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Abstract

Readability assessment aims to automatically
classify texts based on readers’ reading levels.
The hybrid automatic readability assessment
(ARA) models using both deep and linguistic
features have attracted rising attention in re-
cent years due to their impressive performance.
However, deep features are not fully explored
due to the scarcity of training data, and the fu-
sion of deep and linguistic features is not very
effective in existing hybrid ARA models. In
this paper, we propose a novel hybrid ARA
model called PromptARA through employing
prompts to improve deep feature representa-
tions and an orthogonal projection layer to fuse
both deep and linguistic features. A series of
experiments are conducted over four English
and two Chinese corpora to show the effec-
tiveness of the proposed model. Experimental
results demonstrate that the proposed model is
superior to state-of-the-art models.

1 Introduction

Text readability assessment aims to quantify the
difficulty of a text, that is, the degree to which it
can be easily read and understood (McLaughlin,
1969; Klare, 2000). Due to the superiority of an
automatic readability assessment (ARA) system on
assigning a text to a difficulty grade, ARA is useful
for identifying texts or books that are suitable for
individuals according to their language proficiency,
intellectual and psychological development. The
studies on ARA can be traced back to the last cen-
tury (Lively and Pressey, 1923; Klare, 1963) and
have attracted rising attention in recent years, with
impressive performance yielded by many neural ap-
proaches (Tseng et al., 2019; Schicchi et al., 2020;
Azpiazu and Pera, 2019; Deutsch et al., 2020; Mar-
tinc et al., 2021; Lee et al., 2021; Vajjala, 2022;
Tanaka-Ishii et al., 2010; Lee and Vajjala, 2022;
Zeng et al., 2022).

In the early stage, studies in ARA mainly fo-
cused on readability formulas, which are typically

developed through empirical pedagogy and psy-
chology (Klare, 1963; Davison and Kantor, 1982).
Although these formulas are easily interpretable,
they rely on surface features and cannot measure
the structure or semantic complexity of a text, re-
sulting in unsatisfactory performance.

Then, the traditional machine learning methods
have been applied to train statistical classifiers for
ARA. These classifiers exploit a large number of
features at various levels of a text, including but
not limited to vocabulary, semantics and syntax
(Hancke et al., 2012; Sung et al., 2015; Dell’Orletta
et al., 2011; Francois and Fairon, 2012; Denning
et al., 2016; Arfé et al., 2018; Jiang et al., 2019).
Although they often achieve better performance
than readability formulas, the feature engineering
and selection for these machine learning methods
are generally time-consuming and labor-intensive.

In recent years, deep learning methods have
shown impressive performance in natural language
processing and their application in ARA has been
intensively studied. Pre-trained word embedding
models (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017) and masked lan-
guage models such as BERT (Devlin et al., 2019)
have been exploited by many neural ARA mod-
els (Deutsch et al., 2020; Tseng et al., 2019; Zeng
et al., 2022). However, the performance of these
deep learning methods is limited by the scarcity of
training data in many ARA tasks.

To further improve the performance of neural ap-
proaches based on deep learning, the hybrid ARA
models utilizing both linguistic and deep features
have been recently studied in the literature (Qiu
et al., 2018; Deutsch et al., 2020; Lee et al., 2021;
Li et al., 2022). The literature (Deutsch et al., 2020;
Lee et al., 2021) investigated the joint effect of
handcrafted linguistic features and deep features
extracted by a deep neural network, where deep
features and hand-crafted linguistic features were
simultaneously fed into a machine learning model
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without fusion to yield readability levels. The re-
cent literature (Li et al., 2022) introduced certain
difficulty-aware topic features through utilizing the
word difficulty knowledge to guide the training of
topic model, and fused the deep features and lin-
guistic features by a projection scheme.

Although the hybrid ARA models have achieved
the state-of-the-art performance, there are two lim-
itations for these models. The first one is that deep
features are not fully explored in hybrid ARA mod-
els due to the scarcity of training data. In most
of existing neural ARA models such as Zeng et al.
(2022), deep features are generally extracted by
the pre-trained large language models, which com-
monly require a large amount of training data. The
second one is that the fusion of deep features and
linguistic features in existing hybrid ARA models
is not paid particular attention.

