
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 15090–15107
December 6-10, 2023 ©2023 Association for Computational Linguistics

Sub-network Discovery and Soft-masking for Continual Learning
of Mixed Tasks

Zixuan Ke1∗, Bing Liu1, Wenhan Xiong2, Asli Celikyilmaz2 and Haoran Li2
1Department of Computer Science, University of Illinois at Chicago

2Meta
1{zke4,liub}@uic.edu

2{xwhan,aslic,aimeeli}@meta.com

Abstract

Continual learning (CL) has two main objec-
tives: preventing catastrophic forgetting (CF)
and encouraging knowledge transfer (KT). The
existing literature mainly focused on overcom-
ing CF. Some work has also been done on KT
when the tasks are similar. To our knowledge,
only one method has been proposed to learn
a sequence of mixed tasks. However, these
techniques still suffer from CF and/or limited
KT. This paper proposes a new CL method to
achieve both. It overcomes CF by isolating the
knowledge of each task via discovering a sub-
network for it. A soft-masking mechanism is
also proposed to preserve the previous knowl-
edge and to enable the new task to leverage the
past knowledge to achieve KT. Experiments
using classification, generation, information ex-
traction, and their mixture (i.e., heterogeneous
tasks) show that the proposed method consis-
tently outperforms strong baselines.1

1 Introduction

One of the overarching goals of AI is to develop
agents that can continually learn diverse tasks. To-
ward this goal, continual learning (CL) has been
proposed, which incrementally learns a sequence of
tasks, 1,, T (Chen and Liu, 2018). Once a task t
is learned, its training data Dt (at least a majority
of it) is no longer accessible. This paper studies CL
of NLP tasks (Ke and Liu, 2022), where a task is
an end-task, e.g., text classification, summarization
or information extraction, in the popular setting
of task-incremental learning (TIL), in which the
task-id is given in both training and testing.2

Ideally, CL should (1) overcome catastrophic
forgetting (CF), i.e., it should not degrade the per-
formance of previously learned tasks; (2) encour-

∗The work was done mainly during Meta AI internship.
1The code of TSS can be found at https://github.com/

ZixuanKe/PyContinual.
2Another popular CL setting is class-incremental learn-

ing (CIL), which provides no task-id in testing and solves a
different type of problems (Ke and Liu, 2022).

age knowledge transfer (KT) across tasks, i.e., the
learning of a task should be able to leverage the
knowledge learned from previous tasks3; and (3)
be able to learn a mixed sequence of similar and
dissimilar tasks and achieve both (1) and (2).

Most existing approaches for TIL address one of
the three to the detriment of the others. For exam-
ple, HAT (Serrà et al., 2018) and SupSup (Worts-
man et al., 2020) can overcome CF by isolating the
parameters of each task, which makes KT difficult.
CUBER (Lin et al., 2022a) and DAS (Ke et al.,
2023) can achieve KT by allowing some updates
to existing knowledge, which causes CF. Progres-
siveNet (Rusu et al., 2016) assures no CF by fixing
all the learned parameters and expanding the net-
work, but it limits KT. To our knowledge, CAT (Ke
et al., 2020) is the only system that tries to have all
three capabilities. However, it still suffers from CF
due to its weak task similarity detection (for KT)
and parameter sharing across dissimilar tasks.

This paper takes a major step to achieve all
three objectives without suffering from the above
drawbacks. The proposed system is called TSS
(TIL based on Sub-network discovery and Soft-
masking). TSS performs two functions, (A) sub-
network discovery with soft-masking and (B) im-
portance computation, to learn a mixed sequence,
where some tasks may be similar (which enable
KT) and some may be dissimilar.

Given a fixed and randomly initialized back-
bone network N , function (A) finds a separate
sub-network as the model for each task. A sub-
network is indicated by a set of binary gates, one
for each parameter of N , specifying whether the
corresponding parameter in N should be in the
sub-network for the task. In training, N is fixed
and the binary gates are obtained by learning a set
of positive and real-valued popup scores (one for

3This is called forward transfer in the literature. There is
also the backward transfer, where the performance of previous
tasks may be improved after learning a similar new task.

15090

https://github.com/ZixuanKe/PyContinual
https://github.com/ZixuanKe/PyContinual

each parameter of N) and then applying a threshold
on the popup scores.4 In other words, we convert
the network training into the popup scores train-
ing.5 Only the binary gates (1’s) obtained from the
trained popup scores are stored for each task as its
model. Thus, there is no interference across tasks
to cause CF as the backbone network is fixed.

This sub-network discovery is effective for over-
coming CF, but it prevents KT if the popup scores
of each task are independently trained with no shar-
ing across tasks. A naive way to share knowledge is
to initialize the popup scores of the new task t with
the trained popup scores of the previous task t− 1.
However, this is problematic for a mixed sequence
of similar and dissimilar tasks because the training
of task t can only leverage the knowledge from the
(t− 1)th task. This can cause negative transfer if
task t−1 is dissimilar to task t. To address this, we
propose a soft-masking mechanism to make the ini-
tialization of popup scores for the new task contain
the learned knowledge from all previous tasks so
that the new task training can leverage the knowl-
edge of all previous similar tasks. This is a key
novelty of our approach. It is achieved by reducing
(called “soft-masking”) the gradient corresponding
to the subset of popup scores that are important
to previous tasks (1...t− 1) in training the current
task t so that the previously learned knowledge
is well protected. In this way, the trained popup
scores for task t, which will be used as the ini-
tialization for the next task, contain not only the
knowledge for task t but also the knowledge from
all previous tasks. This is critical for learning a
mixed sequence of similar and dissimilar tasks be-
cause the system does not know a priori which
tasks’ knowledge can be transferred to the current
task. Note that soft-masking is only applied in
backward propagation to preserve old knowledge.
In the forward pass, the training can still use all
popup scores corresponding to all parameters of
the backbone network. Additionally, soft-masking
reduces the gradient instead of fully blocking the
gradient, which gives the model the flexibility to
adjust any popup scores when training the current
task t, which further encourages KT.

The question is how to decide the important
popup scores for each task. This is done by (B),

4The popup score means that the score is used to select a
parameter or popup the edge from the backbone network (Ra-
manujan et al., 2020).

5Therefore, training task t is the same as training the popup
scores for task t. We thus use the two terms interchangeably.

which computes the importance of the popup scores
after training a task. The importance is a number
between 0 and 1. After training popup scores for a
task, we input the training data again to compute
the importance of each popup score for the task
based on its gradient. We save the accumulated im-
portance over all previous tasks to keep track of the
important popup scores so far. The accumulated
importance (within 0 and 1; thus “soft”) is used to
guide soft-masking in (A) in training a new task.

This paper makes three key contributions.

1. It studies an important but under-studied prob-
lem of continually learning a mixed sequence,
where some tasks may be similar and some
may be dissimilar. Existing CL methods suffer
from either CF or limited KT in this scenario.

2. It proposes a novel method TSS consisting of
sub-network discovery with soft-masking and
importance computation to prevent CF and to
encourage KT for a mixed sequence of tasks.

3. It evaluates TSS using datasets consisting of
classification, generation and information ex-
traction tasks and their mixture. The results
demonstrate the effectiveness of TSS.

2 Related Work

Forgetting prevention in continual learning
(CL). There are four main families of approaches:

(1) Regularization-based approaches (Kirk-
patrick et al., 2016; Lee et al., 2017; Seff et al.,
2017; Zenke et al., 2017; Rusu et al., 2016) add
a regularization in the loss to penalize changes to
parameters that are important to previous tasks.
Gradient projection (Zeng et al., 2019) ensures the
gradient updates occur in the orthogonal direction
to the input of old tasks and in trust region (Lin
et al., 2022a,b) TSS uses no regularization.

(2) Replay-based approaches (Rebuffi et al.,
2017; Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2019; Wang et al., 2020) retain some training
data of old tasks and use them in learning a new
task. The methods in (Shin et al., 2017; Kamra
et al., 2017; Rostami et al., 2019; He and Jaeger,
2018) learn data generators and generate old task
data for learning a new task. These are clearly
different from TSS as it uses no any replay data.

(3) Parameter isolation (Serrà et al., 2018; Ke
et al., 2020, 2021a; Mallya and Lazebnik, 2018;
Fernando et al., 2017; Wortsman et al., 2020) learns
and masks a dedicated sub-network for each task,
but has limited KT. TSS leverages this approach to

15091

isolate knowledge for different tasks, but enables
KT by using a soft-mask mechanism to preserve
the learned knowledge and uses the old knowledge
as the initialization for learning the new task.

(4) Parameter isolation plus out-of-distribution
(OOD) detection is a new and theoretical grounded
approach (Kim et al., 2022, 2023). It is mainly used
for class-incremental learning (CIL). The main idea
is to use a parameter isolation approach for task
incremental learning (TIL) to overcome CF and the
model for each task is an OOD detection model.
During inference, the system performs both task-
id prediction and within-task prediction for CIL
classification. However, our work is about TIL.

