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Abstract

Many discriminative natural language under-
standing (NLU) tasks have large label spaces.
Learning such a process of large-space decision
making is particularly challenging due to the
lack of training instances per label and the dif-
ficulty of selection among many fine-grained
labels. Inspired by dense retrieval methods
for passage finding in open-domain QA, we
propose a reformulation of large-space dis-
criminative NLU tasks as a learning-to-retrieve
task, leading to a novel solution named Dense
Decision Retrieval (DDR ). Instead of pre-
dicting fine-grained decisions as logits, DDR
adopts a dual-encoder architecture that learns to
predict by retrieving from a decision thesaurus.
This approach not only leverages rich indi-
rect supervision signals from easy-to-consume
learning resources for dense retrieval, it also
leads to enhanced prediction generalizability
with a semantically meaningful representation
of the large decision space. When evaluated on
tasks with decision spaces ranging from hun-
dreds to hundred-thousand scales, DDR out-
performs strong baselines greatly by 27.54% in
P@1 on two extreme multi-label classification
tasks, 1.17% in F1 score ultra-fine entity typ-
ing, and 1.26% in accuracy on three few-shot
intent classification tasks on average.1

1 Introduction

Many discriminative natural language understand-
ing (NLU) tasks require making fine-grained deci-
sions from a large candidate decision space. For
example, a task-oriented dialogue system, when re-
sponding to users’ requests, needs to frequently de-
tect their intents from hundreds of options (Zhang
et al., 2020b; Ham et al., 2020). Description-based
recommendation in e-commerce needs to search
from millions of products in response to users’ de-
scriptions (Gupta et al., 2021; Xiong et al., 2022).

1Code and resources are available at https://github.
com/luka-group/DDR.

Previous studies for such NLU tasks still train
classifiers as the solution (Gupta et al., 2021; Yu
et al., 2022; Lin et al., 2023a). However, we argue
that this straightforward approach is less practical
for large-space decision making for several reasons.
First, more decision labels naturally lead to data
scarcity, since collecting sufficient training data for
all labels will need significantly more cost. This
issue is also accompanied by the issue of rare labels
in the long tail of highly skewed distributions suf-
fering severely from the lack of sufficient training
instances (Zhang et al., 2023), leading to overgener-
alization bias where frequent labels are more likely
to be predicted compared with rare ones (Xu et al.,
2022). Second, the non-semantic logit-based rep-
resentation for decision labels in a classifier also
makes the model hard to generalize to rarely seen
labels, and not adaptable to unseen ones in train-
ing. This issue also impairs the applicability of
the decision-making model to real-world scenarios,
such as recommendation (Xiong et al., 2022) and
task-oriented parsing (Zhao et al., 2022a), where
the decision space may expand rapidly and crucial
labels may be absent in training.

On the contrary, motivated by semantic similar-
ity of examples annotated with identical labels, re-
cent studies propose contrastive learning schemes
that leverage Siamese encoding architectures to
maximize similarity scores of representation for
positive example pairs (Henderson et al., 2020;
Zhang et al., 2020a; Dahiya et al., 2021a; Mehri
and Eric, 2021; Zhang et al., 2021; Xiong et al.,
2022). Meanwhile, inductive bias from NLU tasks
such as masked language modeling (Mehri et al.,
2020; Dai et al., 2021) and natural language infer-
ence (NLI; Li et al. 2022; Du et al. 2022) has shown
beneficial for learning on rare and unseen labels via
indirect supervision (Yin et al., 2023). However,
when dealing with very large decision spaces, ex-
isting methods still face critical trade-offs between
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generalizability and efficiency of prediction.2

Inspired by the recent success of dense retrieval
methods that learn to select answer-descriptive pas-
sages from millions of candidate documents for
open-domain QA (Karpukhin et al., 2020; Lee
et al., 2021; Zhan et al., 2021), we propose an indi-
rectly supervised solution named Dense Decision
Retrieval (DDR ). DDR provides a general
reformulation of large-space decision making as
learning to retrieve from a semantically meaning-
ful decision thesaurus constructed based on task-
relevant resources. The model adopts the dual-
encoder architecture from dense retrieval models to
embed input texts and label descriptions, and learns
to predict by retrieving from the informative deci-
sion thesaurus instead of predicting fine-grained
decisions as logits. In this way, DDR not only
leverages rich indirect supervision signals from
other easy-to-consume learning resources for dense
retrieval. It also leads to enhanced prediction per-
formance and generalizability with a semantically
meaningful representation of the large decision
space. We evaluate DDR on large decision spaces
ranging from hundreds for few-shot intent detec-
tion, ten-thousand for ultra-fine entity typing, to
hundred-thousand scales for extreme multi-label
classification. DDR obtains state-of-the-art perfor-
mance on 6 benchmark datasets in multiple few-
shot settings, improving the most competitive base-
lines by 27.54% in P@1 for extreme classification,
1.17% in F1 for entity typing and 1.26% in ac-
curacy for intent detection on average. Ablation
studies show that both the constructed informative
label thesaurus and indirect supervision from dense
retrieval contribute to performance gain.