In this paper, we employ prompts to improve
deep feature representations inspired by the great
success of prompt learning (Lee and Lee, 2023;
Liu et al., 2023; Schick and Schütze, 2021), and
an orthogonal projection layer to effectively fuse
the improved deep features and linguistic features
and particularly remove the redundant information
among these features. The major contributions of
this paper can be summarized as follows.

• We propose a novel hybrid ARA model called
PromptARA through exploiting prompts to
improve the extraction of deep features, and
an orthogonal projection layer to effectively
fuse linguistic features and deep features at
various levels of a text, including word, sen-
tence and document levels. The proposed
model can focus more on some in-domain in-
formation of the text with the help of prompts
and reduce the redundant information among
different levels of feature representations.

• Extensive experiments are conducted over
four English benchmark corpora and two Chi-
nese corpora to validate the merits of the pro-
posed model through comparing with many
state-of-the-art models. Experimental results
demonstrate that the employed prompts and
orthogonal projection layers are effective and
that the proposed model is superior to state-
of-the-art models in most of corpora in terms
of several important evaluation metrics.

2 Related Work

Text exhibits an inherent structure, and its diffi-
culty is manifested through various linguistic levels,
encompassing words, sentences, and entire docu-
ments. How to incorporate more effective informa-
tion of text into ARA is one of the current research
directions of ARA. As the current mainstream mod-
els, deep ARA models is mainly based on the hier-
archical attention networks (HAN) and pre-trained
models (Yang et al., 2016; Azpiazu and Pera, 2019;
Zeng et al., 2022). The basic idea of such kind of
models is to use multi-level deep representations
of texts to yield better representations for predic-
tion. In Azpiazu and Pera (2019), a hierarchical
attention model called Vec2Read was suggested for
the multilingual ARA task, where the word-level
information such as the grammatical and morpho-
logical information was introduced. In the recent
literature (Zeng et al., 2022), a novel HAN-type
model was suggested mainly based on the idea of
ordinal regression.

Noticing that deep features extracted by the kind
of HAN models generally have poor interpretabil-
ity and their capacity is limited by the scarcity of
training data, the hybrid ARA models by using
both linguistic features and deep features have at-
tracted rising attention in recent years (Deutsch
et al., 2020; Qiu et al., 2021; Lee et al., 2021; Li
et al., 2022). In Deutsch et al. (2020), the authors
directly used deep and linguistic features to jointly
train a statistical classifier. In Qiu et al. (2021),
the authors firstly yielded an improved linguistic
representation by learning the relevance of the used
linguistic features and then fused the improved lin-
guistic representation with the deep representation
by a simple concatenation to yield a new repre-
sentation for prediction. The recent literature (Lee
et al., 2021) deeply investigated the effectiveness of
the linguistic features when incorporated into the
deep models for ARA. In Li et al. (2022), the au-
thors firstly introduced a deep topic feature through
introducing the difficulty knowledge, and then sug-
gested a projection scheme to fuse the deep and
linguistic features by removing redundant informa-
tion.

Although existing hybrid ARA models achieve
the sate-of-the-art performance, the deep features
used in these models are extracted by some pre-
trained language models, which generally require
a large amount of training data when adapted to
downstream tasks. Thus, the performance of these
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Figure 1: Overview of the proposed model.

hybrid ARA models is limited by the scarcity of
training data. The recently suggested prompt learn-
ing (Schick and Schütze, 2021) provides a potential
way to address this issue. In the recent literature
(Lee and Lee, 2023), the authors introduced prompt
learning to the problem of judging the difficulty for
two given texts, which can be roughly regarded
as a binary classification problem, while the ARA
task considered in this paper can be generally re-
garded as a multi-classification task. Inspired by
the great success of prompt learning, this paper em-
ploys prompts to improve the deep representations
represented in multiple levels, and an orthogonal
projection scheme to effectively fuse the deep and
linguistic features for prediction.