Knowledge transfer in CL. There are two
main approaches for KT: (1) replay-based (Huang
et al., 2021; Wang et al., 2021, 2020; de Mas-
son d’Autume et al., 2019; Zhu et al., 2022; Yin
et al., 2022), which use replay data to help the
transfer. TSS is replay-free. (2) similarity-based,
which uses task similarities using features (Ke et al.,
2021a,b, 2020; Wang et al., 2022; Zhang et al.,
2022) or gradients (Lin et al., 2022a). However,
these methods are not always reliable, which results
in CF. CAT (Ke et al., 2020) considers a mixed se-
quence of tasks by first detecting previous tasks that
are similar to the current task and then opening the
masks of these tasks so that the new task learning
can modify their parameters to achieve KT. How-
ever, this causes CF for dissimilar tasks that share
parameters with those similar tasks. DAS (Ke et al.,
2023) encourages KT by allowing previous knowl-
edge updates based on importance, but this also
causes CF because previous parameters is change-
able and there is no easy way to separate the pa-
rameters that are used for different tasks. In con-
trast, TSS does not require any explicit similarity
detection but finds sub-network for each task to
guarantee no CF. Its soft-masks allow the initial-
ization contains all previously learned knowledge
and thus encourage KT to the new task. Konishi
et al. (2023) recently proposed a parameter-level
soft-masking method using AlexNet as the back-
bone. The method has difficulties working with
more complex architectures. Our soft-masks are
set on the popup scores rather than network param-
eters and our approach is based on sub-network
discovery and knowledge sharing.

Network pruning as importance computation.
It is known that many parameters in a neural net-
work are redundant and can be pruned (Li et al.,

2021; Lai et al., 2021; Chen et al., 2020; Lin et al.,
2020; Gao et al., 2021; Voita et al., 2019). For
Transformer, one can prune the attention head
(Michel et al., 2019; Voita et al., 2019; McCar-
ley et al., 2019) and sub-layers (Fan et al., 2020;
Sajjad et al., 2020). However, these methods are
not directly applicable to us as we need to compute
the importance of each popup score instead of each
parameter in the network. We use the importance
as soft-masks to leverage all existing sub-networks
for KT rather than to compress the LM.

3 Proposed TSS Technique

TSS is designed for both CF prevention and for-
ward KT. Figure 1 gives an overview of TSS. The
backbone network consists of the transformer and
adapters, which are indicated by the transformer
parameters wtransformer

l of layer l and by the pa-
rameters of adapter wadapter

l of layer l respectively
(see the grey boxes). Note again that these are
fixed in the entire learning process. On the left, we
show the forward pass and backward propagation
of (A) sub-network discovery with soft-masking
(Sec. 3.1). In the forward pass, a set of learnable
popup scores s(t)l are initialized (Sec. 3.1.2) and fed
into a step function. The output of the step function
is a set of binary gates g(t)

l that element-wise mul-
tiply (⊗) with the parameters of the adapter of the
backbone network (wadapter

l). As a result, the binary
gates indicate a sub-network for task t within the
w

adapter
l (Sec. 3.1.1). In the backward propagation

(Sec. 3.1.2), we first accumulate the importance of
popup scores for all previous tasks by normaliza-
tion and element-wise maximum (“EMax”). The
accumulated importance I

(≤t−1)
l is converted into

soft-mask by the operation 1− I
(≤t−1)
l . This soft-

mask is then element-wise multiplied with the orig-
inal gradient of the popup scores s(t)l in layer l, ∇l

(computed by straight-through estimator in Eq. 3).
The soft-masked gradient, ∇̂l, is the final gradient
that is used to optimize the popup scores s(t)l . Since
the important popup scores have lower gradients in
∇̂l, the popup scores that are important to previous
tasks are preserved and are used to initialize the
new task to encourage KT (not shown in Figure 1).

After (A), we show (B) importance computa-
tion (Sec. 3.2). The forward pass is the same as
(A). However, in backward propagation, the gra-
dient of popup scores, ∇l, is not used to update
anything (red cross in the arrow) but computes

15092

Figure 1: Illustration of TSS in training task t. The detailed description is in Sec. 3. The grey boxes indicate that the
parameters of the adapters and backbone language model (LM) are all frozen. The only trainable parameters are the
popup scores s(t)l . In (A) sub-network discovery with soft-masking (Sec. 3.1.1), we remove the step function
in the backward propagation to reflect the straight-through estimator in Eq. 3, where the gradient “skips” the step
function as if it is an identity function. The original gradient for popup scores, ∇l, is not directly used to update the
popup scores but soft-masked based on the accumulated importance (Sec. 3.1.2). In (B) Importance Computation
(Sec. 3.2), the red cross in backward propagation indicates that the gradient is not used to update the popup scores
s
(t)
l but only to compute the importance.

the importance using its absolute average value,
1
N

∑N
n=1|∇l|. The resulting importance of task t

in layer l, I(t)
l , is saved for (A) in learning the

next task. The following sub-sections present each
function and step in detail.

3.1 Sub-network Discovery and Soft-masking

Sub-network discovery finds a sub-network (repre-
sented as binary gates) for the current task, which
is saved to overcome CF. It relies on the training
of popup scores and its training also involves soft-
masking to encourage knowledge transfer. In this
section, we will present how we discover the sub-
network via learning popup scores and how we en-
courage knowledge transfer (KT) via soft-masking.

3.1.1 From Popup Scores to Sub-network
Since the pre-trained language model (LM) con-
tains useful general knowledge, we fix and use the
full LM. The sub-network discovery is only done
on adapters (Houlsby et al., 2019), which are in-
serted into each layer of the LM.6 Note again that
throughout the training process, both the adapters
(randomly initialized) and backbone LM are fixed.

We now define a set of learnable popup scores
6See Appendix A for additional details about adapters.

s
(t)
l for layer l for task t. It has the same size as the

parameters of the adapters wadapter
l (which is fixed

throughout learning). In the forward pass, s(t)l is
constantly thresholded,

g
(t)
l = 1ϵ(s

(t)
l), (1)

where 1 is a step function that outputs 1 for the
scores that are larger than the threshold ϵ (a hyper-
parameter). Since the gate g

(t)
l is always binary, it

can naturally indicate a sub-network within the pa-
rameters of the fixed adapter, wadapter

l , by element-
wise multiplication,

ŵ
adapter
l = w

adapter
l ⊗ g

(t)
l , (2)

where ⊗ is element-wise multiplication. ŵadapter
l

indicates the selected parameters in the adapter that
form the discovered sub-network.

Training the popup scores. s
(t)
l cannot be

directly optimized because the derivative of its
threshold-based step functions is zero. Then noth-
ing can be learned. To solve the problem we use
straight-through estimators (Bengio et al., 2013).
Specifically, we ignore the derivative of the thresh-
old function and pass on the incoming gradient as
if the threshold function was an identity function.

15093

Consequently, for each parameter s(t)i,j in s
(t)
l , it is

updated as follows,

s
(t)
l = s

(t)
l − α∇l;

∇l =
∂L
∂s

(t)
i,j

=
∂L
∂Ij

∂Ij
∂s

(t)
i,j

=
∂L
∂Ij

wi,jOi,
(3)

where Ij and Oi are the input and output of neurons
i and j. ∇l is the gradients on the popup scores s(t)l

and α is the learning rate. After training, the binary
gate, g(t)

l , is saved (taking only 1-bit per element).
Since g(t)

l is saved, and all the backbone parameters
are fixed (including the adapter’s and backbone
LM’s), TSS does not suffer from forgetting of the
previously learned knowledge.

3.1.2 Preserving Previous Knowledge for New
Task Initialization

While the sub-network discovery in Sec. 3.1.1 can
help prevent forgetting (CF), it does not do knowl-
edge transfer (KT). As discussed earlier, the naive
way for KT is to initialize the popup scores s

(t)
l

for the new task t with the learned scores s
(t−1)
l

for task t − 1. However, s(t−1)
l contains only the

knowledge from task t − 1, but we have no idea
whether any knowledge from task t − 1 can be
transferred to task t because tasks t and t− 1 may
be entirely different. To address this, we preserve
the learned knowledge from all previous tasks from
1 to t− 1 in s

(t−1)
l . In this way, task t can leverage

all previously learned knowledge for KT.
To make the preservation possible, inspired by

(Ke et al., 2023), we propose a soft-masking mech-
anism based on the importance of each popup score
to all previous tasks. We compute the importance
in Sec. 3.2. For now, we assume that we already
have the set of importance value {I(k)

l }t−1
k=1 for s(k)l

for each previously learned task k. The preserva-
tion is achieved by soft-masking the learning based
on the accumulated importance as follows:7

Accumulating importance. We accumulate the
importance after task t− 1 is learned via element-
wise max (EMax),

I
(≤t−1)
l = EMax({I(t−1)

l , I
(≤t−2)
l }), (4)

7Before accumulation, we normalized the the importance
values in each layer l for a task k by making the importance
values for all popup scores in the layer to have the mean
of 0 and standard deviation of 1. To further facilitate soft-
masking, the normalized importance values are rounded by a
Tanh activation and the absolute operation so that the values
are in the interval of [0,1]. To simplify the notation, we still
use I

(k)
l to represent the resulting importance.

where I(≤t−2)
l refers to the previously accumulated

importance at task t − 2. We do not need to save
all {I(k)

l }t-1k=1 for Eq. 4, but only the incrementally
accumulated importance after training each task.

Soft-masking the popup scores. Given the ac-
cumulated importance I

(≤t−1)
l of layer l and the

cross-entropy loss LCE, we reduce (or soft-mask)
s
(t)
l ’s gradient (∇l in Eq. 3) flow as follows,

∇̂l = (1− I
(≤t−1)
l)⊗∇l, (5)

The importance I
(≤t−1)
l has the same size as ∇l

and the associated popup scores. This is soft-
masking as each element in I

(≤t−1)
l is a real num-

ber in [0, 1] (not binary {0, 1}), which gives the
model the flexibility to adjust any popup scores.
We note that the above soft-masks are only applied
in the backward pass, but not in the forward pass,
which encourages knowledge transfer because each
task training can leverage all popup scores that are
corresponding to all parameters of the backbone
network and the popup scores contain the knowl-
edge from all previously learned tasks.