The technical contributions of this work are
three-fold. First, we present a novel and strong
solution, DDR , for NLU tasks with large-space
decision making that leverages indirect supervision
from dense retrieval. Second, we provide semanti-
cally meaningful decision thesaurus construction
that further improves the decision-making ability
of DDR . Third, we comprehensively verify the ef-
fectiveness of DDR on tasks of fine-grained text
classification, semantic typing and intent detection
where the size of decision spaces range from hun-
dreds to hundreds of thousands.

2For example, NLI-based inference leads to k times more
inference cost where k being the size of the decision space,
which is prohibitive for large-space decision making tasks.

2 Related Work

Indirect Supervision Indirectly supervised meth-
ods (Roth, 2017; He et al., 2021; Yin et al., 2023)
seek to transfer supervision signals from a more
resource-rich task to enhance a specific more
resource-limited task. A method of this kind of-
ten involves reformulation of the target task to the
source task. Previous studies have investigated us-
ing source tasks such as NLI (Li et al., 2022; Yin
et al., 2019; Lyu et al., 2021, inter alia), extractive
QA (Wu et al., 2020; FitzGerald et al., 2018; Li
et al., 2020, inter alia), abstractive QA (Zhao et al.,
2022a; Du and Ji, 2022) and conditioned gener-
ation (Lu et al., 2022; Huang et al., 2022b; Hsu
et al., 2022, inter alia) to enhance more expensive
information extraction or semantic parsing tasks.
Recent studies also transformed these technolo-
gies to specialized domains such as medicine (Xu
et al., 2023) and software engineering (Zhao et al.,
2022b) where model generalization and lack of an-
notations are more significant challenges. There
has also been foundational work which studies the
informativeness of supervision signals in such set-
tings (He et al., 2021).

However, the aforementioned studies are not de-
signed for discriminative tasks with very large deci-
sion spaces, and do not apply directly due to issues
such as high inference costs (NLI) and requiring
decisions to be inclusive to the input (QA). We in-
stead propose dense retriever that naturally serves
as a proper and efficient form of indirect supervi-
sion for large-space decision making.

NLU with Large Decision Spaces Many concrete
NLU tasks deal with large decision spaces, in-
cluding description-based recommendation in e-
commerce (Gupta et al., 2021; Xiong et al., 2022)
and Web search (Gupta et al., 2021), user intent
detection in task-oriented dialog systems (Zhang
et al., 2020b; Ham et al., 2020), and fine-grained
semantic typing (Choi et al., 2018; Chen et al.,
2020), etc. Previous studies for such tasks either
train classifiers (Yu et al., 2022; Lin et al., 2023a)
or rely on contrastive learning from scratch (Zhang
et al., 2021; Xiong et al., 2022), which are gener-
ally impaired by insufficiency of training data and
hard to generalize to rarely seen and unseen labels.
These challenges motivate us to explore a practi-
cal solution with indirect supervision from a dense
retriever.
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Figure 1: Overview of DDR that reformulates general large-space decision making tasks as dense retrieval. Label
thesaurus is constructed with detailed descriptions from publicly available resources and the dual-encoder learns
to maximize similarity between embeddings of input and label thesaurus entry with indirect supervision from a
pre-trained dense retriever.

3 Method

We first describe the reformulation of large-space
decision making task as dense retrieval (§3.1). We
then introduce several automatic ways to construct
label thesaurus of high quality (§3.2). Lastly, we
demonstrate the dual-encoder architecture of DDR
(illustrated in Fig. 1) to retrieve decisions (§3.3).

3.1 Preliminary

The mechanism of dense retrieval for general
decision-making in large spaces can be formal-
ized as follows. Given a textual input, such as
“Illy Ground Espresso Classico Coffee: Classico,
classic roast coffee has a lingering sweetness and
delicate...” for description-based product recom-
mendation, a model learns to infer their correspond-
ing labels by mapping input to textual descriptions
in a large label thesaurus (such as names, brands,
component, etc.), instead of simply predicting the
label index.

