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Abstract

This paper investigates the challenges in build-
ing Swiss German speech translation systems,
specifically focusing on the impact of dialect
diversity and differences between Swiss Ger-
man and Standard German. Swiss German is
a spoken language with no formal writing sys-
tem, it comprises many diverse dialects and
is a low-resource language with only around
5 million speakers. The study is guided by
two key research questions: how does the in-
clusion and exclusion of dialects during the
training of speech translation models for Swiss
German impact the performance on specific
dialects, and how do the differences between
Swiss German and Standard German impact
the performance of the systems? We show that
dialect diversity and linguistic differences pose
significant challenges to Swiss German speech
translation, which is in line with linguistic hy-
potheses derived from empirical investigations.

1 Introduction

There are three main challenges when building
Swiss German speech-to-text systems. First, Swiss
German is a spoken language with no formal writ-
ing system. Thus, the task is formulated as the
translation of Swiss German audio into Standard
German text (Plüss et al., 2021) without access to
an intermediate textual representation of the source
language. This leads to difficulties where Swiss
German and Standard German differ, e.g. in the
usage of tenses (where Swiss German does not use
preterite) or lexical items that are distinct between
the two languages. The second challenge is that
Swiss German consists of many dialects that tend
to differ. This issue makes training a speech trans-
lation system from Swiss German to Standard Ger-
man a task of translating many dialects into a single
language. The third challenge is that Swiss Ger-
man is a low-resource language with only around 5
Million speakers. Furthermore, the fact that some

dialects differ significantly yields even fewer speak-
ers for each dialect (e.g., Valais only has about 80K
speakers).

These three challenges motivate the investigation
of the following two questions:

• How does the inclusion and exclusion of di-
alects during the training of speech translation
(ST) models for Swiss German impact the per-
formance on specific dialects?

• Do the differences between Swiss German
and Standard German negatively impact the
performance of the ST systems?

The first question investigates the issue of the
diversity of dialects in a low-resource setting, while
the second question investigates the differences
between Swiss German and Standard German.

Contributions. To answer these questions, we first
review the Swiss German dialect landscape and the
differences to Standard German. In particular, we
devise a set of hypotheses from the literature stat-
ing which dialects are expected to differ from each
other and which Swiss German phenomena are ex-
pected to impact the performance. We then investi-
gate empirically whether the hypotheses match the
results of training ST models in various settings.

Our findings show that the empirical results fol-
low the linguistic investigations. That is, there are
dialects that we expect to differ significantly from
others, which is confirmed by our empirical results.
Furthermore, the differences between Swiss Ger-
man and Standard German impact the performance,
where the past tense has the highest impact.

2 Swiss German Dialects

2.1 Linguistic background

"Swiss German" commonly refers to the dialects
spoken in German-speaking Switzerland. All
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Swiss German dialects are Alemannic dialects1 be-
longing to the High German languages within the
West Germanic language family. The Alemannic
dialects in Switzerland can be further split into
High Alemannic and Highest Alemannic variants2.

The sociolinguistic situation in German-
speaking Switzerland is particular: unlike in other
linguistic areas, high prestige is associated with
dialects (Ender and Kaiser, 2009), which are
considered important markers of regional identity.
This means that Swiss German dialects are spoken
in most everyday situations, including formal
ones. They are, however, only written in informal
contexts, such as social media/text messages, and
sometimes also for advertisement purposes. On
the other hand, formal correspondence, laws, and
newspapers are always written in Standard German.
The Standard German of Switzerland differs from
the varieties in Germany and Austria and is
therefore often referred to as "Swiss Standard
German."

2.2 Differences between Swiss German and
Standard German

Alemannic dialects (AL), including Swiss German,
differ from Standard German (DE) in several ways
such as:
Phonology: Middle German monophthongs and
diphthongs are preserved in Swiss German (AL
"huus" vs DE "Haus" (house) and AL "[li@b]"
vs DE "[li:b]" (dear)) and most dialects have
completed the High German consonant shift (AL
"[’xaSt@]" vs DE "[’kastn]" (box)). Stress is placed
on the first syllable of a word in Swiss German
more often than in DE.
Grammar: AL nouns have no genitive case but
rather use possessive constructions ("s huus vom
buur" - "the house of the farmer" and "im buur sis
huus" - "the farmer his house") and the accusative
and nominative cases are conflated (except for per-
sonal pronouns). The verbal system has no preterite
tense, perfect constructs are used instead. Relative
clauses always use the particle "wo", and some
verbs reduplicate in present infinite form when
forming a complex predicate with another verb (e.g.
"du lohsch mi lo ässe" - "you let me [let] eat").
Lexis: There are a rather large number of Swiss

1Except for the dialect of Samnaun in Grisons, which is a
variant of the Bavarian language.

