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Abstract
It is generally assumed that language (written
and spoken) follows the entropy rate constancy
(ERC) principle, which states that the infor-
mation density of a text is constant over time.
Recently, this has also been found for nonverbal
gestures used in monologue, but it is still unclear
whether the ERC principle also applies to lis-
teners’ nonverbal signals. We focus on listeners’
gaze behaviour extracted from video-recorded
conversations and trained a transformer-based
neural sequence model to process the gaze
data of the dialogues and compute its informa-
tion density. We also compute the information
density of the corresponding speech using a
pre-trained language model. Our results show
(1) that listeners’ gaze behaviour in dialogues
roughly follows the ERC principle, as well as
(2) a congruence between information density
of speech and listeners’ gaze behaviour.

1 Introduction
Human social interaction is intrinsically multimodal
(Stivers and Sidnell, 2005). Face-to-face commu-
nication as a multimodal process includes verbal
information as well as non-verbal cues, such as gaze,
head movements, and speech-accompanying man-
ual gestures from both interlocutors. Previous stud-
ies have demonstrated that non-verbal behaviours
is rich in communicative functions (Wagner et al.,
2014; Holler and Levinson, 2019).

In this paper, we look at gaze behaviour of lis-
teners in video-recorded face-to-face-interaction,
specifically, explanation dialogues in which a board
game is explained by one interlocutor (the ‘ex-
plainer’) to another (the ‘explainee’; Türk et al.,
2023). We apply information theoretical measures
to the gaze behaviour of the explainees as well as the
corresponding utterances of both interlocutors and
aim at answering the following questions: (i) How
informative is listener gaze from an interactional
perspective and does it follow the ‘entropy rate
constancy’ principle (ERC; Genzel and Charniak,

2002)? (ii) Is there a correlation between verbal
information and listener gaze, in terms of local
entropy, in dialogue (similar to recent findings on
manual gesture in monologue; Xu et al., 2022)?

2 Related work

2.1 Communicative functions of gaze
In human interaction, gaze is an important and mul-
tifunctional nonverbal signal with functions such as
indicating attention, allocating space, and eliciting
and monitoring feedback (Kendon, 1967; Duncan,
1975; Harness Goodwin and Goodwin, 1986). Ac-
cording to Brône et al. (2017), these functions
follow two important roles of gaze: a participation
role and a regulation role. They also emphasise the
importance of gaze for turn management. During
dialogue interaction, listeners’ continuous gaze to-
wards the speaker signals attention and engagement
(Kendon, 1967; Rossano, 2012).

From the technical side, the importance of gaze
has been studied and integrated in recovering mean-
ing in interactional dialogues (Alaçam et al., 2021),
facilitation grounding in interaction with embodied
agents (Nakano et al., 2003) or in human-robot
interaction (Skantze et al., 2014).

2.2 Entropy-rate constancy
Information theory (Shannon, 1948) is a mathemat-
ical framework that has proved useful for linguistic
analysis as it can explain aspects of language use.
Genzel and Charniak (2002, 2003), for example,
propose the ’Entropy Rate Constancy’ (ERC) prin-
ciple, which states that entropy is constant over the
length of a written text or other use of language.

The claim by Genzel and Charniak (2002)
is as follows: Let 𝐻 (𝑋𝑖 |𝐶𝑖 , 𝐿𝑖) denote the con-
ditional entropy of the word 𝑋𝑖, where 𝐿𝑖 =
𝑋𝑖−𝑛+1, . . . , 𝑋𝑖−1 is the local 𝑛-gram context, and
𝐶𝑖 = 𝑋0, 𝑋1, . . . , 𝑋𝑖−1 the context which contains
all of the words preceding the word 𝑋𝑖 . The condi-
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tional entropy of the word 𝑋𝑖 can then be decom-
posed as:

𝐻 (𝑋𝑖 |𝐶𝑖 , 𝐿𝑖)︸          ︷︷          ︸
global entropy

= 𝐻 (𝑋𝑖 |𝐿𝑖)︸     ︷︷     ︸
local entropy

− 𝐼 (𝑋𝑖;𝐶𝑖 , 𝐿𝑖)︸         ︷︷         ︸
mutual information

The assumption of ERC is that 𝐻 (𝑋𝑖 |𝐶𝑖 , 𝐿𝑖) is con-
stant. Given the fact that 𝐼 (𝑋𝑖;𝐶𝑖 , 𝐿𝑖) – as the mu-
tual information between 𝑋𝑖 under its local context
𝐿𝑖 and its global context 𝐶𝑖 – increases because the
global context increases, the local entropy𝐻 (𝑋𝑖 |𝐿𝑖)
would have to increase in order for 𝐻 (𝑋𝑖 |𝐶𝑖 , 𝐿𝑖) to
remain constant.