Formally speaking, given a textual input x, a de-
cision space covering L labels and a label thesaurus
that contains corresponding entries (label descrip-
tions) D = {d1, d2, . . . , dL}. We first split every
entry into text passages of a maximum length (e.g.,
100 words) as the basic retrieval units and get M
total passages P = {p1, p2, . . . , pM}3. A retriever
R : (x, P ) → PR is a function that takes as input
a text sequence x and the label thesaurus P and

3Since a label-descriptive entry, such as those in XMC
tasks, is sometimes too long to encode with a Transformer
encoder, we break it down into multiple passages to avoid the
quadratic dependency w.r.t input length.

returns a ranking list of passages PR, where labels
represented by higher ranked passages are more
likely to be relevant to the input. As demonstrated
in Fig. 1, DDR also leverages indirect supervision
from open-domain QA by initializing parameters
of retriever R with those from DPR.

3.2 Thesaurus Construction

Depending on the target task, the decision the-
saurus can provide knowledge about the decision
space from various perspectives. Given label
names, we create informative descriptions for each
label automatically without extra expenses. We can
refer to publicly available resources for construct-
ing thesaurus of high quality. To name a few:
1) Lexicographical knowledge bases: dictionaries
such as WordNet (Miller, 1995) and Wiktionary4

provide accurate definitions as well as plentiful use
cases to help understand words and phrases.
2) Large Language Models: LLMs trained on in-
structions like ChatGPT and Vicuna-13B (Chiang
et al., 2023) are able to generate comprehensive
and reasonable descriptions of terms when they are
prompted for explanation.
3) Training examples: directly adopting input text
when labels with detailed information also appear
as example input, or aggregating input texts from
multiple examples assigned with the same label if
they share very high-level semantic similarities.

We describe thesaurus construction in practice
for each investigated downstream task in §4.

4https://en.wiktionary.org/
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3.3 Learning to Retrieve Decisions

Encoders Since a key motivation of DDR is to
leverage indirect supervision from retrieval tasks,
we adopt the dual-encoder architecture similar to
a dense retriever such as DPR (Karpukhin et al.,
2020), where two sentence encoders with special
tokens (BERT (Devlin et al., 2019) by default), Ex

and Ep, are leveraged to represent input text x and
passage p individually.5. The similarity between
input and passage is computed using dot product
of their vectors denoted by sim(x, p).

Training The objective of the reformulated large-
space decision making problem is to optimize the
dual encoders such that relevant pairs of input text
and label description (thesaurus entry) should have
higher similarity than irrelevant pairs in the embed-
ding space. Hence, the overall learning objective is
a process of contrastive learning.

To tackle single-label classification where each
instance contains one input xi, one relevant (posi-
tive) passage x+i , along with n irrelevant (negative)
passages p−i,j , we minimize the negative log likeli-
hood of the positive label description

L(xi, p
+
i , p

−
i,1, . . . , p

−
i,n) (1)

= − log
esim(xi,p

+
i )

esim(xi,p
+
i ) +

∑n
j=1 e

sim(xi,p
−
i,j)

.

We extend to multi-label classification tasks where
each input has multiple positive passages and more
than one of them participates in model update si-
multaneously. Accordingly, the cross entropy loss
is minimized to encourage similarity between m
positive pairs instead:

L(xi, p
+
i,1, . . . , p

+
i,m, p−i,1, . . . , p

−
i,n) (2)

= −
m∑

k=1

log
esim(xi,p

+
i,k)

∑m
j=1 e

sim(xi,p
+
i,j) +

∑n
j=1 e

sim(xi,p
−
i,j)

.

Positive, negative and hard negative passages:
the decision thesaurus entries that describe true
labels in thesaurus for each input are deemed as
positive. In-batch negatives are positive entries
for other input in the same mini-batch, making
the computation more efficient while achieving
better performance compared with random pas-
sages or other negative entries (Gillick et al., 2019;

5For example, in cases where a BERT model is used, the
[CLS] token is used for representation of input text and the
decision thesaurus entries

Karpukhin et al., 2020). If not otherwise specified,
we train with positive and in-batch negatives to ob-
tain a weak DDR model firstly; we then retrieve
label thesaurus with the weak model for training
examples and leverage wrongly predicted label de-
scription as hard negatives, which are augmented
to training data to obtain a stronger DDR .

We note that, different from open-domain QA
where one positive pair can be considered per time
with Eq. 1, considering multiple positive pairs is
very important for tasks where the decision space
though large but follows highly skewed distribu-
tions, when in-batch negatives are adopted for
model update. In the mini-batch, multiple inputs
may share same labels that are popular in the head
of long-tail label distribution. In this case, these in-
put instances have multiple positive passages: one
randomly sampled from label passages as normal
and some from positives of other in-batch inputs.

Inference After training is completed, we encode
all passages in label thesaurus once with Ep and in-
dex them using FAISS offlne (Johnson et al., 2019).
Given a new input, we obtain its embedding with
Ex and retrieve the top-k passages with embed-
dings closest to that of input.