2The traditional dialect of Basel City has many features of
Low Alemannic German, but due to internal migration, these
have mostly leveled and are now close to High Alemannic.

Figure 1: Map showing the seven dialect regions in
STT4SG-350.

German / Alemannic vocabulary items which are
not intelligible to speakers of Standard German3.
In Swiss German, some of these originate from
French (e.g., "trottoir" for pavement). Further, a
highly typical Swiss German word formation pro-
cess is "-li" suffixation (e.g., "Hündli" - little dog).

In this work, we will investigate the impact of
two differences between Swiss German and Stan-
dard German: first, preterite tense, which does not
exist in Swiss German (Section 6.1), and second,
Swiss German vocabulary items that are expected
to notably differ from Standard German (Section
6.2).

2.3 Dialect regions and dialect differences

The STT4SG-350 speech translation corpus (Plüss
et al., 2023a), which we use for the experiments
reported in this paper, defines seven dialect regions.
They correspond to Swiss cantons as follows:

• Basel (BS): Basel-City, Basel-Country and
parts of Aargau

• Berne (BE): Berne, Fribourg, Solothurn and
parts of Aargau

• Central Switzerland (CS): Lucerne, most of
Schwyz, Ob- and Nidwalden, Uri, Glarus and
parts of Aargau

• Eastern Switzerland (ES): St.Gallen, Thur-
gau, Schaffhausen, Appenzell Innerrhoden
and Appenzell Ausserrhoden

• Grisons (GR): Grisons
• Valais (VS): Wallis
• Zurich (ZH): Zurich, Höfe district of Schwyz

and parts of Aargau
Figure 1 visualizes these seven dialect regions.
We will investigate if similarities between the di-

3See, e.g., https://de.wikipedia.org/wiki/
Schweizerdeutsch#Wortschatz
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alect regions impact ST performance. To quantify
the differences between the dialects, we use dialec-
tometric data from the Dialect Atlas of German-
Speaking Switzerland (DAGSS; (Hotzenköcherle
et al., 1962-1997)) presented by (Scherrer and
Stoeckle, 2016). The digitised DAGSS data set,
version 3 (DDAGSS), consists of 289 linguistic
features (107 phonological, 118 morphosyntactic,
and 64 lexical features) collected from local respon-
dents in a field survey across 565 Swiss locations.

We use the DDAGSS features to calculate lin-
guistic distance indices based on the Relative Iden-
tity Value (RIV) metric (Goebl, 2010). To ap-
ply RIV to the STT4SG-350 data, we match the
DDAGGS survey sites to our seven dialect regions,
then calculate RIV for all site pairs4 and average
this for all region pairs. The result when using all
DDAGSS features5 is shown in Figure 2. From
the pairwise distances, we derive the following hy-
potheses:

• VS-hyp. VS is the most distant dialect from
other dialect regions, which corresponds well
with local perceptions. Thus, we expect
that systems that are trained only on VS per-
form badly on other dialects, and systems not
trained on VS will not perform well on VS.

• CS/ZH-central-hyp. CS and ZH have less
pronounced differences from most other di-
alects. Thus, we expect systems trained only
on ZH or CS to work better than systems
trained only on other dialects.

• ZH/CS-ES-BS-hyp. ZH has a very small
distance from BS, CS, and ES, respectively.
Thus, we expect that systems trained on only
BS, CS, or ES, respectively, will perform well
on ZH.

• BE/ES-GR-hyp. BE has a larger distance to
ES and GR than to the other dialects. Thus,
we expect systems trained on BE to perform
poorly on ES and GR and vice versa.

3 Related Work

General Dialect Transfer. Luo et al. (2021) and
Hassan et al. (2022) showed that fine-tuning a
pre-trained English Automatic Speech Recognition

4Specifically, we use the following process to calculate
RIV: for two survey sites, we first identify all features for
which they both have a response (total). We then count all
features where the responses are not identical (different). We
finally calculate the distance metric as RIV = different / total

5In Appendix C, we display the distance matrices per fea-
ture group.

Figure 2: Matrix of linguistic distances between dialect
regions.

(ASR) model to different English accents leads to
faster training and higher accuracy than a model
trained from scratch. Transfer learning from En-
glish ASR to different languages such as German,
Spanish, and Russian also leads to a higher accu-
racy than training from scratch (Luo et al., 2021).
In (Woldemariam, 2020), transfer learning for low-
resource speech recognition in the case of Amharic
from English and Mandarin has been studied. For
both pre-training languages fine-tuning ASR for
Amharic led to an absolute WER reduction of
14.22% and 10.25%, respectively. In our work, we
extend the research on transfer learning for differ-
ent dialects from the ASR set to a speech translation
task.
Swiss German Speech Translation. Recent
high quality datasets such as SwissDial (Dogan-
Schönberger et al., 2021), SPC (Plüss et al., 2021),
and SDS-200 (Plüss et al., 2022) enabled notable
advancements in Swiss German Speech Transla-
tion (ST). These datasets successfully cover a wide
range of Swiss German dialects. However, we are
not aware of any comprehensive investigation into
the interactions between these dialects in ASR or
ST.