3 Proposed Model

In this section, we describe the proposed model
in detail. The overview of the proposed model is de-
picted in Figure 1. As shown in Figure 1, four types
of features including the document-, sentence- and
word-level deep features and the traditional lin-
guistic features are utilized for prediction. The
document- and word-level deep features are ex-
tracted by texts with prompts, while the sentence-
level deep features and traditional linguistic fea-
tures are extracted from the original texts. The
prompt guided document-level features are utilized
to improve the other three types of features via an

orthogonal projection layer. With these refined four
types of features, the prediction of the readability
level for a given text is yielded by a linear classifier.

3.1 Deep Representations with Prompts

To fully explore deep features from texts, we
consider three levels of deep features, where the
document- and word-level deep features are ex-
tracted from the extended texts with prompts while
the sentence-level deep features are yielded from
original texts. For the sentence-level deep features,
we extract them directly from original texts since
the prompts designed in this paper are a few sen-
tences, which may provide little help for the extrac-
tion of sentence-level deep features. Some prompts
are presented in Table 1.

A. Document-level deep representations. As
depicted in Figure 1, we employ the well-known
pre-trained Transformers for Longer Sequences
(BigBird) model (Zaheer et al., 2020) to extract
the document-level deep features fd from extended
texts with prompts, inspired by the advantage of
BigBird model on dealing with long sequences.

B. Word-level deep representations. To yield
the word-level deep representations, we firstly feed
extended texts with prompts to a BigBird to ob-
tain word-level embeddings and then implement a
mix-pooling operation for word-level embeddings.
As depicted in Figure 1, the mix-pooling opera-
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Prompts
The text readability classification task is currently in progress.
The task is to divide the text into difficulty levels.
After reading this article, give the difficulty level of the article.
The readability task is currently underway to determine the difficulty of the text.

Table 1: Some examples of prompts designed for ARA. This paper uses the first prompt as the default one.

tion is the mixing of the well-known max-pooling
and mean-pooling operations, aiming to extract the
maximum and mean values.

C. Sentence-level deep representations. To
yield the sentence-level deep representations, we
firstly segment original texts into single sentences,
then feed them into BigBird to yield sentence-level
embeddings, and later implement the mix-pooling
for sentence-level embeddings.

3.2 Linguistic Feature Representations

Many previous studies have shown that linguistic
features can provide additional textual information
for the deep neural models and thus improve their
performance (Sennrich and Haddow, 2016; Qiu
et al., 2018; Lee et al., 2021; Li et al., 2022).

As depicted in Figure 1, to yield the linguistic
feature representations, we firstly extract a large
number of linguistic features at various levels by
the traditional feature extractors, where the spe-
cific linguistic features for the Chinese texts are
presented in Tables 8 and 9 in Appendix. For En-
glish traditional features, we extract them by im-
plementing the lingfeat toolkit developed in Lee
et al. (2021) . Then, we implement the layer nor-
malization for linguistic features for the purpose of
training stability. Finally, we yield the linguistic
representations by projecting the normalized lin-
guistic features into a common space with the same
dimension of deep representations.

3.3 Fusion by Orthogonal Layers

Noticing that there is redundant information be-
tween deep and linguistic representations, we em-
ploy the orthogonal projection layer to remove the
redundant information, inspired by the literature
(Li et al., 2022). As depicted in Figure 1, given a
main representation and an auxiliary representation,
we implement orthogonal projection for these two
representations, that is, we keep the orthogonal part
of the auxiliary representation while eliminating
the projection part of the auxiliary representation
along the main representation, with the purpose of

getting rid of the redundant information between
these two different levels of representations. In this
paper, we take the document-level representation
as the main representation and the other three levels
of representations as the auxiliary representations,
and implement the orthogonal projection operation
for the other three levels of representations to keep
their orthogonal parts as important supplemental
information for the main representation.

With these representations after orthogonal lay-
ers, we concatenate them and feed them into a
linear layer followed by the softmax as a statistical
classifier to yield the prediction of readability level.

4 Experimental Settings

In this section, we describe the experimental
settings in detail. We firstly describe the six cor-
pora used in the experiments including four English
benchmark corpora and two Chinese corpora, and
then present the baseline models, and finally de-
scribe some implementation details.

