
it out at a preliminary step (Sauchuk et al., 2022)
(‘filter-then-summarize’). Filtration can be exe-
cuted by employing a classifier that detects damag-
ing content, as we examine next.

In this experiment, we focus on AdaSum since
it provided more stable results in previous experi-
ments. For spam filtering, we train a distilbert-base-
uncased9 classifier (learning rate: 2e−5, batch size:
32, weight decay: 0.01). We took entities not in the

9huggingface.co/distilbert-base-uncased

D-Products and D-Restaurants datasets with bal-
anced ratio of spam/not spam reviews and split to
train/test sets in a (0.95, 0.05) ratio. Overall 100K
reviews, from each dataset source, were selected
for the classifier training task.

Choosing a threshold for the classifier introduces
a tradeoff, since a higher threshold will filter out
more spam, at the cost of filtering out more le-
gitimate documents as well. We focus on the
D-Products dataset for which the spam classifier
performs reasonably well (AUC = 0.85). We ex-
amine 13 threshold values overall, including the
optimal, chosen according to Youden’s J Statis-
tic (Ruopp et al., 2008), and 12 additional values,
using equally-spaced samples from the optimal
threshold value on the ROC curve. For each thresh-
old we apply the spam classifier, summarize the
remaining documents, and evaluate the resulting
summary by the penalizing and non-penalizing met-
rics. Results are depicted in Figure 3.

As the classification threshold increases, more
data (spam and ham) is being filtered out from the
input set. For PMI, on the left, the penalizing met-
rics score are lower than the vanilla score due to
the large amount of spam. When the threshold ex-
ceeds 0.8, all metrics crash due to low recall of
the generated summaries. For smaller threshold
values, the vanilla metrics are indifferent to filter-
ing and remain stable as the threshold grows (in
particular ROUGE1 and ROUGE2). In contrast, the
penalizing versions show improvement with more
filtering, up to a point where performance starts to
degrade. Their peak is close to Youden’s J Statistic
(though not the same), denoting their usefulness in
searching for the optimal filtering threshold value.

6 Conclusion

In this work we raise the need to evaluate MDS
systems for their capability of preventing damag-
ing content in their summaries. We propose two

8
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metrics, one based on ROUGE and the other on
the PMI metric. Through a set of experiments con-
ducted over customer review datasets and several
summarization systems, we demonstrate that our
metrics are capable of ranking different summariz-
ers according to how they treat damaging content.
Importantly, the proposed metrics and the increased
awareness to damaging content should motivate fur-
ther research on optimizing MDS in the presence
of damaging documents.

7 Limitations

This paper conducts extensive experiments with
two datasets. The D-Restaurants dataset is a subset
of a publicly available dataset and will be released
to the community for reproduction and for further
research. On the other hand, the D-Products dataset
was exposed to us for this particular research only,
and unfortunately cannot be publicised according
to its terms of use.

Both metrics proposed in the paper take a spe-
cific approach of deducting consistency with dam-
aging documents from consistency with legitimate
document. There are likely other approaches that
can approximate the task objectives, and we hope
the community continues to explore such direc-
tions.

Finally, we do not methodologically evaluate the
metrics. Future work calls for a meta-evaluation
framework, including high quality benchmarks ded-
icated to our task. This would enable a more accu-
rate appraisal of metrics, including new ones to be
brought forth in future research.

8 Ethical Considerations

There is a high degree of sensitive information in
the data used in this study, including offensive and
toxic language. The metrics proposed in the work
which measure the contamination level of gener-
ated summaries, can provide a first barrier to using
such data. However, it is important to note that
these metrics are not involved in the summarization
task per se and therefore cannot avoid the appear-
ance of damaging content in systems’ summaries,
only to attest on it.
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