Popup scores initialization. Thanks to the soft-
masking mechanism, the trained s

(t−1)
l contains

knowledge from all previous tasks. We use it to
initialize the popup scores for the new task s

(t)
l to

encourage knowledge transfer. Note that we apply
Kaiming Initialization for s(0)l .

3.2 Computing the Importance of Popup
Scores to the Current Task

To apply soft-masking (Sec. 3.1.2), we need to de-
termine the importance of popup scores for the
previous tasks. This is done after training a task.
We adapt the gradient-based importance detection
method in (Michel et al., 2019) for our purpose.
Given a dataset D = {(xi, yi)}ni=1 of n samples
(yi is the class label of xi) and the trained popup
scores s(t)l , we input the data again and the impor-
tance of pupup scores in the layer l is estimated
with a gradient-based proxy score

I
(t)
l =

1

N

N∑

n=1

∂LCE(xn, yn))

∂
s
(t)
l

, (6)

Note the average gradient computed in Eq. 6 over
all the data is only used to compute the importance
and will not be used to optimize the popup scores.
The resulting I

(t)
l is of the same size as s(t)l , each

entry corresponding to the importance of a popup

15094

score. It is used in the next task by accumulating
with the previously accumulated importance (Eq.
4) and soft-masking the learning (Eq. 5). Note that
I
(0)
l is all 0 as we do not know which popup scores

are important before the training of the first task.

4 Experiments

We now evaluate the proposed system TSS. We
first learn all tasks sequentially. After that, their
task models are tested using their respective test
sets. TSS does not use any replay data.

4.1 Datasets and Baselines

Datasets: We use five datasets covering a wide
range of NLP problems, including classification,
generation, and information extraction. For de-
tailed datasets statistics, please see Appendix B.
(1) ASC (Aspect Sentiment Classification) is from
(Ke et al., 2021a) and has 19 tasks. Each task clas-
sifies the opinion (positive, negative, or neutral)
in a review sentence at the aspect-level of a prod-
uct. (2) CCD (Continual Classification Dataset)
is a popular continual text classification dataset
(de Masson d’Autume et al., 2019).8 (3) SUM
(ConvoSum) is a conversational abstractive summa-
rization dataset with 6 tasks/domains (Fabbri et al.,
2021). Given conversations from a domain, the
system generates its summary. (4) DRG (Dialogue
Response Generation) is a popular task-oriented di-
alogue response dataset (Multi-WoZ2.0) (Ramadan
et al., 2018) with 5 tasks/domains. Given the intent
and dialogue state (slot-value pairs containing mes-
sages to express), the system generates a response.
(5) NER (Named Entity Recognition)9 classifies
mentions into pre-defined entity types in each task.

Since TSS aims at (1) preventing forgetting, (2)
encouraging knowledge transfer and (3) learning a
mixed sequence of similar and dissimilar tasks, we
consider two types of sequences.

Homogeneous tasks sequences. In each such
task sequence, all tasks are from the same dataset.
Among the aforementioned 5 datasets, two of them

8It contains 5 tasks: AGNews (news classification), Yelp
(sentiment analysis), Amazon (sentiment analysis), DBpedia
(Wikipedia article classification) and Yahoo (questions and
answers categorization). Since each of these datasets is quite
large, we randomly sampled 500 samples from each class for
each task due to our resource limitations.

9This data consists of 5 tasks, including conll03 (Sang
and Meulder, 2003), wikigold (Balasuriya et al., 2009), btc
(Derczynski et al., 2016), re3d (Laboratory, 2017), and gum
(Zeldes, 2017). Due to resource limitations, we randomly
sampled 200 samples for each task.

(ASC and NER) are datasets consisting of similar
tasks as the tasks share similar task labels (with
some exceptions, see the statistic in Appendix B)
but from different domains. Our goal is to achieve
both CF prevention and KT. Three of them (SUM,
CCD, and DRG) are dissimilar tasks as the distri-
bution shift across tasks is relatively large. They
have little shared knowledge to transfer and the
main goal is to ensure there is little or no CF.

Heterogeneous tasks sequence. This sequence
is constructed by mixing all the above similar and
dissimilar tasks of different types from all the 5
datasets in random order. It has a total of 40 tasks.
This is a challenging and more realistic setting
where the system needs to prevent CF and encour-
age KT dynamically.

Baselines. We use 14 baselines with both non-
continual and continual learning (CL) methods.

Non-CL baselines: MTL and MTL
(Adapter)10 train tasks in a multi-task or
data combined setting, where the former trains the
whole LM and the latter trains only the adapter.
These two are widely accepted as the upper
bounds of CL. ONE builds a separate model
for each task by fine-tuning the LM, which has
no KT or CF. ONE (Adapter) (Madotto et al.,
2020) trains an adapter for each task separately
(called AdapterCL in its original paper). ONE
(Prompt) (Zhu et al., 2022) trains a prompt for
each task (called C-PT in its original paper).

CL baselines. The CL baselines include an naive
continual learning (NCL) method where the sys-
tem learns the tasks one by one with no mechanism
to deal with CF or to encourage KT, and 9 state-of-
the-art TIL methods: . 5 adapter-based methods:
CTR (Ke et al., 2021a), HAT (Serrà et al., 2018),
SupSup (Wortsman et al., 2020), CAT (Ke et al.,
2020) and CUBER (Lin et al., 2022a). 1 prompt-
based method: L2P (Wang et al., 2022). 3 base-
lines that modify the Transformer: LAMOL (Sun
et al., 2020), EWC (Kirkpatrick et al., 2016) and
DAS (Ke et al., 2023). Readers can refer to Ap-
pendix D for the details of these baselines.

LM and hyperparameters. Since we need a
backbone LM that can do classification, generation,

10For classification datasets (ASC, CCD and NER), we con-
duct a multi-task learning (MTL) experiment. For generation
datasets (SUM and DRG), MTL is not possible as the lan-
guage modeling head on top of BART is a linear layer with
weights tied to the input embeddings. We follow the standard
practice (e.g., (Qin and Joty, 2022; Madotto et al., 2020)) and
pool all data together to train a single shared head (we still
called this MTL for simplicity).

15095

Similar Dissimilar Average Average Similar Dissimilar Average Average
Dataset ASC NER SUM CCD DRG ASC NER SUM CCD DRG
Model MF1 F1 R1 MF1 BLEU Main FR MF1 F1 R1 MF1 BLEU Main FR

Non-continual learning
MTL 92.28 63.33 39.39 90.57 25.29 62.17 — 92.28 63.33 39.39 90.57 25.29 62.17 —

MTL (Adapter) 92.17 60.61 38.84 91.09 24.50 61.44 — 92.28 63.33 39.39 90.57 25.29 62.17 —
ONE 85.55 59.33 39.07 91.07 24.14 59.83 — 85.55 59.33 39.07 91.07 24.14 59.83 —

ONE (Adapter) 83.95 56.69 38.90 90.78 23.42 58.75 — 83.95 56.69 38.90 90.78 23.42 58.75 —
ONE (Prompt) 76.46 45.90 30.67 86.23 12.67 50.39 — 76.46 45.90 30.67 86.23 12.67 50.39 —

Continual learning of heterogeneous tasks Continual learning of homogeneous tasks
NCL 88.05 34.56 22.86 81.86 8.68 47.20 13.94 89.25 49.19 32.68 85.08 22.31 55.70 6.42
EWC 88.73 28.75 18.65 83.24 7.99 45.47 13.43 88.36 51.76 32.64 87.27 18.30 55.66 5.53
HAT 87.45 50.16 35.21 89.85 20.98 56.73 0.97 89.33 52.31 37.11 90.21 21.47 58.08 0.49
DAS 90.62 43.38 25.45 82.66 15.21 51.47 10.49 90.94 42.12 31.31 87.97 22.25 54.92 9.26

SupSup 85.83 58.93 38.23 90.66 24.71 59.67 0.00 85.83 58.93 38.23 90.66 24.71 59.67 0.00
LAMOL — — — — — — — 84.62 — 10.88 54.44 19.96 — —

CAT 45.79 35.24 17.44 36.62 10.21 29.06 30.27 84.31 50.73 37.24 90.82 21.72 56.96 1.37
CTR 89.37 50.16 33.98 89.96 17.63 56.22 0.95 88.86 51.85 37.34 90.54 21.39 58.00 0.65

CUBER 90.58 46.67 30.94 81.54 15.68 53.08 7.27 91.25 47.19 30.44 89.19 21.66 55.95 5.82
L2P 78.10 39.03 28.34 72.35 4.55 44.47 6.44 74.81 44.22 26.65 85.35 8.52 47.91 2.58
TSS 90.61 62.13 38.29 90.70 24.56 61.26 0.00 91.28 63.96 38.39 90.89 24.75 61.85 0.00

Table 1: Performance for heterogeneous tasks (a sequence of 40 tasks from all 5 datasets) and homogeneous
tasks (each sequence consisting of all tasks from one dataset), averaged over 5 random sequences (the standard
deviations are given in Appendix H due to space limits). “—” means not applicable. We bold the best results within
CL baselines. The smaller forgetting rate (FR) means the system can deal with forgetting better. Note, the results for
non-continual learning are the same in both settings. Execution time and memory need are given in Appendix J.

and information extraction. We adopt BARTLARGE
(Lewis et al., 2020) as our LM. Fine-tuning of
BART follows the standard practice.11 Detailed
hyperparameters are given in Appendix C.