4.1 Corpora

We conducted experiments on four English cor-
pora and two Chinese corpora to demonstrate the
effectiveness of the proposed model. Some statis-
tics of these corpora are presented in Table 2.

Weebit (Vajjala and Meurers, 2012). The Weebit
corpus is a combined five-level corpus created
based on WeeklyReader1 and BBC-Bitesize2, con-
taining a total of 6388 texts. It is often considered
as the gold standard for ARA models. For each
difficulty category we perform 625 text downsam-
pling.

Cambridge3 (Xia et al., 2016). The levels of the
Cambridge English tests (KET, PET, FCE, CAE,
CPE) are used to categorize articles. For each diffi-
culty category, we performed downsampling on 60
texts.

1http://www.weeklyreader.com
2http://www.bbc.co.uk/bitesize
3http://www.cambridgeenglish.org
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Properties Weebit Cambridge Newsela CLEAR CMER CMT
Language category English English English English Chinese Chinese
Number of classes 5 5 11 10 12 12
Number of texts 3125 300 9565 4724 2260 2621
Average length 288 510 747.37 171.96 926.94 674.72

Table 2: Statistics for the used English and Chinese corpora.

Newsela4 (Xu et al., 2015). Newsela contains
10,786 texts, out of which we selected 9565 texts in
English. The dataset is a parallel corpus of original
and simplified document alignment versions, cor-
responding to 11 different unbalanced grade levels
(from grade 2 to grade 12).

CLEAR5 (Crossley et al., 2022). The corpus
comprises 4724 text excerpts and offers a distinct
measure of readability for each text, designed for
readers in grades 3-12. It also includes metadata
such as the year of publication, genre, and other
relevant information for the excerpts. The CLEAR
corpus represents a significant advancement over
previous readability corpora in terms of the size
and diversity of available excerpts. It encompasses
more than 250 years of writing across two different
genres, and provides a unique criterion for readabil-
ity based on teachers’ evaluations of text difficulty
for student readers. To adapt to the task at hand, we
utilized the Lexile Band, resulting in the creation
of ten classes.

CMT (Cheng et al., 2020). The CMT consists
of texts from Chinese textbooks used in mainland
China, ranging from the first grade of primary
school to the third grade of high school. This cor-
pus comprises a total of 2,621 texts.

CMER6 (Zeng et al., 2022). CMER was col-
lected by Zeng et al. (2022) from extracurricular
books targeted towards children and young adult
in the mainland Chinese book markets. The corpus
consists of 2,260 texts, which are categorized into
12 categories, aligning with grades 1 through 12.

4.2 Baselines

We consider the following state-of-the-art mod-
els as the baselines to verify the effectiveness of
the proposed model.

BERT7 8 (Devlin et al., 2019) represents fine-
tuning using the default BERT model.

HAN is a model based on hierarchical attention
4https://newsela.com
5https://github.com/scrosseye/CLEAR-Corpus
6https://github.com/JinshanZeng/DTRA-Readability
7https://huggingface.co/bert-base-uncased
8https://huggingface.co/bert-base-chinese

networks proposed by Yang et al. (2016). It em-
ploys static word embeddings and utilizes two hier-
archical attention mechanisms at both the word and
sentence levels to pay attention to salient words and
sentences. This enables the model to assign vary-
ing levels of attention to content of different impor-
tance when constructing text representations.We
adopted the same framework used by Martinc et al.
(2021), who replaced Bi-GRU with Bi-LSTM.

BigBird9 10 (Zaheer et al., 2020) is a model
based on Transformer with sparse attention mech-
anism, which can handle up to 4096 tokens and
get better performance. We use it for ARA for
fine-tuning.

DTRA (Zeng et al., 2022) is a model based on
BERT word embeddings with a HAN-like structure.
It learns the sequential information of inter-textual
difficulty by predicting the relative difficulty of
paired texts and using distance-dependent soft la-
bels.

Lee-2021 (Lee et al., 2021) is a hybrid ARA
model, where three novel features are proposed in
terms of high-level semantics, and the deep and lin-
guistic features are directly used to train a statistical
classifier.