4 General Setup

4.1 Data

For this investigation, we rely on the STT4SG-350
corpus (Plüss et al., 2023a), which consists of 343
hours of speech translation data. That is, it con-
tains audio in Swiss German and the corresponding
Standard German sentence. The sentences were
presented to speakers who were asked to translate
them to their dialect (without writing down the
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train_all (bal) valid test full
Hours 276 (239) 34 34 343
Rec. 200K (173K) 23K 25K 248K
Unique sent. 192K (167K) 23K 4K 218K
Speakers 219 (192) 21 76 316
Avg. Rec./speaker 912 (902) 1106 324 783

Table 1: Corpus statistics per split. For the train set,
the balanced (bal) version is in parentheses. Taken
from (Plüss et al., 2023a).

translation) and record them. One effect of this
setting is that speakers may use synonyms and dif-
ferent tenses, word order, etc. when saying the sen-
tence aloud in their dialect, leading to a deviation
from the reference sentence. The corpus consists of
a train and test set. The particular setting of the test
set is that it contains 5 hours of audio for each of the
seven dialect regions (cp. Section 2.3) based on the
same set of sentences. This allows for conclusive
comparisons of dialect transfer effects. STT4SG-
350 also provides a balanced training split with
34 hours for each dialect region (see Table 1). In
the train set, the sentences are diverse across the
various regions. Furthermore, STT4SG-350 is also
balanced with respect to gender and age, achieving
an almost uniform distribution across these dimen-
sions.

4.2 Models
For the subsequent experiments, we used three
models to ensure that the results generalize to vari-
ous architectures.
XLS-R. The first model is a pre-trained XLS-
R-300M model (Babu et al., 2021). We ini-
tially conducted two different XLS-R-300M experi-
ments, with CTC decoding and with a sequence-to-
sequence architecture. The experiments reported
here used the CTC architecture, as they perform
better, and the sequence-to-sequence results do not
provide any additional insights. A comparison of
CTC and sequence-to-sequence results is reported
in Appendix B.
Trafo. The second model is a randomly initialized
transformer model implemented in the FAIRSEQ
S2T library (Ott et al., 2019) and replicating the
model of (Plüss et al., 2022), which we trained
from scratch on our data.
Whisper. The third model is Whisper small (Rad-
ford et al., 2022), a pre-trained transformer-based
sequence-to-sequence model.

For the investigation, we relied on medium-sized
models: the XLS-R model has 317M parameters,
the Trafo model 72M parameters, and Whisper

small 244M parameters. We avoid larger models as
they make the experiments prohibitively time and
cost intensive6.

5 Transfer Experiments

We are interested in the interplay of the dialects:
which dialects benefit from other dialects being
in the training data, and are there dialects where
specialized fine-tuning is more adequate? For this,
we run two experiments:

1) Leave-One-Out (LOO), where we train the
models on all dialects except one and measure the
impact on the performance of the left-out dialect as
well as on the other dialects,

2) Single-Dialect (SD), where we fine-tune the
models on a single dialect and measure the impact
on the performance of the various dialects.

For both experiments, we compare the results
to the All-dialects setting, which consists in train-
ing the model on the full STT4SG-350 corpus, i.e.,
on all dialects. For all experiments, we report the
BLEU score (Papineni et al., 2002), which is cal-
culated using the script provided by (Plüss et al.,
2023b). To analyse the difference between All-
dialects and the different settings, we compute the
ratio between the BLEU score achieved by the All-
dialects setting and the BLEU score achieved by
the specific experiment (retainment ratio). We visu-
alise this performance retainment using heatmaps,
which show the percentage of performance retained
on the jth (column) when leaving out the ith (row)
dialect. Thus, a value of 0.9 is to be read as the
model achieving 90% of the BLEU score that All-
dialects achieved. The average at the end of each
row indicates the average retainment of the other
dialects (i.e., excluding the value of the diagonal),
which summarizes the influence of one dialect on
other dialects. The absolute values are provided in
Table 2.