4 Experiments

We evaluate DDR on three NLU tasks with large
deicsion spaces in two criteria, 1) a minority of
label space is observed during training: Extreme
Multi-label Classification (§4.1) and Entity Typing
(§4.2), or 2) limited amounts of examples are avail-
able per label: Intent Classification (§4.3). We
investigate decision spaces of up to hundreds of
thousands. Dataset statistics are shown in Appx.
Tab. 1.

4.1 Extreme Multi-label Classification

Task Many real-world applications can be formu-
lated as eXtreme Multi-label Classification (XMC)
problems, where relevant labels from the set of an
extremely large size are expected to be predicted
given text input. Considering the ever-growing la-
bel set with newly added products or websites and
the time-consuming example-label pairs collection,
we follow the few-shot XMC setting (Gupta et al.,
2021; Xiong et al., 2022) to choose relevant labels
from all available seen and unseen labels.6

6By randomly sampling 1% and 5% labels from the large
decision space, we only use their instances for model training
and predict on the test set covering the whole label space.
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Dataset Setting Train Dev Test Labels

Extreme Multi-label Classification

LF-Amazon-131K 1% 6227 - 134,835 131,0735% 29,719 -

LF-WikiSeeAlso-320K 1% 13,920 - 177,515 312,3305% 62,704 -

Ultra-fine Entity Typing

UFET Crowd 1998 1998 1998 10,331

Intent Classification

BANKING 5-shot 385 1540 3080 7710-shot 770

HWU 5-shot 320 1076 1076 6410-shot 640

CLINC 5-shot 750 3000 4500 15010-shot 1500

Table 1: Statistics and experimental settings on datasets
with label spaces ranging from 64 to 320K.

Datasets and Metrics The public benchmark
dataset LF-Amazon-131K collects pairs of relevant
products with textual descriptions for commercial
recommendation, while LF-WikiSeeAlso-320K7

aims to link relevant Wikipedia passages for refer-
ence (Bhatia et al., 2016; Gupta et al., 2021).

We use metrics widely adopted by XMC (Chien
et al., 2023) and IR (Thakur et al., 2021) literature:
precision@k for the proportion of the top-k pre-
dicted labels to be true labels, and recall@k for
the proportion of true labels found in the top-k
predictions.8

Baselines We compare DDR with strong XMC
baselines in three categories: 1) Transformer-based
models that learn semantically meaningful sen-
tence embeddings with siamese or triplet network
structures, including Sentence-BERT (Reimers and
Gurevych, 2019) and MPNet (Song et al., 2020); 2)
competitive methods originally proposed for scal-
able and accurate predictions over extremely large
label spaces, including XR-Linear (Yu et al., 2022)
that recursively learns to traverse an input from the
root of a hierarchical label tree to a few leaf node
clusters, Astec (Dahiya et al., 2021b) with four
sub-tasks for varying trade-offs between accuracy

7DPR was trained on the clean, text-portion of articles
from the Wikipedia dump for question answering. Lists such
as the “See also” section have been removed during pre-
processing. Hence example-label pairs in LF-WikiSeeAlso-
320K are unseen during DPR training and it is fair to fine-tune
DPR on this task.

8Following (Xiong et al., 2022), we use k = {1, 3, 5} for
precision@k and k = {1, 3, 5, 10, 100} for recall@k.

and scalability, and SiameseXML (Dahiya et al.,
2021a) based on a novel probabilistic model to
meld Siamese architectures with high-capacity ex-
treme classifiers; 3) methods specifically designed
to improve performance with few-shot labels avail-
able, including ZestXML (Gupta et al., 2021) that
learns to project a data point’s features close to the
features of its relevant labels through a highly spar-
sified linear transform, and MACLR (Xiong et al.,
2022) that pre-trains Transformer-based encoders
with a self-supervised contrastive loss.

Implementation Details The label space of LF-
WikiSeeAlso-320K is composed of relevant pas-
sage titles, hence the corresponding full content
should be available in Wikipedia and we use them
as the label thesaurus.9 For relevant product ad-
vertisement and recommendation, concrete product
description provides sufficient information as the
label thesaurus for LF-Amazon-131K. We extract
product textual descriptions mainly from Amazon
data in XMC benchmark (Bhatia et al., 2016) and
public Amazon product meta datasets (Ni et al.,
2019), leading to 95.67% of labels well docu-
mented. As introduced in §3.2, we then use Chat-
GPT 10 to obtain relevant information for remain-
ing undocumented labels 11.

We perform label thesaurus construction on
Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz
with 32 CPUs and 8 cores per CPU. It takes
59.12 minutes to construct label thesaurus for LF-
WikiSeeAlso-320K, while 28.24 minutes for LF-
Amazon-131K. We leverage the same infrastruc-
ture to prepare label thesaurus in following tasks
unless otherwise specified.