BERT-FP-LBL (Li et al., 2022) is a hybrid ARA
model that utilizes the orthogonal projection to fuse
the linguistic features and deep features.

4.3 Implementation Details

For two Chinese corpora, we extracted 67 lin-
guistic features at different levels including lexical,
semantic, syntactic, and cohesion aspects. As for
the four benchmark English corpora, we extracted
the linguistic features using the toolkit suggested
in Lee et al. (2021) at various levels such as the
discourse, syntactic, lexical and surface levels.

We evaluated the proposed model in terms of the
following four commonly used metrics for classi-
fication, i.e., accuracy (Acc), precision (Pre), the
macro F1-metric (F1), Quadratic Weighted Kappa
(QWK), where the QWK metric is often used to

9https://huggingface.co/google/bigbird-roberta-base
10https://huggingface.co/Lowin/chinese-bigbird-base-

4096
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Dataset Cambridge Weebit CLEAR Newsela CMER CMT
MaxLen 1536 1536 512 2048 2048 2048
Epoch 30 30 30 30 20 20

Learn. rate 1e-5 1e-5 1e-5 1e-5 2e-5 2e-5

Table 3: Hyperparameter settings for PromptARA.

assess consistency or reliability among multiple
assessors, and it provides more accurate insights
and decisions in the area of readability assessment.

We used the AdamW optimizer (Loshchilov and
Hutter, 2017) with a weighting decay parameter
0.01 and a warm-up ratio 0.1 to train the proposed
model. All experiments were conducted on RTX
3090 and A40 GPUs, and implemented using the
PyTorch framework. Some hyperparameters of the
proposed model are presented in Table 3.

In particular, since we cannot access the repro-
ducible source codes, it is not easy to reproduce the
results in the recent literature in Lee et al. (2021)
and Li et al. (2022). Thus, we directly took their
reported results as the comparison results. For fair
comparisons, we followed the similar settings of
Lee et al. (2021) and Li et al. (2022) to implement
other baselines. Specifically, for each corpus, we
divided it into the training, validation and testing
sets using an 8:1:1 ratio for three times. The experi-
mental results were recorded on average by running
three trails.

5 Experimental Results

In this section, we describe and analyze the ex-
perimental results in detail.

5.1 Performance Evaluation
Tables 4 and 5 present the experimental results

of the proposed model and baselines on the English
and Chinese datasets, respectively. Since these two
Chinese corpora are not considered in the litera-
ture Lee et al. (2021) and Li et al. (2022), we do
not compare these two baselines over the Chinese
corpus as shown in Table 5.

A. Evaluation over English Corpora. When re-
garding the performance over English corpora, we
can observe that the proposed model outperforms
these baselines in most of cases. Specifically, when
compared to the base model BigBird using only the
document-level representations from original texts,
the proposed model yields much improvement over
all English corpora. This demonstrates that the
suggested prompts, word-level and sentence-level
deep representations, as well the linguistic features
in the proposed model are useful for ARA.

(a) HAN (b) DTRA

(c) BigBird (d) PromptARA

Figure 2: Visualization results of confusion matrices
of four deep learning models over Newsela, where the
horizontal- and vertical-axis of each figure represents
the predicted categories and the true categories of the
samples, respectively.

When compared to these two HAN-type mod-
els, i.e., HAN and DTRA, the proposed model
significantly outperforms these two deep models
with HAN-like structures. It is noteworthy that
the multi-level deep representations in HAN and
DTRA are represented and fused in a hierarchical
way, whereas the multi-level deep representations
in the proposed model are yielded in a parallel way
and fused by an orthogonal projection scheme, to-
gether with the linguistic features. These results
show that the proposed model can explore more
deep features for ARA.

Compared to these two hybrid ARA models of
Lee et al. (2021) and Li et al. (2022) using both
deep and linguistic features, the proposed model
also outperforms them over the Cambridge and
Weebit corpora in terms of most evaluation metrics.
We can observe from Table 4 that except the QWK
value on Weebit, the proposed model achieves the
best results for all other cases. This shows the
effectiveness of the proposed models in comparison
of existing hybrid ARA models.