5.1 Leave-One-Out
The leave-one-out (LOO) experiment fine-tunes the
models with the data of all dialects while leaving
one dialect out. This tests the impact one dialect
has on the others through ablation. Table 2 presents
the BLEU scores of the LOO experiment. For each
dialect column, the LOO row shows the perfor-
mance of the LOO model on this dialect’s test set

6See Appendix A for a comparison of the 300M and the
1B model of XLS-R, which show a robust correlation between
the two models on dialect-specific metrics, indicating that the
relative outcomes are independent of model size.
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Model Experiment Full BS BE GR CS ES VS ZH
XLS-R All dialects 70.9 69.8 68.4 72.7 72.9 69.5 70.6 72.5

Leave One Out 70.4 67.7 64.9 71.0 72.3 67.4 61.2 72.2
Single Dialect 57.6 68.7 65.5 69.3 71.2 69.0 71.8 69.5

Trafo All dialects 62.0 59.1 57.5 64.8 65.9 62.1 61.1 63.8
Leave One Out 57.8 50.5 49.9 59.3 62.2 56.2 47.7 59.0
Single Dialect 0.1 0.1 0.1 0.1 0.2 0.1 0 0

Whisper All dialects 62.9 60.0 59.7 64.6 65.9 62.8 62.2 65.2
Leave One Out 60.2 55.4 54.6 64.6 66.3 61.2 51.9 63.5
Single Dialect 45.4 49.5 50.5 53.2 57.4 50.1 54.9 52.9

Table 2: BLEU scores of all experiments. Each experiment is a tuple of model and experiment type. There are three
types: All-dialects, Leave-One-Out, and Single Dialect. For each setting, we report the score achieved on each
dialect separately, and the average score achieved on the full test set.

(a) XLS-R

(b) Trafo

(c) Whisper

Figure 3: Results of LOO Experiment: heatmap with
retainment ratio. Each row shows the scores achieved
for each dialect when leaving out the dialect of the row.
The last column shows the average score of the ratios
(the average excludes the diagonal values.)

(so when BS is left out, the BLEU score on the BS
test set is 67.7). It is apparent (and expected) that

leaving out a dialect leads to lower performance
on the left-out dialect compared to using the full
dataset. For a deeper analysis of the dependence of
the dialects, Figure 3 shows the retainment ratios.
We make the following observations:
VS needs in-dialect data. The strongest reduc-
tion is measured when leaving out the VS dialect.
The drop is consistent across all three models. For
XLS-R, the BLEU score only retains 87% of the
performance. Trafo only retains 78% of the origi-
nal BLEU score, and Whisper retains 83% of the
All-dialects score. This drop was expected, as the
VS dialect is the one that differs the most from all
the other dialects (cp. Figure 2).
ZH and CS do not require much in-dialect data.
Other dialects, such as ZH or CS, experience a
smaller reduction. In fact, with XLS-R, both di-
alects almost completely retain their performance,
and with Trafo, they retain 92% and 94% of the
performance on average, respectively. This finding
matches the CS/ZH-central-hyp hypothesis since
ZH and CS benefit the most from other dialects.
Mutual dependence. We note that when one di-
alect is left out with XLS-R, the other dialects do
not suffer a performance loss. In some cases, the
performance even exceeds the All-dialects setting,
with ratios above 1. This is due to XLS-R’s exten-
sive pre-training, which allows it to adapt to new
languages with relatively small amounts of data.
Thus, the results with Trafo are more revealing.
When VS is left out, the other dialects suffer al-
most no deterioration, indicating the special status
of this dialect, which is in line with the VS-hyp
hypothesis. For the other dialects, omitting them
leads to a greater performance loss on the other
dialects. The largest overall drop in performance
occurs when BS or ZH are left out, where the aver-
age retainment ratio of the other dialects is at 92%.
For BS, this drop is not expected, as BS does not
have as high pairwise similarities as ZH or CS. For
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(a) XLS-R

(b) Whisper

Figure 4: Results of SD Experiment, when the system is
trained on the dialect of the row. The last column shows
the average score of the ratios (the average excludes the
diagonal values.)

ZH, the decrease is consistent with the centrality
hypothesis of ZH. However, there are no pairs of di-
alects where omitting them leads to a loss of more
than 10% of the original performance.

5.2 Single Dialect Fine-Tuning

The single dialect fine-tuning (SD) experiment fine-
tunes the models on a single dialect and measures
the effect on all dialects. Table 2 gives an overview
of the results. We can see that the final BLEU
scores for Trafo were 0, as 50 hours of data are
too little to train such a model from scratch. Thus,
we only show and discuss the XLS-R and Whisper
retainment ratios in Fig 4.
Training on a single dialect is sufficient for that
dialect. The results show that with XLS-R, single
dialect training leads to at least 95% of the All-
dialects performance.
VS Status confirmed. The SD experiments again
confirm VS’s status, as the most distinct dialect
as training on VS alone leads to an improvement
of 2% over the All-dialects setting. We also note
that VS and ES have the highest distance in both
the XLS-R and the Whisper experiments, which
corresponds to the linguistic distance in Figure 2.