4.2 Evaluation Results and Analysis

Since the order of the tasks in a sequence may
impact the final result, we ran 5 randomly sampled
task sequences (results of individual sequences are
given in Appendix I). For different types of tasks,
we use their standard evaluation metrics.12 Ta-
ble 1 gives the average result of each system over
5 random task sequences after continual learning
of heterogeneous task sequences (left section) and
homogeneous task sequences (right section). We
report the main performance of each dataset, i.e.,
MF1 (Macro-F1) in ASC and CCD, F1 in NER, R1
in SUM and BLEU in DRG and their average in the
Average Main column (the second from the right
in each section). We also report the average forget-
ting rate (FR) on the same metrics in the Average
FR column to evaluate the forgetting prevention.13

11For ASC, we adopt the ASC formulation in (Xu et al.,
2019), where the aspect term and sentence are concatenated
via </s>. Opinion is predicted as the average over all tokens.

12We use Macro-F1 and accuracy for the sequence-level
classification tasks (ASC and CCD), where Macro-F1 (MF1)
is the primary metric because highly imbalanced classes in
ASC introduce biases in accuracy. We use Rouge score (R1,
R2 and RL) for SUM, BLEU score for DRG and F1 for NER.

13For the detailed metrics and results for each system,
please see Appendix E. For the detailed forgetting rate for
each dataset, please see Appendix G.

LAMOL is not included in heterogeneous tasks as
it is not obvious how to adapt LAMOL for NER.

Heterogeneous Tasks. The left section in Table 1
shows that TSS outperforms all CL baselines for
the mixed sequence of 40 heterogeneous tasks, with
similar tasks (from ASC, NER) and dissimilar tasks
(from SUM, CCD and DRG). Note, although we
have only one task sequence, we report the results
separately for each dataset. Other observations are:

(1). TSS is more effective than CL base-
lines that only deal with CF (EWC, HAT, Sup-
Sup). In the two similar datasets (ASC and NER),
TSS clearly wins because regularization-based
EWC sacrifices accuracy for overcoming CF and
parameter-isolation based SupSup prevents any
possible KT. In the 3 dissimilar datasets which have
little shared knowledge to transfer, TSS is similar
to the baseline that can prevent CF (like SupSup).
This confirms TSS can achieve both CF prevention
and KT in the challenging heterogeneous setting.14

(2). TSS is more effective than CL baselines
that deal with both CF and KT (CAT, CTR, DAS,
CUBER, and L2P). Among these systems, CAT
performs the worst due to its inaccurate task sim-
ilarity detection and its difficulty to deal with CF.
L2P performs better, but still has a large gap to TSS
due to the poor prompt selection (we can see it is

14Other baselines perform poorly: HAT has little KT in
classification tasks, which makes ASC poorer. It has forgetting
in generation tasks as it cannot isolate parameters in the shared
LM head.

15096

Similar Dissimilar Average Average Similar Dissimilar Average Average
Dataset ASC NER SUM CCD DRG ASC NER SUM CCD DRG
Model MF1 F1 R1 MF1 BLEU Main FR MF1 F1 R1 MF1 BLEU Main FR

Non-continual learning
ONE 85.55 59.33 39.07 91.07 24.14 59.83 — 85.55 59.33 39.07 91.07 24.14 59.83 —

Continual learning of heterogeneous tasks Continual learning of homogeneous tasks
TSS (w/o SD) 86.54 37.03 28.04 78.29 14.85 48.95 9.02 91.06 40.47 30.42 88.34 22.77 54.61 9.61
TSS (w/o SM) 85.83 58.93 38.23 90.66 24.71 59.67 0.00 85.83 58.93 38.23 90.66 24.71 59.67 0.00

TSS (w/o SM; Naive) 88.89 34.79 36.11 89.99 24.19 54.80 0.00 90.38 62.42 38.08 90.63 24.59 61.22 0.00
TSS 90.61 62.13 38.29 90.70 24.56 61.26 0.00 91.28 63.96 38.39 90.89 24.75 61.85 0.00

Table 2: Ablation experiment results for heterogeneous and homogeneous tasks - averages over 5 random sequences
(the standard deviations are reported in Appendix H due to space limits).

even poorer than ONE (prompt), indicating that its
selection causes CF). DAS performs well on ASC,
but poorly on other datasets, indicating it cannot
effectively prevent CF. CUBER has strong perfor-
mance on similar tasks (e.g., ASC) but performs
poorly on dissimilar tasks. CTR is the best among
the three, but it is still worse than TSS due to its
inaccurate instance-level similarity detection.

Knowledge transfer (KT) and CF prevention.
To validate TSS’s effectiveness in dealing with CF
with a sequence of dissimilar tasks, we can first
compare TSS with ONE. We can see TSS achieves
similar results to ONE in the three dissimilar tasks
datasets, indicating effective CF prevention. Ad-
ditionally, we can evaluate the continual learning
process to see whether forgetting occurs during
the training of each system. To this end, we com-
pute Forgetting Rate15 in Table 1 (the right-most
column in the CL of heterogeneous tasks section).
Clearly, TSS has a 0 forgetting. SupSup also has 0
forgetting because it also tries to find a sub-network
for each task. While this is certainly good for CF
prevention but makes KT impossible. We can see
other baselines all suffer from forgetting (positive
forgetting rate) on average.

Regarding KT, we can again use ONE as the con-
trol and see whether there is effective KT (learned
tasks help the new task). Clearly, we can see TSS
outperforms ONE in two datasets (ASC and NER)
with similar tasks, indicating effective KT. Thanks
to the sub-network discovery and soft-masking, we
can also see TSS is very similar to MTL/Comb,
which again shows the effectiveness of TSS.

Ablation study. We want to know whether (1)
the sub-network discovery and (2) the soft-masking

15The forgetting rate (Liu et al., 2020) is defined as FR =
1

t−1

∑t−1
i=1 Ai,i −At,i, where Ai,i is the test performance of

each task when it was first learned and At,i is the performance
of task i after training the last task t. We average over all tasks
except the last one as the last task obviously has no forgetting.
The detailed forgetting rate for each dataset is given in Ap-
pendix G. (Mehta et al., 2021) defined a different forgetting
rate. Appendix F will argue that ours is more effective.

mechanism are effective. For (1), we conduct the
ablation experiment TSS (w/o SD), where we re-
move the sub-network discovery and directly train
the parameters of adapters with soft-masking. For
(2), we conduct the experiment TSS (w/o SM) and
TSS (w/o SM; Naive). They both do not use the
soft-masking mechanism. The former initializes
the popup scores with Kaiming Initialization for
all tasks while the latter initializes the scores with
only those of the last task.

The right section (heterogeneous) in Table 2
shows the ablation results and the corresponding
forgetting rates. The full TSS gives the best average
result, indicating that every component helps. We
further observe: (1) TSS’s gain is partially from the
sub-network discovery as TSS (w/o SD) is poorer
on average, particularly for those datasets having
little shared knowledge; (2) soft-masking helps as
TSS (w/o SM) gives a worse performance; (3) soft-
masking can help make the initialization for the
new task better as TSS (w/o SM; Naive) is clearly
worse than TSS. Note that both TSS (w/o SM) and
TSS (w/o SM; Naive) have 0 forgetting rate, due to
the effectiveness of sub-network discovery.

Homogeneous Tasks. For continual learning of
homogeneous tasks, we conducted 5 experiments,
one for each for the 5 datasets, i.e., each task se-
quence contains only the same type of tasks (see
Sec. 4.1). The right section of Table 1 shows the av-
erage results for each system. The observations are
similar to those for heterogeneous tasks, i.e., TSS
outperforms all CL baselines. We further observe
that TSS has larger improvements on similar tasks
(ASC and NER), comparing to the improvements
in the mixed sequence. This is expected.

The right section of Table 2 shows the ablation
study. The observations are also similar to those for
heterogeneous tasks, i.e., every component helps.
We also observe that the naive transfer (TSS (w/o
SM; Naive)) works similarly to TSS. This indicates
that the proposed initialization is more important

15097

in the heterogeneous tasks setting because two ad-
jacent tasks can be very dissimilar (e.g., the current
task is NER but its previous/last task may be sum-
marization) and causes negative transfer.

In summary, we can say that TSS works well for
both the homogeneous tasks and the challenging
heterogeneous tasks scenarios.

5 Conclusion

This paper studied task incremental learning (TIL)
on a range of NLP problems. We first presented the
three desired capabilities: no forgetting, knowledge
transfer and learning a mixed sequence of similar
and dissimilar tasks. To our knowledge, only one
system (CAT) aims to achieve all these objectives
but it suffers from forgetting. We then propose a
novel method, TSS, to achieve all three. Experi-
mental results showed that TSS achieves KT and
no forgetting even for the challenging mixed (or
heterogeneous) task sequence setting.

6 Limitation

While effective, TSS has some limitations. First, al-
though TSS shows strong performance in forward
transfer (old knowledge helps the new task), how
to enable backward transfer (new knowledge im-
proves the trained tasks) is left to future work. Sec-
ond, while empirically soft-masking the gradient
does not harm task learning, there is no theoretical
guarantee that the task with soft-masking can learn
as well as without soft-masking. It is interesting to
investigate whether this is true for any scenario.