Moreover, it can be observed from Table 4 that
the performance of BigBird is much better than
BERT, another pre-trained model used in ARA,
mainly due to the superiority of BigBird on dealing
with longer sentences.

We further provide some visualization results in
terms of confusion matrices to demonstrate the ef-
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Model HAN BERT DTRA BigBird Lee2021* BERT-FP
_LBL* PromptARA

Cambridge

Acc 76.67 75.56 77.78 87.78 76.30 87.78 91.11
Pre 80.49 72.75 79.71 88.29 79.20 89.46 92.24
F1 75.77 72.95 77.07 87.53 75.20 87.73 90.88

QWK 92.64 91.59 92.62 97.04 91.90 96.87 97.82

weebit

Acc 82.54 91.53 85.29 92.70 90.50 92.70 93.12
Pre 83.73 91.56 85.54 92.73 90.50 92.89 93.19
F1 82.76 91.51 85.30 92.70 90.50 92.73 93.09

QWK 94.48 97.10 95.65 97.17 96.80 97.78 97.43

CLEAR

Acc 67.87 76.74 72.09 78.86 - - 82.03
Pre 66.22 76.23 70.75 79.01 - - 81.99
F1 66.43 76.05 70.81 78.34 - - 81.75

QWK 89.29 92.86 91.85 94.03 - - 94.54

Newsela

Acc 83.80 77.12 83.07 87.15 - - 88.40
Pre 83.86 78.45 82.96 87.14 - - 88.21
F1 83.70 76.59 82.82 87.05 - - 88.24

QWK 98.35 97.67 98.41 98.79 - - 98.88

Table 4: Comparison results of the proposed PromptARA model and baselines over four English benchmark
corpora. ∗ Experimental results taken directly from the literature. The best results are marked in bold.

Model HAN BERT DTRA BigBird PromptARA

CMT

Acc 42.53 38.46 44.42 38.46 43.96
Pre 40.57 38.79 44.24 38.89 43.17
F1 41.09 37.17 43.87 37.81 41.60

QWK 88.00 88.09 89.95 89.52 91.20

CMER

Acc 23.40 22.30 26.50 23.84 26.50
Pre 15.47 30.13 25.36 24.70 24.24
F1 18.48 13.49 25.16 23.57 23.92

QWK 72.10 65.39 70.53 73.74 68.74

Table 5: ARA performance on the Chinese datasets.
The best and second best results are marked in bold and
blue color, respectively.

fectiveness of the proposed model over Newsela, as
depicted in Figure 2. We can observe from Figure
2 that the confusion matrix yielded by the proposed
model is more concentrated to the diagonal. This
also shows the effectiveness of the proposed model
as compared to the baselines.

B. Evaluation over Chinese Corpora. When
evaluating the performance of the proposed model
over these two Chinese corpora, i.e., CMT and
CMER, we can observe that the proposed model
achieves the competitive results in comparison
of baselines. Specifically, the proposed model
achieves the best result in terms of the QWK and
the second best results in terms of the other three
evaluation metrics over CMT corpus, while yields
the best classification accuracy over CMER.

The performance behaviour of the proposed
model might be attributed to the following two
main factors. Firstly, the Chinese variant of the Big-
Bird model was not well trained on a large amount
of data, limiting its ability to adapt to the complex
and diverse nature of Chinese texts. Secondly, the
complexity of Chinese texts is influenced by in-
tricate semantic and structural differences, further

contributing to the observed performance differ-
ence.

5.2 Ablation Studies

In this subsection, we conducted a series of abla-
tion studies over two English datasets (Cambridge
and CLEAR) and two Chinese datasets (CMT and
CMER) to validate the effectiveness and feasibility
of our proposed ideas. In view of the deficiencies in
the Chinese dataset in the comparative experiments,
we also used other pre-trained models to carry out
relevant experiments. Besides the proposed Promp-
tARA model, we considered the following three
models:
• w/o L denotes the model that does not use the

linguistic features in PromptARA.
• w/o (L, S, W) denotes the model that does not

use the linguistic features, the sentence-level and
word-level deep representations in PromptARA.