ZH is a central dialect. The SD experiments also
confirm that the similarity of ZH to ES and CS is
reflected in the empirical results. When training on
ZH only, the CS and ES scores retain at least 90%
(for Whisper the retainment is also at least 76%).
Vice versa, we observe the same pattern. The simi-
larity between ZH and BS is less pronounced with
both XLS-R and Whisper, which is in line with Fig-
ure 2. As with the LOO experiments, BS-only also
reaches a high average score, which is not expected
from the hypotheses.
BE is dissimilar to both GR and ES. The SD
experiments also confirm the BE/ES-GR-hyp hy-
pothesis. For systems trained only on BE, the GR
and ES scores suffer the most (next to VS). Also,
when the system is trained on either GR or ES, the
BE scores suffer the most (next to VS).

Overall, the experiments confirm the hypotheses
that we derived from the dialect distances based on
the DDAGGS data. Most notably, the difference
of VS to all the other dialects is as pronounced as
the hypotheses predicted. Also, the status of ZH as
a central dialect is confirmed by our experiments.
On the model side, we note that both XLS-R and
Whisper have a strong pre-training, where leaving
out one dialect does not hurt performance. On the
other hand, training only on a single dialect leads
to subpar performance on samples of a different
dialect.

6 Swiss German differences to Standard
German

We investigate two main differences between Swiss
German and Standard German (cp. Section 2.2).
First, the usage of the past tense, i.e., samples
where the Standard German text includes the
preterite (simple past), which is not used in Swiss
German. Second, the usage of words which are
different in Swiss German compared to Standard
German.

6.1 Preterite

We expect to see a mismatch between the transcript
and the reference in those samples where the Stan-
dard German reference contains the simple past
tense. We applied spaCy7 to find samples in the test
set where the preterite tense is used in the Standard
German text. There are 5908 samples containing
preterite tense (23.4%). We used the All-dialects
model to compute the BLEU scores separately for

7https://spacy.io
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Text Type Correct Response
TARGET - der gemeinderat hatte hier bereits auf fr 10000000 gekürzt
REWRITTEN - der gemeinderat hat hier bereits auf fr 10000000 gekürzt
HYPOTHESIS Yes der gemeinderat hat hier bereits auf 100 000 franken gekürzt
TARGET - wir wurden sehr gut informiert und dokumentiert
REWRITTEN - wir sind sehr gut informiert und dokumentiert worden
HYPOTHESIS No wir sind sehr gut informiert und dokumentiert
TARGET - der 42 jährige hatte dort heimlich trainiert
REWRITTEN - der 42 jährige hatte dort heimlich trainiert
HYPOTHESIS ? der 42 jährige trainierte dort heimlich

Table 3: Examples of Target, Rewritten Target, and generated Hypothesis for the Past Tense experiments.

Figure 5: Comparison of distributions of sentence level
BLEU scores for sentences with (Past Tense) and with-
out past tense (No Past Tense). The Past Tense + Ref-
erence shows the BLEU distribution for samples with
the rephrased reference. The differences between "No
Past Tense" and "Past Tense" are significant according
to Welch’s t-test (p=5.95e-104).

the samples with past tense and those without past
tense. Figure 5 shows the results. Samples with
preterite tense in the Standard German text perform
significantly worse than the ones without (mean
BLEU of 0.625 vs. 0.722).
Qualitative Analysis. A qualitative analysis re-
vealed two types of errors among the samples con-
taining preterite tense in the target. The first cate-
gory of mistakes is those that could not be traced
back to the use of past tense, i.e., those where other
mistakes yielded a lower BLEU score.

In the second category, the mistakes are due to
the past tense. There, we noticed that the generated
text often did not match the tense of the hypothesis.
Thus, following the idea of paraphrasing to extend
the set of references (Paonessa et al., 2023), we
extended the set of references for all the past tense
samples by translating them into the past perfect
form. For this, we used ChatGPT8. In Figure 5, the

8We used the gpt-3.5-turbo model,https://platform.
openai.com/docs/guides/gpt

impact is shown (Past Tense + Reference). Extend-
ing the references yields an improvement of almost
5 points in BLEU score, i.e., there are 1197 out
of 5908 samples where the BLEU score improves
when adding the rewritten reference.

This result shows that measuring the correct-
ness of samples with past tense is not trivial since
there are two cases to consider: 1) the transcript
is correct but uses the past perfect form, which
does not match the reference. 2) the transcript is
wrong due to difficulties handling the past tense.
In Table 3, we show some examples. In the first
example, the hypothesis uses the past perfect form
correctly, while the target uses the past perfect. In
the second example, which is in the passive voice,
the hypothesis uses the present perfect but omits
the participle. In the last example, the hypothesis
uses the simple past while the target uses the past
perfect. These examples illustrate the difficulty of
measuring the effects of past tense.