7 Ethics Statement

This paper proposes a novel task-incremental learn-
ing model that can achieve both forgetting preven-
tion and knowledge transfer for a mixed sequence
of heterogeneous tasks. We do not foresee any neg-
ative consequences for any individual as a result
of this research. The consequence of the failure
of the system is that the system makes some incor-
rect predictions, which, we believe, do not have
any ethic implications. All the data and pre-trained
models are publicly available and our method does
not leverage biases in the data.

Acknowledgements

The work of Bing Liu was supported in part by
four National Science Foundation (NSF) grants
(1910424, 1838770, 2225427, and 2229876) and a
research contract from KDDI.

References
Dominic Balasuriya, Nicky Ringland, Joel Nothman,

Tara Murphy, and James R. Curran. 2009. Named
entity recognition in wikipedia. In Proceedings
of the 1st 2009 Workshop on The People’s Web
Meets NLP: Collaboratively Constructed Semantic
Resources@IJCNLP 2009, Suntec, Singapore, Au-
gust 7, 2009, pages 10–18. Association for Computa-
tional Linguistics.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with A-GEM. In ICLR.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. Advances in neural informa-
tion processing systems, 33:15834–15846.

Zhiyuan Chen and Bing Liu. 2018. Lifelong machine
learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1–207.

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada.

Leon Derczynski, Kalina Bontcheva, and Ian Roberts.
2016. Broad twitter corpus: A diverse named entity
recognition resource. In COLING 2016, 26th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
December 11-16, 2016, Osaka, Japan, pages 1169–
1179. ACL.

Alexander R. Fabbri, Faiaz Rahman, Imad Rizvi, Borui
Wang, Haoran Li, Yashar Mehdad, and Dragomir R.
Radev. 2021. Convosumm: Conversation summa-
rization benchmark and improved abstractive sum-
marization with argument mining. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 6866–6880. Associa-
tion for Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on Learn-
ing Representations.

Chrisantha Fernando, Dylan Banarse, Charles Blundell,
Yori Zwols, David Ha, Andrei A. Rusu, Alexander
Pritzel, and Daan Wierstra. 2017. Pathnet: Evolution

15098

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr

channels gradient descent in super neural networks.
CoRR.

Yang Gao, Nicolo Colombo, and Wei Wang. 2021.
Adapting by pruning: A case study on bert. arXiv
preprint arXiv:2105.03343.

Xu He and Herbert Jaeger. 2018. Overcoming catas-
trophic interference using conceptor-aided backprop-
agation. In ICLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
ICML.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang,
and Diyi Yang. 2021. Continual learning for text clas-
sification with information disentanglement based
regularization. arXiv preprint arXiv:2104.05489.

Nitin Kamra, Umang Gupta, and Yan Liu. 2017. Deep
generative dual memory network for continual learn-
ing. CoRR.

Zixuan Ke and Bing Liu. 2022. Continual learning of
natural language processing tasks: A survey. arXiv
preprint arXiv:2211.12701.

Zixuan Ke, Bing Liu, and Xingchang Huang. 2020.
Continual learning of a mixed sequence of similar
and dissimilar tasks. In NeurIPS.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu.
2021a. Achieving forgetting prevention and knowl-
edge transfer in continual learning. Advances in Neu-
ral Information Processing Systems, 34.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi,
Gyuhak Kim, and Bing Liu. 2023. Continual pre-
training of language models. In The Eleventh Inter-
national Conference on Learning Representations.

Zixuan Ke, Hu Xu, and Bing Liu. 2021b. Adapting
bert for continual learning of a sequence of aspect
sentiment classification tasks. In NAACL.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zix-
uan Ke, and Bing Liu. 2022. A theoretical study on
solving continual learning. In Advances in Neural
Information Processing Systems.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, and
Bing Liu. 2023. Learnability and algorithm for con-
tinual learning. arXiv preprint arXiv:2306.12646.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2016. Overcoming catastrophic forgetting in neural
networks. CoRR.

Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan
Ke, Gyuhak Kim, and Bing Liu. 2023. Parameter-
level soft-masking for continual learning. Proceed-
ingsofthe40thInternationalConferenceonMachine
Learning (ICML-2023).

Defence Science Technology Laboratory. 2017. Rela-
tionship and entity extraction evaluation dataset.

Cheng-I Jeff Lai, Yang Zhang, Alexander H Liu, Shiyu
Chang, Yi-Lun Liao, Yung-Sung Chuang, Kaizhi
Qian, Sameer Khurana, David Cox, and Jim Glass.
2021. Parp: Prune, adjust and re-prune for self-
supervised speech recognition. NeurIPS, 34.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-
Woo Ha, and Byoung-Tak Zhang. 2017. Overcom-
ing catastrophic forgetting by incremental moment
matching. In NIPS.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. 2021.
Differentiable subset pruning of transformer heads.
Transactions of the Association for Computational
Linguistics, 9:1442–1459.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang.
2022a. Beyond not-forgetting: Continual learning
with backward knowledge transfer. NeurIPS.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang.
2022b. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931.

Zi Lin, Jeremiah Zhe Liu, Zi Yang, Nan Hua, and Dan
Roth. 2020. Pruning redundant mappings in trans-
former models via spectral-normalized identity prior.
arXiv preprint arXiv:2010.01791.

Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. 2020. Mnemonics training: Multi-class
incremental learning without forgetting. In CVPR.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
NIPS.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, and Zhiguang Wang. 2020. Continual
learning in task-oriented dialogue systems. arXiv
preprint arXiv:2012.15504.

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by iterative
pruning. In CVPR.

15099

https://openreview.net/forum?id=m_GDIItaI3o
https://openreview.net/forum?id=m_GDIItaI3o
https://github.com/dstl/re3d
https://github.com/dstl/re3d
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019.
Structured pruning of a bert-based question answer-
ing model. arXiv preprint arXiv:1910.06360.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar,
and Emma Strubell. 2021. An empirical investigation
of the role of pre-training in lifelong learning. CoRR,
abs/2112.09153.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Chengwei Qin and Shafiq R. Joty. 2022. LFPT5: A
unified framework for lifelong few-shot language
learning based on prompt tuning of T5. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Osman Ramadan, Paweł Budzianowski, and Milica Ga-
sic. 2018. Large-scale multi-domain belief tracking
with knowledge sharing. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics, volume 2, pages 432–437.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kem-
bhavi, Ali Farhadi, and Mohammad Rastegari. 2020.
What’s hidden in a randomly weighted neural net-
work? In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seat-
tle, WA, USA, June 13-19, 2020, pages 11890–11899.
Computer Vision Foundation / IEEE.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
CVPR.

Mohammad Rostami, Soheil Kolouri, and Praveen K.
Pilly. 2019. Complementary learning for overcoming
catastrophic forgetting using experience replay. In
IJCAI.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. CoRR.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2020. On the effect of dropping layers
of pre-trained transformer models. arXiv preprint
arXiv:2004.03844.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning, CoNLL 2003, Held in cooperation with
HLT-NAACL 2003, Edmonton, Canada, May 31 -
June 1, 2003, pages 142–147. ACL.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. 2017.
Continual learning in generative adversarial nets.
CoRR, abs/1705.08395.

Joan Serrà, Didac Suris, Marius Miron, and Alexan-
dros Karatzoglou. 2018. Overcoming catastrophic
forgetting with hard attention to the task. In ICML.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. In NIPS.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2020.
Lamol: Language modeling is all you need for life-
long language learning. In ICLR.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Chengyu Wang, Haojie Pan, Yuan Liu, Kehan Chen,
Minghui Qiu, Wei Zhou, Jun Huang, Haiqing Chen,
Wei Lin, and Deng Cai. 2021. Mell: Large-scale
extensible user intent classification for dialogue sys-
tems with meta lifelong learning. In KDD ’21: The
27th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, Virtual Event, Singapore,
August 14-18, 2021.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer Dy, and Tomas Pfister. 2022. Learning to
prompt for continual learning. In CVPR.

Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos,
and Jaime Carbonell. 2020. Efficient meta lifelong-
learning with limited memory. In EMNLP.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu,
Aniruddha Kembhavi, Mohammad Rastegari, Jason
Yosinski, and Ali Farhadi. 2020. Supermasks in su-
perposition. In NeurIPS.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019.
BERT post-training for review reading comprehen-
sion and aspect-based sentiment analysis. In NAACL-
HLT.

Wenpeng Yin, Jia Li, and Caiming Xiong. 2022. Con-
tintin: Continual learning from task instructions. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022.

Amir Zeldes. 2017. The GUM corpus: creating mul-
tilayer resources in the classroom. Lang. Resour.
Evaluation, 51(3):581–612.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu.
2019. Continuous learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelli-
gence.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intelli-
gence. In ICML.

15100

http://arxiv.org/abs/2112.09153
http://arxiv.org/abs/2112.09153
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=Skgxcn4YDS
https://openreview.net/forum?id=Skgxcn4YDS
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x

Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. 2022.
Continual sequence generation with adaptive compo-
sitional modules. arXiv preprint arXiv:2203.10652.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie
Huang. 2022. Continual prompt tuning for dialog
state tracking. arXiv preprint arXiv:2203.06654.

A Additional Details about Adapters

TSS leverages adapters to do masking. An adapter
is simply a 2-layer fully connected network with
layer normalization and residual connections in-
serted into each Transformer layer, which adapts
the output distribution of the pre-trained Trans-
former language model (LM) without modifying
LM’s original weights (the original LM is fixed).
Figure 2 illustrates the LM with adapters.

B Additional Details about the Datasets

Recall that TSS uses five datasets. Here we give
their detailed statistics.