• w/o (L, S, W, P) denotes the model that does
not use the linguistic features, the sentence-level
and word-level deep representations as well as
prompts in PromptARA.

Model CLEAR Cambridge CMER CMT
PromptARA 82.03 91.11 26.50 43.96

w/o L 81.61 91.11 26.71 41.39
w/o (L, S, W) 80.97 88.89 26.05 39.01

w/o (L, S, W, P) 78.86 87.78 25.61 35.16

Table 6: Experimental results for ablation studies over
four corpora in terms of accuracy, where L, S, W and P
represent respectively the linguistic features, sentence-
level representations, word-level representations and
prompts used in the proposed model. The best results
are marked in bold.
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The experimental results are presented in Table
6. From Table 6, the accuracy gradually decays
over most corpora through removing the linguis-
tic features, sentence- and word-level features, and
prompts from the proposed PromptARA model
in sequence. In particular, the introduced prompt
information generally yields the biggest improve-
ments on accuracy as shown in the fourth and fifth
rows in Table 6. As shown in the third and fourth
rows in Table 6, the introduced word- and sentence-
level representations are useful for ARA. In addi-
tion, we can observe from the second and third
rows of Table 6 that linguistic features are also
useful to refine the deep features in most cases.
These results clearly verify the effectiveness and
feasibility of the proposed ideas.

Moreover, we consider the effect of the lan-
guage models in the proposed model. Specifi-
cally, we compare the performance of the proposed
model with its counterparts by replacing the Big-
Bird model with other pre-trained models such as
CINO11 (Yang et al., 2022), BERT12, Muiti-BERT
13, Longformer 14 (Iz et al., 2020), over these two
Chinese corpora. The comparison results are pre-
sented in Table 7. As shown in Table 7, the pro-
posed model integrated with the BigBird model
achieves the best accuracy, attributed to its superi-
ority on handling long length texts and outperforms
the Longformer model, which also has the ability
to handle long texts. For the most other pre-trained
language models, they generally have to truncate
the texts during the input procedure, resulting in
a greater loss of valuable textual information and
thus the degradation of the performance.

Dataset BERT CINO Multi-BERT Longformer BigBird
CMT 41.23 38.10 38.64 42.86 43.96

CMET 24.14 25.13 25.44 23.62 26.50

Table 7: On effect of pre-trained language models used
in the proposed model. The best results are marked in
bold.

6 Conclusion

How to fully explore the deep representations
and exploit the linguistic representations of texts is
important for ARA. This paper proposed a novel
hybrid ARA model through employing prompts to

11https://huggingface.co/hfl/cino-base-v2
12https://huggingface.co/bert-base-chinese
13https://huggingface.co/bert-base-multilingual-cased
14https://huggingface.co/schen/longformer-chinese-base-
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improve deep representations and fusing the multi-
level deep and linguistic representations with an or-
thogonal projection scheme. The proposed model
uses informative prompts to provide additional in-
formation to enhance the contextual semantic un-
derstanding of the model, and combines textual in-
formation about the different structures of the text
to yield a richer textual representation. Experimen-
tal results show that the proposed model achieves
excellent performance on both Chinese and English
datasets compared with existing approaches. On
the English datasets in particular, it shows better
generalization performance and robustness. In fu-
ture work, we will further explore how to achieve
automatic generation of textual prompts. Capturing
richer and more accurate information representa-
tion at different text levels will also be investigated.