6.2 Vocabulary

We collect lists of words where Swiss German and
Standard German are likely to differ. We then mea-
sure the differences in BLEU scores between sam-
ples that contain such words and those that do not.
To our knowledge, there is no inventory of Stan-
dard German words which are realised differently
in Swiss German dialects. Therefore, we use three
data sources as a proxy and apply (semi-)manual
filtering to each.

1) Volumes 5-8 of the DDAGGS contain 64
lexical features that are expected to differ between
the different dialects. We keep those entries where
none of the realisations are cognates of the Stan-
dard German equivalent - e.g., we keep "heraus"
("out" in the directional sense) with realisations
"us", "use", "usi", "uss", "usse", "uus", "uuse",
"uusi" and "uuss", but we discard "flicken" ("to
mend") with realisations "flicke", "nääje", "büeze",
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Text Type Correct Response
TARGET - etwas weniger als eine stunde war er dort gewesen
HYPOTHESIS Yes etwas weniger als eine stunde war er da
TARGET - und wie schaut es aus beim direkten vergleich
HYPOTHESIS Yes und wie sieht es aus beim direkten vergleich
TARGET - ich arbeite sehr oft mit diesen werten
HYPOTHESIS Yes ich arbeite sehr viel mit den werten

Table 4: Examples of Targets and generated Hypotheses for the vocabulary experiments.

etc. After this filtering step, 18 items remain.
2) The Wikipedia entry on Helvetisms9 con-

tains 503 entries representing lexical items specific
to Swiss (Standard) German. We remove proverbs
and obsolete expressions and then manually filter
the remaining entries: we try to intuit whether a
given Standard German word is usually realised
in Swiss German with a different lexeme (because
the Standard German lexeme does not exist or is
rare/dispreferred). This is a subjective process that
is limited by the evaluator’s knowledge and percep-
tion of the different dialects. After filtering, 262
words remain.

3) The GSWNorm 2022 Shared Task (von
Däniken et al., 2022) presented a data set of 7284
Swiss German sentences (106K tokens / 20K types)
with word-level normalisation into Standard Ger-
man. In order to reduce the set of types to be fil-
tered manually, we apply a heuristic: we keep only
those pairs where the first letters of the two words
are not identical, leading to 2569 candidate types.
We then filter these in the same way as Wikipedia
Helvetisms, resulting in a final list of 267 items.
We combine these three word lists and after elimi-
nating duplicates between the lists, 522 vocabulary
items remain. There are 2975 samples (12.1%) that
contain at least one special vocabulary item.
Results. Figure 6 shows the difference in BLEU
score between those samples without special vo-
cabulary (No Special), the samples with special
vocabulary (Special), and All-dialects (All). The
difference in BLEU score is large (66.13 vs. 70.39).
However, as with the Past Tense, the source of the
BLEU difference is unclear, i.e., we do not know
whether the difference stems from the transcript
being wrong or the hypothesis using a synonym
not covered by the reference (such synonyms may
be introduced during translation and recording, see
Section 4.1). To illustrate this issue, Table 4 shows
examples of mismatches between the transcript and

9https://de.wikipedia.org/wiki/Liste_von_
Helvetismen#Wortschatz, accessed 12 May 2023

Figure 6: Comparison of distributions of sentence level
BLEU scores for sentences containing words of spe-
cial vocabulary. The differences between "No Special"
and "Special" are significant according to Welch’s t-test
(p=5.3e-13).

the target. In most examples, the Swiss version of
the word was used. For instance, Swiss German
"wie schaut es aus", vs. Standard German "wie
sieht es aus". Thus, a fair amount of the mismatch
in terms of BLEU score can likely be attributed to
using the Standard German version in the target.

7 Conclusion

Our findings show that the empirical results are
consistent with the linguistic distances between the
dialects and the differences between Swiss Ger-
man and Standard German. For example, dialects
similar to other dialects (such as ZH) positively
affect others when included in the training data.
In contrast, dialects that differ from others (such
as VS) need in-dialect data to perform well. The
usage of preterite and vocabulary specific to Swiss
German impact the BLEU score negatively. Thus,
future work is concerned with investigating meth-
ods dealing with more efficient dialect transfer and
handling the differences between Swiss German
and Standard German.
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Limitations