(1) ASC. ASC is more than the traditional senti-
ment classification because of the additional input
of the aspect and the fact that in the same sentence
different aspects can have different opinions. For
example, “The picture is good but the sound is poor”
about a TV expresses a positive opinion about the
aspect “picture” and a negative opinion about the
aspect “sound”. We show more details about these
datasets in Table 3.

(2) CCD, SUM, DRG and NER. We give their
detailed statistics in Table 4.

C Hyperparameters

Unless otherwise stated, the same hyper-
parameters are used in all experiments. The
maximum input length is set to 128 for all
datasets except for SUM which uses 1024 due
to its longer sequences. AdamW optimizer is used.
The learning rate is set to 5e-5 for Transformer
(search within {5e-2,5e-3,5e-4,5e-5}), 3e-2 for
prompt (search within {3e-1,3e-2,3e-3,3e-4,3e-5}),
adapter and classifier. The prompt length is set
to 20 (search within {10,20,50,80,100,150}) and
adapter bottleneck size is 64, following the original
paper (Houlsby et al., 2019). The batch size is
set to 32 and the number of training epochs is set
to 50 with early stopping. τ in Eq. 1 is set to 0.
For classification tasks, a separate classification
head is used for each task in the sequence. For
generation tasks, a shared LM head is used for all
tasks in a sequence. we further set the number of
beams to 4 for beam search and constrain the target
length in between 30 to 200. For image-based
(EWC, Cuber, DAS, HAT, SupSup, CAT, L2P)
and RoBERTa-based (CTR) systems, we adapt
them for text classification and generation by
replacing their feature extractors with BART. For

15101

Figure 2: Architecture of Transformer with adapters. An adapter (blue component) is inserted in each layer. Only
the blue and green boxes are trainable while the LM is fixed during training.

Tasks/Domains #Training #Validating #Testing
Speaker 233 S./352 A./287 P./65 N./0 Ne. 30 S./44 A./35 P./9 N./0 Ne. 38 S./44 A./40 P./4 N./0 Ne.
Router 200 S./245 A./142 P./103 N./0 Ne. 24 S./31 A./19 P./12 N./0 Ne. 22 S./31 A./24 P./7 N./0 Ne.

Computer 187 S./283 A./218 P./65 N./0 Ne. 25 S./35 A./23 P./12 N./0 Ne. 29 S./36 A./29 P./7 N./0 Ne.
Nokia6610 209 S./271 A./198 P./73 N./0 Ne. 29 S./34 A./30 P./4 N./0 Ne. 28 S./34 A./25 P./9 N./0 Ne.
Nikon4300 131 S./162 A./135 P./27 N./0 Ne. 15 S./20 A./18 P./2 N./0 Ne. 15 S./21 A./19 P./2 N./0 Ne.

Creative 582 S./677 A./422 P./255 N./0 Ne. 68 S./85 A./42 P./43 N./0 Ne. 70 S./85 A./52 P./33 N./0 Ne.
CanonG3 190 S./228 A./180 P./48 N./0 Ne. 25 S./29 A./21 P./8 N./0 Ne. 24 S./29 A./24 P./5 N./0 Ne.
ApexAD 281 S./343 A./146 P./197 N./0 Ne. 35 S./43 A./16 P./27 N./0 Ne. 28 S./43 A./31 P./12 N./0 Ne.

CanonD500 103 S./118 A./96 P./22 N./0 Ne. 11 S./15 A./14 P./1 N./0 Ne. 13 S./15 A./11 P./4 N./0 Ne.
Canon100 137 S./175 A./123 P./52 N./0 Ne. 19 S./22 A./20 P./2 N./0 Ne. 16 S./22 A./21 P./1 N./0 Ne.

Diaper 166 S./191 A./143 P./48 N./0 Ne. 22 S./24 A./18 P./6 N./0 Ne. 24 S./24 A./22 P./2 N./0 Ne.
Hitachi 152 S./212 A./153 P./59 N./0 Ne. 23 S./26 A./19 P./7 N./0 Ne. 23 S./27 A./14 P./13 N./0 Ne.

Ipod 124 S./153 A./101 P./52 N./0 Ne. 18 S./19 A./14 P./5 N./0 Ne. 19 S./20 A./15 P./5 N./0 Ne.
Linksys 152 S./176 A./128 P./48 N./0 Ne. 19 S./22 A./13 P./9 N./0 Ne. 20 S./23 A./16 P./7 N./0 Ne.

MicroMP3 384 S./484 A./340 P./144 N./0 Ne. 42 S./61 A./48 P./13 N./0 Ne. 51 S./61 A./39 P./22 N./0 Ne.
Nokia6600 298 S./362 A./244 P./118 N./0 Ne. 26 S./45 A./32 P./13 N./0 Ne. 39 S./46 A./30 P./16 N./0 Ne.

Norton 168 S./194 A./54 P./140 N./0 Ne. 17 S./24 A./15 P./9 N./0 Ne. 24 S./25 A./5 P./20 N./0 Ne.
Restaurant 1893 S./3452 A./2094 P./779 N./579 Ne. 84 S./150 A./70 P./26 N./54 Ne. 600 S./1120 A./728 P./196 N./196 Ne.

Laptop 1360 S./2163 A./930 P./800 N./433 Ne. 98 S./150 A./57 P./66 N./27 Ne. 411 S./638 A./341 P./128 N./169 Ne.

Table 3: Statistics of the ASC tasks. S.: number of sentences; A: number of aspects; P., N., and Ne.: number aspects
with positive, negative and neutral opinions, respectively. Note that the “Restaurant” and “Laptop” have 3 classes of
opinion polarities (positive, negative and neutral) while the others have only 2 classes (positive and negative).

Dataset Tasks/Domains #Training #Validating #Testing #Classes

CCD

Yahoo 4500 500 4840 10
AGnews 1785 199 1756 2
Amazon 898 100 998 2
Dbpedia 6237 693 6748 14

Yelp 900 100 984 4

SUM

icsi 43 10 6 —
ami 97 20 20 —

reddit 201 50 250 —
stack 205 50 250 —
nyt 200 50 250 —

emails 215 50 250 —

DRG

taxi 406 71 56 —
hotel 3366 143 177 —

attraction 298 27 28 —
train 1954 196 262 —

restaurant 569 63 59 —

NER

conll2003 200 3250 3453 9
wikigold 200 170 170 9

btc 200 934 934 9
re3d 200 77 200 21
gum 200 250 1000 23

Table 4: Statistics of the CCD, SUM, DRE and NER datasets. Number of classes is not applicable to SUM and
DRG because they are generation datasets.

15102

LAMOL, we directly run the author provided code.
Except for the aforementioned hyper-parameters,
all baseline-specific hyper-parameters follow those
in their original papers.

D Details of CL Baselines

5 adapter-based methods (CTR (Ke et al., 2021a),
HAT (Serrà et al., 2018), SupSup (Wortsman et al.,
2020), CAT (Ke et al., 2020) and CUBER (Lin
et al., 2022a)). They all train a shared adapter while
SupSup trains popup scores to indicate sub-network
on the fixed adapter. HAT is one of the most ef-
fective TIL methods with little forgetting. CTR
encourages transfer via capsule networks and trans-
fer routing. SupSup uses the similar sub-network
discovery method as TSS but cannot do KT at all.
CAT and CTR are two systems that deal with both
CF and KT. CUBER also deals with CF and KT,
but a hard threshold is needed.

1 prompt-based method (L2P (Wang et al.,
2022)), which trains a prompt pool to transfer task
knowledge and a key-value pair prompt selection
strategy to select the task-specific prompt (it thus
deals with both KT and CF).

3 baselines that modify the Transformer
(LAMOL (Sun et al., 2020), EWC (Kirkpatrick
et al., 2016) and DAS (Ke et al., 2023)). LAMOL
is a pseudo-replay method using GPT-2. EWC is
a regularization method. DAS is a soft-masking
method aims to achieve both forgetting prevention
and knowledge transfer for continual pre-training.
Unlike TSS, it does not discover any sub-network
and thus still suffers from forgetting.

E Detailed Results for Each System

In Tables 1 and 2 in the main paper, we only report
the results of the main metrics (MF1 in ASC and
CCD, F1 in NER, R1 in SUM and BLEU in DRG).
In this section, we give all the results of all the
other metrics. We report the detailed results in
Tables 5 and 6, we can see TSS is effective in all
other metrics.

F Difference between our forgetting rate
and the one in (Mehta et al., 2021)

Unlike our forgetting rate in Sec. 4, the forget-
ting rate in (Mehta et al., 2021) is defined as
F ′
t = 1

t−1

∑t−1
τ=1 maxτ ′∈{1,...,t−1}(Sτ ′,τ − St,τ).

Since both metrics measure everything from the
standing point of the end of continual learning, i.e.,
after all tasks are learned, we believe our measure

is more reasonable. Let us use some examples to
illustrate,

• (1). if task 1 archives the accuracy 0.5 right af-
ter its training, it achieves 0.4 after task 2, and
it achieves 0.3 after task 3 (final task). In this
case, both measures give the same forgetting
0.2.

• (2). if task 1 archives the accuracy 0.5 right
after its training, it achieves 0.8 after task 2,
and it achieves 0.82 after task 3 (final task).
If we take max (F ′

t), then the forgetting is -
0.02, but our method will give -0.32. In this
case, our method is more reasonable because
it precisely shows how much backward trans-
fer (negative value here means backward trans-
fer) has been achieved for task 1 after task 2
and task 3 are learned since both measures
evaluate from the same reference point, i.e.,
after all tasks are learned (the last task is t in
both measures, i.e., task 3 in this example).