Due to a lack of explicit knowledge about the
connection between the majority of labels and their
examples for training, DDR only learns to distin-
guish positive example-label pairs from in-batch
negatives without further negative mining. For in-
ference, with the constructed label thesaurus, we
first retrieve the large label space with a test ex-
ample based on Sentence-BERT embeddings of
the title and the first sentence in an unsupervised
way. After training DDR with few-shot labels,
we mimic the practice of DPR+BM25 for open-

9Since the specific dump version is unclear, we look for
different resources (e.g., latest dump, train and test passages,
Wikipedia API search) and cover 99.95% of labels in the end.

10https://chat.openai.com/
11Similarly, for following tasks, we obtain label informa-

tion by prompting LLMs if the label definition or description
is unavailable from existing resources.
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Method
1% Labels 5% Labels

Precision Recall Precision Recall
@1 @3 @5 @1 @3 @5 @10 @100 @1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 1.53 0.57 0.36 0.67 0.75 0.78 0.81 0.92 5.09 2.09 1.32 2.36 2.86 3.02 3.18 3.74
Astec 0.94 0.44 0.29 0.55 0.78 0.84 0.91 1.13 3.94 1.92 1.26 2.31 2.34 3.66 4.00 4.96
SiameseXML 1.45 0.56 0.35 0.84 0.96 1.00 1.03 1.16 5.36 2.23 1.41 3.15 3.89 4.08 4.27 4.82
ZestXML 10.10 9.19 7.34 5.63 14.46 18.61 23.73 32.69 12.33 10.00 8.71 6.84 17.19 21.97 28.19 46.49
Sentence-BERT 12.64 9.82 7.80 6.97 15.34 19.74 25.33 43.53 15.47 12.24 9.64 8.63 19.23 24.40 30.82 49.22
MPNet 14.78 11.55 8.97 8.28 18.24 22.84 28.54 45.89 15.03 11.88 9.28 8.47 18.74 23.69 29.93 48.84
MACLR 18.74 16.07 12.52 10.73 25.44 31.89 39.17 57.55 19.56 16.19 12.64 11.15 25.65 32.18 39.63 58.45
DDR (w/o thesaurus) 15.39 10.92 7.87 8.25 19.15 24.10 31.51 54.32 21.21 13.77 10.23 12.02 24.18 30.29 38.19 58.75
DDR (scratch) 19.55 14.48 11.50 10.87 22.50 29.00 37.80 56.53 23.77 16.48 12.75 13.31 25.54 31.85 40.46 60.30
DDR (full) 22.39 16.38 12.40 12.57 25.64 31.44 38.44 57.72 25.22 17.96 13.63 14.18 27.94 34.40 41.72 61.17

LF-WikiSeeAlso-320K

XR-Linear 1.24 0.57 0.37 0.42 0.58 0.63 0.68 0.76 4.69 2.20 1.46 1.82 2.41 2.63 2.82 3.42
Astec 1.25 0.60 0.41 0.69 0.98 1.11 1.27 1.56 5.90 2.80 1.86 3.26 4.49 4.95 5.49 6.83
SiameseXML 1.81 0.75 0.48 1.03 1.26 1.33 1.41 1.67 6.83 3.15 2.06 3.88 5.15 5.56 6.02 7.09
ZestXML 8.74 6.78 5.41 4.68 9.70 12.21 15.73 24.98 10.06 8.11 6.60 5.33 11.49 14.74 19.57 40.46
Sentence-BERT 16.30 12.62 10.08 9.30 18.92 23.78 30.40 52.92 18.47 14.19 11.29 10.82 21.55 26.77 33.92 57.02
MPNet 17.14 12.64 9.96 9.98 18.98 23.45 29.67 50.75 18.59 13.99 11.08 10.89 21.12 26.10 32.82 54.70
MACLR 19.09 14.57 11.53 11.39 22.34 27.63 34.81 57.92 20.99 15.57 12.26 12.59 23.94 29.41 36.78 59.81
DDR (w/o thesaurus) 17.52 15.93 14.23 4.89 13.11 18.88 25.93 46.93 18.14 16.65 15.39 5.12 14.10 21.81 30.00 52.54
DDR (scratch) 21.26 15.81 13.08 11.16 22.52 29.55 40.14 64.94 25.04 18.95 15.05 12.46 25.70 32.18 40.24 66.22
DDR (full) 24.70 18.45 14.69 13.04 26.31 32.99 41.08 65.39 27.78 19.98 15.66 15.03 28.87 35.47 43.35 68.66

Table 2: Results of few-shot XMC where the training subset covers 1% (left) and 5% (right) labels from the
whole set. DDR outperforms the second best MACLR in both settings of two datasets. Indirect supervision from
DPR boosts performance against training from scratch (the second row from the bottom), while label thesaurus
construction improves accuracy over those using textual label names (the third row from the bottom).

domain QA (Karpukhin et al., 2020) for reranking,
where prediction scores on test set from DDR and
Sentence-BERT are linearly combined as the final
ranking score.