No Learning Curve. In our experiments, we ei-
ther used the full set of dialect data (SD) or none of
the dialect data (LOO). A more fine-grained anal-
ysis would include computing learning curves to
understand how much "new" dialect data is needed.
This would also give more hints on the interplay be-
tween dialects. However, these experiments would
be very costly to run.
No Tests on very large SOTA models. We lim-
ited our experiments to models with around 300M
parameters and not very large billion-parameter
models. There are two reasons: first, the training
time and cost would have become prohibitively
large, and second, as shown in Appendix A, the
insights are expected to be largely the same.
Error Attribution Past Tense. Measuring the mis-
takes caused by the past tense is not trivial since
the mistakes could have two main sources: 1) a
non-tense-related error or 2) a tense-related error.
From the latter, there are again two subcases: 1)
the model could not handle the tense and made mis-
takes due to that (e.g., second example in Table 3)
2) the model behaves well, but the reference does
not match the tense generated by the model (which
could be caused by the translation and recording
process, see Section 4.1). Thus, we cannot mea-
sure how many errors are due to which of the above
error types, only the impact on the BLEU score.
Error Attribution Vocabulary. Similarly, for the
special vocabulary, we can only measure the impact
on the BLEU score. The errors could also be due to
a non-vocabulary-related source. If they are caused
by vocabulary, it is still not clear whether the error
stems from using a wrong word or a synonym that
is not covered by the reference.
Word List Subjectivity. The creation of the word
list was done mostly ad-hoc and based on the sub-
jective interpretations of the word-list creator. Fur-
thermore, we did not differentiate between dialects
and some dialects may use vocabulary similar to
Standard German.
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A Comparison XLS-R 1B model vs
XLS-R 300M model

In Figure 7, we compare the XLS-R-1B and the
XLS-R-300M models. We trained both models on

Figure 7: Comparison of two XLS-R models: XLS-R
1B and XLS-R 300M.

the STT4SG-350 balanced dataset for 80K steps.
The 1B model took 48 hours to complete the train-
ing, while the 300M parameter model took 28
hours. The 1B model obtains a higher BLEU score
on all dialects in the test set. Both models have the
same strengths and weaknesses in the different di-
alects. Therefore, our findings on the 300M model
can be transferred to the 1B parameter model. This
study uses the 300M model as we aim for shorter
training times.

B Comparison of XLS-R 300M with CTC
vs. sequence-to-sequence decoder

We executed all XLS-R-300M experiments with
two different decoders: The standard CTC de-
coder and a sequence-to-sequence (Seq2Seq) de-
coder. In Table 5 we compare the two decoders
on the STT4SG-350 balanced dataset. The CTC
obtains an overall BLEU score of 0.709, whereas
the seq2seq decoder achieves 0.659. In the low
data regime with the dialect from scratch exper-
iments, the CTC model results in an average
0.576± 0.044 BLEU score and seq2seq in an av-
erage 0.107 ± 0.026 BLEU score. The average
BLEU score is calculated over seven training runs
using a different dialect for training each time. We
observe, the decoder in the Seq2Seq architecture
cannot learn decoding with only 34 hours of train-
ing data.

C Linguistic Distance Matrices by
Feature Type

In Figures 8a, 8b and 8c we show the linguistic
feature matrices by feature type. While Figure 2
shows the Relative Identity Values (RIV) across all
289 features of the DDAGGS, they are presented
individually here: Figure 8a shows the values based
on the 107 phonological features, Figure 8b based
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Model Full BS BE GR CS ES VS ZH
CTC 0.709 0.698 0.684 0.727 0.729 0.695 0.706 0.725
Seq2Seq 0.659 0.645 0.635 0.675 0.676 0.651 0.663 0.671

Table 5: Comparison of two XLS-R models: XLS-R with CTC decoding and XLS-R with Seq2Seq head.

(a) Matrix of linguistic distance between dialect regions:
phonological features

(b) Matrix of linguistic distance between dialect regions:
morphosyntactic features

(c) Matrix of linguistic distance between dialect regions:
lexical features.

Figure 8

on the 118 morphosyntactic features and Figure
8c based on 64 lexical features. We can see that
VS is the most distinct dialect across all feature
types, followed by GR, BE and ES in changing
order changing depending on the feature.

D Experiment Details

The vocabulary used to preprocess the sentences
is limited to lower-case characters and the German
umlauts ä, ö, and ü. All characters with other ac-
cents are transformed into their corresponding char-
acter without accents, and hyphens are replaced
with a space.
XLS-R. We use the fairseq implementation10 and
replicate the training procedure and model settings
from (Plüss et al., 2023a). The runs on the full
dataset and the Leave-One-Out (LOO) experiment
are trained for 80K steps. The Single Dialect Fine-
Tuning (SD) models are only trained for another
20K steps without any freezing during the warmup
phase. All the final models correspond to the check-
point with the best Word Error Rate on the vali-
dation dataset during training. There is no task-
specific fine-tuning of the hyperparameters. The
training for the 300M version of the model is con-
ducted on 2 NVIDIA A100 40 GB GPUs. The 1B
All-dialects model is trained on 4 NVIDIA A100
40 GB GPUs.
Trafo We replicate the model architecture and train-
ing procedure from Plüss et al. (2022). This model
is based on the FAIRSEQ S2T library (Ott et al.,
2019; Wang et al., 2020). The runs on the full
dataset and the Leave-One-Out (LOO) experiment
are trained for 80K steps. The Single Dialect Fine-
Tuning (SD) models are only trained for another
10K steps. There is no task-specific fine-tuning of
the hyperparameters. The models are trained on a
single NVIDIA A100 40 GB GPUs.
Whisper We use the Huggingface (Wolf et al.,
2019) implementation11 of the Whisper small
model including the provided fine-tuning proce-
dure. The runs on the full dataset and the Leave-
One-Out (LOO) experiments are trained for 80K
steps and a warmup phase of 10K steps. The Single
Dialect Fine-Tuning (SD) models are only trained
for another 10K steps with a warmup phase of 1K
steps. The learning rate is set to 1e − 5. There is
no task-specific specific fine-tuning of the hyper-