Limitations

The model poses a major challenge due to the
need to obtain vectors with different structural lev-
els, which is more demanding on the equipment.
Therefore, it is crucial to explore a model that runs
on low-demanding devices without compromising
the performance of the model. This becomes partic-
ularly important when dealing with large amounts
of distributed text and large datasets, which must
have higher equipment requirements. In addition,
we are currently having difficulty deciding which
prompt texts are appropriate. Another challenge
we face is how to adapt the model to feature se-
lection based on the characteristics of the dataset
itself. Different datasets exhibit unique features,
where too many features introduce too much noise
and too few features do not have much impact on
the performance of the model.
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Category Feature name Definition

Lexical level

1: Characters Total number of characters
2: Words Total number of words
3: Adverbs Total number of adverbs
4: Verbs Total number of verbs
5: Nouns Total number of nouns
6: Adjectives Total number of adjectives

7: Ratio of adverbs The ratio of the number of adverbs to
the total number of words

8: Ratio of verbs The ratio of the number of verbs to the
total number of words

9: Ratio of nouns The ratio of the number of nouns to the
total number of words

10: Ratio of adjectives The ratio of the number of adjectives
to the total number of words

11: Low stroke-count characters Total number of characters with 1-7
strokes

12: Intermediate stroke-count
characters (8∼15 strokes)

Total number of characters with 8-15
strokes

13: High stroke–count characters
(>15 strokes)

Total number of characters with more than
15 strokes

14: Ratio of Low stroke-count
characters Proportion of ow stroke-count characters

15: Ratio of Intermediate stroke-count
characters (8∼15 strokes)

Proportion of Intermediate stroke-count
characters

16: Ratio of High stroke-count
characters (>15 strokes) Proportion of High stroke-count characters

17: Average strokes Total number of strokes of each character
divided by the number of characters

18: Two-character words Total number of Two-character words
19: Three-character words Total number of Three-character words
20: Four-character words Total number of Four-character words

21: Ratio of Two-character words The ratio of the number of Two-character
words to the total number of words

22: Ratio of Three-character words The ratio of the number of Three-character
words to the total number of words

23: Ratio of Four-character words The ratio of the number of Four-character
words to the total number of words

24: Level 0 words Total number of words not in 8,000 Chinese
Words

25: Level 0 words ratio Lvel 0 words divided by the total number
of words

26-32: Level 1,2,...,7 words Total number of words in level 1,2,...,7
respectively

33-39: Level 1,2,...,7 words ratio Level 1,2,...,7 divided by the total number
of words respectively

40: Level 1,2,3 words ratio The ratio of level 1,2,3 words together
in all words

41: Level 4,5 words ratio The ratio of level 4,5 words together in
all words

42: Level 6,7 words ratio The ratio of level 6,7 words together in
all words

43: Average level of words Calculate the level of all words, calculate
the average level

44: Mean square level of words Calculate the level of all words, calculate
the mean square level

Table 8: Part I of Chinese Linguistic Features
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45: Content words Total number of content wordsSemantic Level 46: Frequency of content words Frequency of content words
47: Sentences Number of sentences

48: Average sentence length Total number of words divided by the total
number of sentences

49: Maximum sentence length The length of the longest sentence among
all sentences

50: First-level sentences The total number of sentences with a length
not exceeding 15

51: Second-level sentences The total number of sentences with a length
between 16 and 30

52: Tertiary sentences The total number of sentences between 31
and 45 in length

53: Fourth-level sentences The total number of sentences between 46
and 60 in length

54: Fifth-level sentences The total number of sentences with a length
greater than 60

55: Ratio of First-level sentences Ratio of the total number of sentences with
a length not exceeding 15

56: Ratio of Second level-sentences Ratio of the total number of sentences with
a length between 16 and 30

57: Ratio of Tertiary sentences Ratio of the total number of sentences between
31 and 45 in length

58: Ratio of Fourth-level sentences Ratio of The total number of sentences between
46 and 60 in length

Syntactic level

59: Ratio of Fifth-level sentences Ratio of the total number of sentences with a
length greater than 60

60: Conjunctions Total number of conjunctions
61: Preposition Total number of preposition
62: Pronouns Total number of pronouns
63: Auxiliary verbs Total number of auxiliary verbs

64: Ratio of conjunctions The ratio of the number of conjunction
to the total number of words

65: Ratio of prepositions The ratio of the number of preposition
to the total number of words

66: Ratio of pronouns The ratio of the number of pronouns to
the total number of words

Cohesion Level

67: Ratio of auxiliary verbs The ratio of the number of auxiliary to
the total number of words

Table 9: Part II of Chinese Linguistic Features
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