Results We report performance of DDR with(out)
indirect supervision from dense retrieval for open-
domain QA in Tab. 2. On average, DDR boosts
performance on LF-Amazon-131K by 8.50% and
LF-WikiSeeAlso-320K by 21.73% compared with
the second best baseline MACLR. When only
1% labels are seen during training, we observe
that DDR shows much better transferability than
other pre-trained models, e.g., average performance
improved by 12.59% over MACLR and 39.80%
over MPNet. As more labels are available for
fine-tuning the model, the performance gain from
DDR over others becomes even more significant:
17.64% over MACLR and 43.38% over MPNet
under 5% labels setting.

4.2 Ultra-fine Entity Typing

Task Entities can often be described by very fine
grained-types (Choi et al., 2018) and the ultra-fine
entity typing task aims at predicting one or more

fine-grained words or phrases that describe the
type(s) of that specific mention (Xu et al., 2022).
Consider the sentence “He had blamed Israel for
failing to implement its agreements.” Besides per-
son and male, the mention “He” has other very
specific types that can be inferred from the context,
such as leader or official for the “blamed” behavior
and “implement its agreements” affair. Ultra-fine
entity typing has a broad impact on various NLP
tasks that depend on type understanding, including
coreference resolution (Onoe and Durrett, 2020),
event detection (Le and Nguyen, 2021) and relation
extraction (Zhou and Chen, 2022).

Datasets and Metrics We leverage the UFET
dataset (Choi et al., 2018) to evaluate benefits of
DDR with indirect supervision from dense retrieval.
Among 10,331 entity types, accurately selecting
finer labels (121 labels such as engineer) was more
challenging to predict than coarse-grained labels (9
labels such as person), and this issue is exacerbated
when dealing with ultra-fine types (10,201 labels
such as flight engineer). Following recent entity
typing literature (Li et al., 2022; Du et al., 2022),
we train DDR on (originally provided) limited
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Method Precision Recall F1

BiLSTM 48.1 23.2 31.3
LabelGCN 50.3 29.2 36.9
LDET 51.5 33.0 40.1
Box4Types 52.8 38.8 44.8
LRN 54.5 38.9 45.4
UniST 50.2 49.6 49.9
MLMET 53.6 45.3 49.1
LITE 52.4 48.9 50.6
Context-TE 53.7 49.4 51.5

DDR (w/o thesaurus) 51.6 46.0 48.6
DDR (scratch) 53.0 50.5 51.7
DDR (full) 51.9 52.3 52.1

Table 3: Results of UFET task. DDR outperforms
competitive baselines with (upper 5 methods) or without
(lower 3 methods) inductive bias from task pre-training.

crowd-sourced examples without relying on distant
resources such as knowledge bases or head words
from the Gigaword corpus. We follow prior stud-
ies (Choi et al., 2018) to evaluate macro-averaged
precision, recall and F1.

Baselines We consider two categories of compet-
itive entity typing models as baselines: 1) meth-
ods capturing the example-label and label-label
relations, e.g., BiLSTM (Choi et al., 2018) that
concatenates the context representation learned
by a bidirectional LSTM and the mention repre-
sentation learned by a CNN, LabelGCN (Xiong
et al., 2019) that learns to encode global label
co-occurrence statistics and their word-level sim-
ilarities, LRN (Liu et al., 2021a) that models the
coarse-to-fine label dependency as causal chains,
Box4Types (Onoe et al., 2021) that captures hierar-
chies of types as topological relations of boxes, and
UniST (Huang et al., 2022a) that conduct name-
based label ranking; 2) methods leveraging induc-
tive bias from pre-trained models for entity typ-
ing, e.g., MLMET (Dai et al., 2021) that utilizes
the pretrained BERT to predict the most probable
words for “[MASK]” earlier incorporated around
the mention as type labels, LITE (Li et al., 2022)
and Context-TE (Du et al., 2022) that both lever-
age indirect supervision from pre-trained natural
language inference.

Implementation Details The dataset UFET first
asked crowd workers to annotate entity’s types and
then used WordNet (Miller, 1995) to expand these
types automatically by generating all their syn-
onyms and hypernyms based on the most common
sense. Therefore, we automatically obtain label
thesaurus entries from definitions and examples in

WordNet and Wiktionary, which covers 99.99% of
the whole label set. The time cost for prior label
thesaurus construction is around 2.07 minutes.