• (3). If task 1 archives the accuracy 0.5 right
after its training, 0.8 after task 2 and 0.4 after
task 3 (final task), our metric will give the
forgetting 0.1. F ′

t will give 0.4. This case is
more debatable because F ′

t catches the worst
forgetting. But since we evaluate after all
tasks are learned (the reference point is when
the last task is learned), again we believe that
our method is more reasonable.

• (4). If task 1 archives the accuracy 0.5 right
after its training, 0.1 after task 2 and 0.4 after
task 3 (final task), both metrics will give the
forgetting 0.1. In this case, F ′

t does not catch
the worst forgetting of 0.4 (0.5-0.1) in the
process. Again, if we agree that we evaluate
from the reference point of when the last task
is learned, then both measures are fine in this
case.

In summary, while we believe ours is more rea-
sonable, a better metric may be designed in the
future to characterize forgetting and knowledge
transfer in the continual learning process.

G Detailed Forgetting Rate for Each
Dataset

We report the average forgetting rate of each system
in Tables 1 and 2 (in the main paper). In this section,
we report the detailed forgetting rate of each system
corresponding to each of the above tables.

15103

Similar Dissimilar Average Average
Dataset ASC NER SUM CCD DRG
Model MF1 Acc F1 R1 R2 RL MF1 Acc BLEU Main FR

Non-continual learning
MTL 92.28 94.82 63.33 39.39 10.33 35.05 90.57 90.55 25.29 62.17 —

MTL (Adapter) 92.17 94.65 60.61 38.84 11.38 34.81 91.09 91.14 24.50 61.44 —
ONE 85.55 91.50 59.33 39.07 10.71 35.25 91.07 91.09 24.14 59.83 —

ONE (Adapter) 83.95 90.90 56.69 38.90 11.54 35.23 90.78 90.81 23.42 58.75 —
ONE (Prompt) 76.46 85.54 45.90 30.67 7.23 27.53 86.23 86.28 12.67 50.39 —

Continual learning of heterogeneous Tasks
NCL 88.05 92.60 34.56 22.86 4.67 20.61 81.86 82.70 8.68 47.20 13.94
EWC 88.73 92.86 28.75 18.65 21.22 16.36 83.24 83.92 7.99 45.47 13.43
HAT 87.45 92.77 50.16 35.21 9.96 31.83 89.85 90.03 20.98 56.73 0.97
DAS 90.62 93.73 43.38 25.45 5.88 23.08 82.66 84.39 15.21 51.47 10.49

SupSup 85.83 92.41 58.93 38.23 11.44 34.88 90.66 90.68 24.71 59.67 0.00
CAT 45.79 50.08 35.24 17.44 2.43 15.50 36.62 39.01 10.21 29.06 30.27
CTR 89.37 93.28 50.16 33.98 9.97 30.80 89.96 89.98 17.63 56.22 0.95

CUBER 90.58 93.72 46.67 30.94 7.30 27.92 81.54 81.41 15.68 53.08 7.52
L2P 78.10 87.97 39.03 28.34 5.93 25.44 72.35 76.99 4.55 44.47 6.44
TSS 90.61 94.47 62.13 38.29 11.77 35.26 90.70 90.70 24.56 61.26 0.00

Continual learning of homogeneous Tasks
CL 89.25 93.04 49.19 32.68 6.84 29.19 85.08 85.10 22.31 55.70 6.42

EWC 88.36 92.60 51.76 32.64 7.12 29.00 87.27 87.37 18.30 55.66 5.53
HAT 89.33 93.28 52.31 37.11 10.40 33.53 90.21 90.23 21.47 58.08 0.49
DAS 90.94 94.20 42.12 31.31 7.61 28.79 87.97 88.12 22.25 54.92 9.26

SupSup 85.83 92.41 58.93 38.23 11.44 34.88 90.66 90.68 24.71 59.67 0.00
LAMOL 84.62 90.17 — 10.88 1.39 6.87 54.44 67.04 19.96 — —

CAT 84.31 88.98 50.73 37.24 10.53 33.77 90.82 90.90 21.72 56.96 1.37
CTR 88.86 92.94 51.85 37.34 10.73 33.69 90.54 90.58 21.39 58.00 0.65

CUBER 91.25 94.33 47.19 30.44 6.75 27.51 89.19 89.27 21.66 55.95 5.82
L2P 74.81 84.64 44.22 26.65 4.82 23.90 85.35 85.54 8.52 47.91 2.58
TSS 91.28 94.06 63.96 38.39 11.60 35.22 90.89 90.92 24.75 61.85 0.00

Table 5: Performance for heterogeneous (40 tasks in total) and homogeneous tasks, averaged over 5 random
sequences (the standard deviation is reported in Table 9). “—” means not applicable. We bold the best performance
within CL baselines.

Similar Dissimilar Average Average
Dataset ASC NER SUM CCD DRG
Model MF1 Acc F1 R1 R2 RL MF1 Acc BLEU Main FR

Non-continual learning
ONE 85.55 91.50 59.33 39.07 10.71 35.25 91.07 91.09 24.14 59.83 —

Continual learning of heterogeneous Tasks
TSS (w/o SD) 86.54 71.55 37.03 28.04 6.39 25.57 78.29 61.91 14.85 48.95 9.02
TSS (w/o SM) 85.83 92.41 58.93 38.23 11.44 34.88 90.66 90.68 24.71 59.67 0.00

TSS (w/o SM; Naive) 88.89 93.36 34.79 36.11 10.27 33.15 89.99 89.99 24.19 54.80 0.00
TSS 90.61 94.47 62.13 38.29 11.77 35.26 90.70 90.70 24.56 61.26 0.00

Continual learning of homogeneous Tasks
TSS (w/o SD) 91.06 94.24 40.47 30.42 7.30 27.83 88.34 88.40 22.77 54.61 9.61
TSS (w/o SM) 85.83 92.41 58.93 38.23 11.44 34.88 90.66 90.68 24.71 59.67 0.00

TSS (w/o SM; Naive) 90.38 94.25 62.42 38.08 11.52 35.05 90.63 90.74 24.59 61.22 0.00
TSS 91.28 94.06 63.96 38.39 11.60 35.22 90.89 90.92 24.75 61.85 0.00

Table 6: Ablation experiment results for heterogeneous and homogeneous tasks - averages over 5 random sequences
(the standard deviation is reported in Table 10).

Table 7 and Table 8 show the detailed forget-
ting rate for both heterogeneous and homogeneous
tasks.

In heterogeneous tasks, we can see on average
TSS and SupSup have the lowest forgetting rate
(TSS outperforms SupSup in final performances
due to knowledge transfer). While some baselines
(e.g. DAS, CUBER, EWC) have a negative for-
getting rate (indicating the new knowledge helps
similar old tasks), they suffer from large forgetting
in dissimilar tasks because they cannot do well in
forgetting.

In homogeneous tasks, similar to the hetero-
geneous tasks, we can see on average TSS and

SupSup have the lowest forgetting rate (TSS outper-
forms SupSup in final performances due to knowl-
edge transfer). We also notice the forgetting is
in general less than heterogeneous tasks because
the tasks in heterogeneous sequence can be more
dissimilar (e.g., from summarization to NER).

H Standard Deviations

This section reports the standard deviations of the
corresponding results in Tables 1 and 2 (in the main
paper) of TSS and the considered baselines over 5
runs with random sequences. We only report the
CL baselines since they are related to the task order.
We can see the results of TSS is stable. SupSup

15104

Similar Dissimilar Average
Dataset ASC NER SUM CCD DRG
Model MF1 Acc F1 R1 R2 RL MF1 Acc BLEU FR

Continual learning of heterogeneous Tasks
NCL 1.89 3.41 26.89 15.79 6.16 8.77 8.65 7.35 16.47 13.94
EWC -0.16 0.57 29.29 19.50 6.70 10.33 3.06 6.53 15.46 13.43
HAT -0.98 0.11 1.54 2.21 1.20 1.49 0.62 1.12 1.44 0.97
DAS -0.44 0.01 21.66 13.48 5.65 7.32 8.02 7.86 9.73 10.49

SupSup 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CAT 39.99 36.92 18.30 25.23 9.99 13.93 53.85 32.99 13.96 30.27
CTR -0.15 -0.13 0.72 2.31 0.64 1.39 0.47 0.38 1.42 0.95

CUBER -1.84 -1.72 12.98 11.54 5.09 6.65 1.56 1.55 12.09 7.27
L2P 2.53 0.09 4.04 5.84 2.87 3.99 12.66 11.31 7.16 6.44
TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Continual learning of homogeneous Tasks
NCL -0.44 0.31 15.49 8.37 5.54 5.90 5.67 5.64 3.01 6.42
EWC 7.81 2.78 7.53 2.58 1.68 2.04 8.94 8.17 0.78 5.53
HAT -0.88 -0.36 0.79 1.10 1.22 0.78 -0.07 -0.08 1.48 0.49
DAS -0.81 -0.77 31.88 7.87 3.89 4.98 3.73 3.56 3.61 9.26

SupSup 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LAMOL -1.88 -1.52 — 3.90 1.42 2.32 32.26 27.30 2.29 —

CAT 2.05 0.81 0.81 1.85 1.41 1.37 -0.13 -0.21 2.26 1.37
CTR -0.38 -0.08 0.58 1.43 0.90 0.86 -0.27 -0.27 1.91 0.65

CUBER -0.38 -0.08 0.58 1.43 0.90 0.86 -0.27 -0.27 1.91 0.65
L2P 0.30 0.54 0.96 7.27 3.53 4.68 0.94 0.82 3.42 2.58
TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 7: Forgetting rate for heterogeneous (40 tasks in total) and homogeneous tasks, averaged over 5 random
sequences.