10https://github.com/facebookresearch/fairseq/
tree/main/examples/wav2vec/xlsr

11https://huggingface.co/docs/transformers/
model_doc/whisper
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Model Metric Full BS BE GR CS ES VS ZH
XLSR WER 16.1 16.6 18.3 15.0 14.7 16.9 16.2 14.9
- chrF 88.6 88.1 87.0 89.5 89.8 88.0 88.5 89.5
- CER 8.3 8.2 9.9 7.8 7.3 9.0 8.2 7.6
- TER 15.8 16.4 18.0 14.7 14.5 16.6 16.0 14.6
Trafo WER 24.1 26.1 29.4 21.8 20.5 23.5 25.1 22.5
- chrF 82.7 81.2 79.0 84.6 85.5 83.3 81.7 84.0
- CER 14.0 14.7 17.8 12.2 11.6 13.7 14.6 13.0
- TER 23.9 26.0 29.2 21.5 20.3 23.2 25.0 22.3
Whisper WER 25.0 26.5 27.5 23.6 23.3 25.4 25.2 23.6
- chrF 86.5 85.4 84.6 87.4 88.1 86.4 86.3 87.6
- CER 23.7 24.4 24.8 23.3 22.3 23.6 24.4 22.9
- TER 22.8 24.2 25.2 21.5 21.1 22.9 23.0 21.4

Table 6: BLEU scores of all experiments. Each experi-
ment is a tuple of model and experiment type. There are
three types: All-dialects, Leave-One-Out, and Single Di-
alect. For each setting, we report the score achieved on
each dialect separately, and the average score achieved
on the full test set.

parameters. The models are trained on 4 NVIDIA
A100 40 GB GPUs.

E Experiments - Alternative Metrics

In the main text, we use the BLEU score for our
analysis, here, we present the same type of results
using different metrics: WER, TER and chfF. Fig-
ure 9 shows the LOO experiment results using
WER, figure 10 shows the LOO experiment re-
sults using TER, and figure 11 shows the LOO
experiment using chrF. All the metrics yield the
same underlying results and conclusions as using
the BLEU score. In table 6, the All dialects scores
for the different metrics are presented. Figure 12
shows the SD experiment results using WER, fig-
ure 13 shows the SD experiment results using TER,
and figure 14 shows the SD experiment using chrF.
All the metrics yield the same underlying results
and conclusions as using the BLEU score.

(a) XLS-R

(b) Trafo

(c) Whisper

Figure 9: Results of LOO Experiment: heatmap with
retainment ratio. Each row shows the scores achieved
for each dialect when leaving out the dialect of the row.
The last column shows the average score of the ratios
(the average excludes the diagonal values.)
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(a) XLS-R

(b) Trafo

(c) Whisper

Figure 10: Results of LOO Experiment: heatmap with
retainment ratio. Each row shows the scores achieved
for each dialect when leaving out the dialect of the row.
The last column shows the average score of the ratios
(the average excludes the diagonal values.)

(a) XLS-R

(b) Trafo

(c) Whisper

Figure 11: Results of LOO Experiment: heatmap with
retainment ratio. Each row shows the scores achieved
for each dialect when leaving out the dialect of the row.
The last column shows the average score of the ratios
(the average excludes the diagonal values.)
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(a) XLS-R

(b) Whisper

Figure 12: Results of SD Experiment, when the system
is trained on the dialect of the row. The last column
shows the average score of the ratios (the average ex-
cludes the diagonal values.)

(a) XLS-R

(b) Whisper

Figure 13: Results of SD Experiment, when the system
is trained on the dialect of the row. The last column
shows the average score of the ratios (the average ex-
cludes the diagonal values.)
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(a) XLS-R

(b) Whisper

Figure 14: Results of SD Experiment, when the system
is trained on the dialect of the row. The last column
shows the average score of the ratios (the average ex-
cludes the diagonal values.)
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