Initialized with the original DPR checkpoint pre-
trained on open-domain QA datasets, DDR firstly
optimizes the model given positive example-label
pairs and in-batch negatives. With the fine-tuned
model, we then perform dense retrieval on the label
set for each training example, keeping label docu-
ments with high scores but not in the true label set
as hard negatives. DDR further updates the model
with these additional hard negatives. For inference
of mult-label entity type classification, we adopt
labels with retrieval scores higher than a threshold
that leads to the best F1 score on the development
set.

Results In Tab. 3, we show performance of DDR
and other entity typing methods. DDR obtains
the state-of-the-art F1 score over the the best base-
line training from scratch (LRN) by 6.7 and the
best baseline with inductive bias from the language
model (Context-TE) by 0.6.

4.3 Few-shot Intent Classification

Task As a fundamental element in task-oriented
dialog systems, intent detection is normally con-
ducted in the NLU component for identifying a
user’s intent given an utterance (Ham et al., 2020).
Recently, accurately identifying intents in the few-
shot setting has attracted much attention due to
data scarcity issues resulted from the cost of data
collection as well as privacy and ethical concerns
(Lin et al., 2023b). Following the few-shot intent
detection benchmark (Zhang et al., 2022), we focus
on the challenging 5-shot and 10-shot settings.

Datasets and Metrics To evaluate the effective-
ness of DDR for NLU with large decision spaces,
we pick three challenging intent datasets with
a relatively large number of semantically simi-
lar intent labels. Banking77 (Casanueva et al.,
2020) is a single-domain dataset that provides
very fine-grained 77 intents in a Banking domain.
HWU64 (Liu et al., 2021b) is a multi-domain
(21 domains) dataset recorded by a home assis-
tant robot including 64 intents ranging from set-
ting alarms, playing music, search, to movie rec-
ommendation. CLINC150 (Larson et al., 2019)
prompts crowd workers to provide questions or
commands in the manner they would interact with
an artificially intelligent assistant covering 150 in-
tent classes over 10 domains. We report accuracy

15027



Method Banking77 HWU64 CLINC150
5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

w/ Data Augmentation

ICDA-XS (+1x) 80.29 86.72 81.32 85.59 91.16 93.71
ICDA-S (+4x) 81.95 87.37 81.97 86.25 91.22 93.98
ICDA-M (+16x) 84.01 88.64 81.84 87.36 91.93 94.71
ICDA-L (+64x) 83.90 89.12 81.97 86.94 92.41 94.73
ICDA-XL (+128x) 83.90 89.79 82.45 87.41 92.62 94.84

w/o Data Augmentation

USE 76.29 84.23 77.79 83.75 87.82 90.85
ConveRT 75.32 83.32 76.95 82.65 89.22 92.62
USE+ConveRT 77.75 85.19 80.01 85.83 90.49 93.26
ConvBERT − 83.63 − 83.77 − 92.10

+ MLM − 83.99 − 84.52 − 92.75
+ MLM + Example − 84.09 − 83.44 − 92.35
+ Combined − 85.95 − 86.28 − 93.97

DNNC 80.40 86.71 80.46 84.72 91.02 93.76
CPFT 80.86 87.20 82.03 87.13 92.34 94.18

- Pretraining 76.75 84.83 76.02 82.96 88.19 91.55
Context-TE 80.76 85.53 − − − −
DDR (w/o thesaurus) 78.86 84.16 80.30 83.74 88.86 91.58
DDR (scratch) 82.11 85.97 80.76 84.71 88.58 91.16
DDR (full) 83.86 (XL) 88.25 (M ) 84.29 (XL) 86.34 (S) 92.71 (XL) 94.58 (M )

Table 4: Few-shot Intent Detection Accuracy on three benchmark datasets. DDR achieves much higher accuracy
than existing strong learning baselines without data augmentation, while competitive with ICDA requiring a
considerable amount of augmented data. ICDA prepares additional synthetic data with the scale ranging from the
same amount (ICDA-XS) to 128 times (ICDA-XL) of the original few-shot train size. In the bottom row, we also
mark performance of DDR with the most comparable ICDA variant. Results not available in original papers are
marked as −.

for this single-label classification task.

Baselines There are two families of intent learn-
ing algorithms to cope with limited amounts
of example-label pairs: 1) Classifiers based
on sentence embeddings from PLMs, including
USE (Yang et al., 2020) embeds sentences from
16 languages into a single semantic space using
a multi-task trained dual-encoder, ConveRT (Hen-
derson et al., 2020) that pretrains a dual-encoder
model on Reddit Data by maximizing the similar-
ity score of embeddings of positive input-response
pairs; ConvBERT (Mehri et al., 2020) that adopts
a BERT-base model pre-trained on a large open-
domain dialogue corpus; 2) methods leverage se-
mantic similarity between utterances from different
users, e.g. ConvBERT+Combined (Mehri and Eric,
2021) that extends the ConvBERT model with task-
adaptive masked language modelling (MLM) and
infers the intent of the utterance based on the simi-
larity to the examples corresponding to each intent,
DNNC (Zhang et al., 2020a) that leverages BERT-
style pairwise encoding to train a binary classifier
that estimates the best matched training example
for a user input, CPFT (Zhang et al., 2021) that con-
ducts contrastive pre-training on example sentences

from six public intent datasets to discriminate se-
mantically similar utterances.