Similar Dissimilar Average
Dataset ASC NER SUM CCD DRG
Model MF1 Acc F1 R1 R2 RL MF1 Acc BLEU FR

Continual learning of heterogeneous Tasks
TSS (w/o SD) -0.48 0.24 20.90 8.88 4.19 4.57 8.38 8.53 7.41 9.02
TSS (w/o SM) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TSS (w/o SM; Naive) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Continual learning of homogeneous Tasks
TSS (w/o SD) -1.71 -0.77 34.14 10.18 4.94 6.62 2.83 2.74 2.62 9.61
TSS (w/o SM) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TSS (w/o SM; Naive) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 8: Forgetting rate for ablation of heterogeneous tasks (40 tasks in total) and homogeneous tasks, averaged
over 5 random sequences.

and TSS (w/o SM) discover different sub-networks
for different tasks, so they are not related to the
task order and are not reported in the table. We
report the standard deviations for all metrics for
completeness.

In heterogeneous tasks, Table 9 and Table 10 re-
port the standard deviations of TSS and the consid-
ered baselines over 5 runs with random sequences.
We can see the results of TSS and its variants are
stable.

In homogeneous tasks, similar to heteroge-
neous tasks, we can see the results of TSS and
its variants are stable.

I Results for Individual Sequences

In Table 1 in the main text, we reported the results
averaged over 5 random sequences (different task
orders). In this section, we give the results of TSS
of each sequence in Table 11. We can see that the
order indeed affects the results but not by much.
In summary, we believe the average over random
sequences in Table 1 (in the main text/paper) can
show the effectiveness of TSS.

J Execution Time and Number of
Parameters

Table 12 reports the number of parameters (regard-
less of trainable or non-trainable), training execu-
tion times for different CL models. Our experi-
ments were run on 4 GeForce GTX 2080 Ti with

15105

Similar Dissimilar
Dataset ASC NER SUM CCD DRG
Model MF1 Acc F1 R1 R2 RL MF1 Acc BLEU

Continual learning of heterogeneous tasks
NCL ±0.0133 ±0.0043 ±0.1397 ±0.1079 ±0.0251 ±0.0954 ±0.0150 ±0.0044 ±0.0527
EWC ±0.0114 ±0.0050 ±0.1278 ±0.1047 ±0.2167 ±0.0947 ±0.0171 ±0.0155 ±0.0914
HAT ±0.0395 ±0.0152 ±0.0078 ±0.0041 ±0.0024 ±0.0046 ±0.0020 ±0.0023 ±0.0119
DAS ±0.0126 ±0.0072 ±0.0348 ±0.1116 ±0.0300 ±0.1000 ±0.0241 ±0.0375 ±0.0638
CAT ±0.1732 ±0.2137 ±0.0034 ±0.0549 ±0.0318 ±0.0794 ±0.1176 ±0.2163 ±0.0333
CTR ±0.0447 ±0.0023 ±0.0712 ±0.0278 ±0.0058 ±0.0029 ±0.1492 ±0.0385 ±0.0704

CUBER ±0.0175 ±0.0107 ±0.0589 ±0.0682 ±0.0208 ±0.0598 ±0.0394 ±0.0396 ±0.0631
L2P ±0.0173 ±0.0260 ±0.0225 ±0.0328 ±0.0153 ±0.0298 ±0.0759 ±0.0494 ±0.0287
TSS ±0.0058 ±0.0124 ±0.0503 ±0.0025 ±0.0018 ±0.0021 ±0.0047 ±0.0034 ±0.0058

Continual learning of homogeneous tasks
NCL ±0.0040 ±0.0027 ±0.0767 ±0.0060 ±0.0055 ±0.0066 ±0.0233 ±0.0230 ±0.0060
EWC ±0.0093 ±0.0063 ±0.0707 ±0.0132 ±0.0053 ±0.0113 ±0.0227 ±0.0216 ±0.0217
HAT ±0.0130 ±0.0042 ±0.0063 ±0.0130 ±0.0049 ±0.0115 ±0.0028 ±0.0028 ±0.0094
DAS ±0.0075 ±0.0024 ±0.0647 ±0.0091 ±0.0070 ±0.0074 ±0.0178 ±0.0175 ±0.0094

LAMOL ±0.0085 ±0.0039 — ±0.0125 ±0.0042 ±0.0052 ±0.0317 ±0.0258 ±0.0068
CAT ±0.0096 ±0.0021 ±0.0106 ±0.0104 ±0.0040 ±0.0090 ±0.0019 ±0.0021 ±0.0051
CTR ±0.0080 ±0.0030 ±0.0049 ±0.0116 ±0.0052 ±0.0096 ±0.0009 ±0.0010 ±0.0127

CUBER ±0.0072 ±0.0031 ±0.0543 ±0.0157 ±0.0061 ±0.0119 ±0.0069 ±0.0062 ±0.0090
L2P ±0.0650 ±0.0361 ±0.0022 ±0.0215 ±0.0047 ±0.0203 ±0.0181 ±0.0176 ±0.0216
TSS ±0.0031 ±0.0035 ±0.0032 ±0.0021 ±0.0020 ±0.0015 ±0.0024 ±0.0026 ±0.0035

Table 9: Standard deviations of the corresponding metrics of the proposed TSS model and the baselines on the
heterogeneous and homogeneous tasks.

Similar Dissimilar
Dataset ASC NER SUM CCD DRG
Model MF1 Acc F1 R1 R2 RL MF1 Acc BLEU

Continual learning of heterogeneous tasks
TSS (w/o SD) ±0.0866 ±0.3657 ±0.1328 ±0.0536 ±0.0216 ±0.0473 ±0.0942 ±0.3222 ±0.0541

TSS (w/o SM; Naive) ±0.0096 ±0.0063 ±0.0307 ±0.0106 ±0.0063 ±0.0107 ±0.0028 ±0.0029 ±0.0049
TSS ±0.0058 ±0.0124 ±0.0503 ±0.0025 ±0.0018 ±0.0021 ±0.0047 ±0.0034 ±0.0058

Continual learning of homogeneous tasks
TSS (w/o SD) ±0.0107 ±0.0066 ±0.0695 ±0.0088 ±0.0056 ±0.0071 ±0.0274 ±0.0268 ±0.0039

TSS (w/o SM; Naive) ±0.0102 ±0.0040 ±0.0067 ±0.0024 ±0.0014 ±0.0023 ±0.0019 ±0.0016 ±0.0019
TSS ±0.0031 ±0.0035 ±0.0032 ±0.0021 ±0.0020 ±0.0015 ±0.0024 ±0.0026 ±0.0035

Table 10: Standard deviations of the corresponding metrics of the proposed TSS model and the ablation experiments
on the heterogeneous and homogeneous tasks.

Task Order
Similar Dissimilar AverageASC NER SUM CCD DRG

MF1 Acc F1 R1 R2 RL MF1 Acc BLEU Main

Heterogeneous

0 90.61 94.47 62.13 38.29 11.77 35.26 90.70 90.70 24.56 61.26
1 90.07 93.66 62.00 38.56 11.65 35.35 90.21 90.23 24.25 61.02
2 89.34 93.46 48.83 37.80 11.33 34.75 91.35 91.20 25.92 58.65
3 89.59 93.65 58.53 38.39 11.78 35.24 90.24 90.81 25.25 60.40
4 88.95 90.82 61.25 38.31 11.45 35.09 90.07 90.38 25.07 60.73

Homogeneous

0 91.57 94.40 63.96 38.46 11.38 35.19 91.02 91.08 24.89 61.98
1 91.65 94.45 63.19 38.53 11.62 35.28 90.84 90.86 24.07 61.66
2 90.96 93.62 63.26 38.58 11.85 35.40 91.28 91.34 24.81 61.78
3 91.48 94.39 63.01 38.14 11.72 35.06 90.65 90.65 25.02 61.66
4 90.94 93.78 63.37 38.06 11.33 34.97 90.65 90.67 24.97 61.60

Table 11: Results for TSS in different orders for heterogeneous and homogeneous tasks.

48G GPUs memory. We only report the training
time for heterogenous tasks because the training
time is related to datasets and one of the main goal
of TSS is to work well in the challenging hetero-
geneous scenario. we can see TSS is very efficient,
ranking among the least number of parameters and
shortest training time among all the baselines con-
sidered.

Saved binary gates for each task. For each
task, the memory usage for the saved binary gates
is on average 3.1M bytes, which is 7 times less than
saving all the information of the adapter (25.2M),
not to mention if one saves the whole LM (3.6G).
The number of accumulated importance values is

constant, which has the same size as the adapter.

15106

Model #Params (M) Training time (min)
NCL 896.9 600
EWC 896.9 600
HAT 958.0 600
DAS 896.9 600

LAMOL 124.4 550
CAT 896.9 24,000
CTR 1,536 48,000

CUBER 896.9 600
L2P 899.0 650
TSS 896.9 600

Table 12: Network size (#parameters in millions, regard-
less of trainable or non-trainable) and average training
time per task of each CL model measured in minutes
for heterogenous tasks. Here we report #parameters
without including the memory buffer.

15107

