@inproceedings{limkonchotiwat-etal-2023-mrefined,
title = "m{R}e{F}in{ED}: An Efficient End-to-End Multilingual Entity Linking System",
author = "Limkonchotiwat, Peerat and
Cheng, Weiwei and
Christodoulopoulos, Christos and
Saffari, Amir and
Lehmann, Jens",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.1007/",
doi = "10.18653/v1/2023.findings-emnlp.1007",
pages = "15080--15089",
abstract = "End-to-end multilingual entity linking (MEL) is concerned with identifying multilingual entity mentions and their corresponding entity IDs in a knowledge base. Existing works assumed that entity mentions were given and skipped the entity mention detection step due to a lack of high-quality multilingual training corpora. To overcome this limitation, we propose mReFinED, the first end-to-end multilingual entity linking. Additionally, we propose a bootstrapping mention detection framework that enhances the quality of training corpora. Our experimental results demonstrated that mReFinED outperformed the best existing work in the end-to-end MEL task while being 44 times faster."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="limkonchotiwat-etal-2023-mrefined">
<titleInfo>
<title>mReFinED: An Efficient End-to-End Multilingual Entity Linking System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peerat</namePart>
<namePart type="family">Limkonchotiwat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Saffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jens</namePart>
<namePart type="family">Lehmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>End-to-end multilingual entity linking (MEL) is concerned with identifying multilingual entity mentions and their corresponding entity IDs in a knowledge base. Existing works assumed that entity mentions were given and skipped the entity mention detection step due to a lack of high-quality multilingual training corpora. To overcome this limitation, we propose mReFinED, the first end-to-end multilingual entity linking. Additionally, we propose a bootstrapping mention detection framework that enhances the quality of training corpora. Our experimental results demonstrated that mReFinED outperformed the best existing work in the end-to-end MEL task while being 44 times faster.</abstract>
<identifier type="citekey">limkonchotiwat-etal-2023-mrefined</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.1007</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.1007/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>15080</start>
<end>15089</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T mReFinED: An Efficient End-to-End Multilingual Entity Linking System
%A Limkonchotiwat, Peerat
%A Cheng, Weiwei
%A Christodoulopoulos, Christos
%A Saffari, Amir
%A Lehmann, Jens
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F limkonchotiwat-etal-2023-mrefined
%X End-to-end multilingual entity linking (MEL) is concerned with identifying multilingual entity mentions and their corresponding entity IDs in a knowledge base. Existing works assumed that entity mentions were given and skipped the entity mention detection step due to a lack of high-quality multilingual training corpora. To overcome this limitation, we propose mReFinED, the first end-to-end multilingual entity linking. Additionally, we propose a bootstrapping mention detection framework that enhances the quality of training corpora. Our experimental results demonstrated that mReFinED outperformed the best existing work in the end-to-end MEL task while being 44 times faster.
%R 10.18653/v1/2023.findings-emnlp.1007
%U https://aclanthology.org/2023.findings-emnlp.1007/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.1007
%P 15080-15089
Markdown (Informal)
[mReFinED: An Efficient End-to-End Multilingual Entity Linking System](https://aclanthology.org/2023.findings-emnlp.1007/) (Limkonchotiwat et al., Findings 2023)
ACL