Different from DDR and prior baselines,
ICDA (Lin et al., 2023a), a most recent work tack-
les the challenge of limited data for intent detection
by generating high-quality synthetic training data.
It first fine-tunes a PLM on a small seed of training
data for new data point synthesization, and then
employs pointwise V-information (PVI) based fil-
tering to remove unhelpful ones.12

Implementation Details Based on the observation
that utterances labeled by identical intents share
very similar sentence-level semantic meanings, we
first utilize the whole set of unlabeled training ex-
amples to represent their corresponding pseudo
labels predicted by Sentence-BERT (Reimers and
Gurevych, 2019). We perform prediction on a sin-
gle NVIDIA RTX A5000 GPU and it takes 4.17
minutes to complete label thesaurus construction
for Banking77, 6.45 minutes for HWU64 and 7.61

12Although the learning and augmentation direction are
orthogonal hence incommensurable, we display results with
augmented training data as well to reflect the advantage of
DDR over ICDA in terms of their required scale of augmented
synthetic data to achieve similar good performance.
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Dataset Setting Sentence-BERT
(1st round)

DDR
(2nd round)

Banking77 5-shot 84.29 83.86
10-shot 88.02 88.25

HWU64 5-shot 82.81 84.29
10-shot 85.69 86.34

CLINC150 5-shot 91.82 92.71
10-shot 94.07 94.58

Table 5: Impact on intent detection from label thesaurus
constructed with predictions from Sentence-BERT and
DDR for the unlabeled whole set of the training set.

minutes for CLINC150. After training DDR with
this first version of label thesaurus, we then update
pseudo labels for each training example with pre-
dictions from DDR for the second-round training.

Regardless of the basis for label thesaurus con-
struction, DDR is trained for two phases in each
round: only few-shot positive example-label pairs
and in-batch negatives are used in the first phase,
while labels wrongly predicted for training exam-
ples from the prior phase are used as additional
hard negatives in the second phase. After the sec-
ond round of training, the latest DDR makes pre-
dictions on the whole set of training examples for
the final label thesaurus construction, from which
DDR retrieves the label with the highest score as
the prediction.

Results Tab. 4 presents performance of different
intent detection methods on 5- and 10-shot set-
ting. Without extra training data synthesization,
we observe significant performance gain from the
proposed DDR over existing baselines. Although
ICDA obtains enhanced accuracy by increasing
data augmentation scale, DDR is able to achieve
comparable performance without crafting 4x even
128x synthetic instances. In Tab. 5, we additionally
study the quality of constructed label thesaurus in
accordance with the prediction on the unlabeled
whole training set from Sentence-BERT and DDR
after the first round of training. We find that with a
more accurate pseudo connection between example
and label leads to a higher quality of label thesaurus
construction, and finally benefits intent detection.

5 Conclusions

In this paper, we focus on discriminative NLU
tasks with large decision spaces. By reformulat-
ing these tasks as learning-to-retrieve tasks, we are
able to leverage rich indirect supervision signals

from dense retrieval. Moreover, by representing
decision spaces with thesaurus, we provide rich
semantic knowledge of each label to improve the
understanding of labels for dense decision retriev-
ers. Experiments on 6 benchmark datasets show
the effectiveness of our method on decision spaces
scaling from hundreds of candidates to hundreds of
thousands of candidates. Future work can extend
our method to more large-space decision making
tasks, especially in the low-resource setting.
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Limitations

The proposed DDR leverages the dual-encoder ar-
chitecture with the inner dot product to compute
embedding similarity, obtaining state-of-the-art per-
formance on three investigated challenging large-
space decision making tasks. More expressive mod-
els for embedding input and label thesaurus, such
as joint encoding by a cross-encoder is not dis-
cussed. Moreover, other ways to model the connec-
tion between input and label thesaurus entry, such
as using a sequence-to-sequence language model to
generate the label name given input text and label
thesaurus entry, is not explored yet. We believe
adopting more advanced dense retrieval algorithms
can further promote performance for large-space
decision making. We leave this as an exciting fu-
ture direction.

13https://en.wikipedia.org/wiki/File:
Dance_Dance_Revolution_dance_pad_icon.png
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