A similar theory, the ‘Uniform Information Den-
sity’ (UID) hypothesis, states that speakers tend
to distribute information uniformly throughout an
utterance (Jaeger, 2010). In UID, the information of
a linguistic unit 𝑦, defined by its surprisal, is its neg-
ative log probability 𝑠(𝑦) = − log𝑝ℓ

(𝑦), where 𝑝ℓ
is the underlying probability distribution of 𝑦. Since
the true probability distribution of 𝑦 is not avail-
able, a language model with learned parameters is
usually used to approximate the surprisal value of
the corresponding linguistic unit (Smith and Levy,
2013; Goodkind and Bicknell, 2018; Wilcox et al.,
2020). The linguistic unit 𝑦 as a large sequence (e.g.,
an utterance or a text), can be further divided into
a sequence of smaller units: ⟨𝑦1, . . . , 𝑦𝑛⟩, where
𝑦𝑛 ∈ 𝜗 and 𝜗 is the set of vocabulary. The surprisal
of the current linguistic unit 𝑦𝑛 is then expressed
as the conditional negative log probability given
its previous context: 𝑠(𝑦𝑛) = − log𝑝ℓ

(𝑦𝑛 |𝑦<𝑛). Ac-
cording to the UID hypothesis, drastic variations
in the per-unit information density of an utterance
can place a heavy processing burden on the listener,
and thus make communication more difficult. The
evenly distributed information density of speech on
the other hand, promotes ‘rational’ (Xu and Reitter,
2018) communication.

More recent studies have applied the ERC princi-
ple and/or UID hypothesis to spoken dialogue (Xu
and Reitter, 2017, 2018), task oriented dialogue
(Giulianelli et al., 2021), as well as non-verbal sig-
nals (specifically manual gesture) in monological
speech (Xu et al., 2022).

3 Hypothesis

In this paper, we investigate the hypothesis that, dur-
ing face-to-face interaction, listener gaze, being an
important non-verbal communication mechanism,
also conforms to the ERC principle.

4 Methods
4.1 Data collection
The dialogue interactions on which this study is
based are explanations of board games (Türk et al.,
2023). The explainer, who is familiar with the game,
explains it to the explainee, who is unfamiliar with
the game (see Figure 1). There are three reasons why
we focused on task-oriented dialogue, namely the
game explanation scenario, in our study: (i) Based
on the theory of topic shifts (Ng and Bradac, 1993;
Linell, 1998), we know that some interlocutors
play a more active role, controlling the dialogue
and introducing new topics, while the others have
a more passive role and follow these topic shifts.
Therefore, we identify explanations as common and
representative of daily dialogue (there is always
a more dominant speaker – the explainer – and a
more passive listener). Furthermore, we assume that
the passive listeners instead use more non-verbal
signals (e.g. gaze, facial expression) than verbal
signals to give feedback to the dominant speakers
(Buschmeier and Kopp, 2018), which potentially
provides different gaze data for this study. (ii) By
focusing on one type of dialogue (explanations) and
additionally one topic (a specific game), we assume
that the dialogue contents are quite static at the
lexical and semantic level and can be considered
as invariant in our experiment (and effects on the
entropy rate of gaze are not by the domain). (iii)
Based on this, we can, in principle, even look at the
behaviour of individual speakers and whether their
speech behaviour follows the ERC principle.

The interactions are divided into two phases: In
the first phase, the game is explained without the
game material being present. In a second phase, the
game is put on the table and the two participants start
playing (but usually the explanation continues at
least while the game is being set up). All participants
speak German. The interaction can therefore be
considered a task-oriented dialogue. For this study
we use the videos of 58 interactions from the corpus
and extract the explanation part (first phase). The
explanations vary in length from 2:12 to 17:36 min
(mean length 7:04 min, standard deviation 3:15
min).

4.2 Preparing gaze sequences
For each dialogue, we extract the explainee’s gaze
information using the ‘Openface’ framework (Bal-
trusaitis et al., 2018) and create a ‘gaze sequence’
that is used in the neural sequential model (see
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Figure 1: Scene from the data collections. The participant
on the left (the explainer) explains the board game to the
participant on the right (the explainee). The explainee’s
eye gaze is captured with a camera behind the explainer.

Section 4.4). Openface generates two types of gaze
features (i) gaze vectors in world coordinates (three
dimensions for the left and right eye each), and (ii)
gaze direction values in radians averaged from both
eyes (two dimensions). We integrate both represen-
tations because gaze direction is easier to use, but
does not contain depth information, which is po-
tentially relevant as listeners regularly change their
posture and head orientation during the interaction.

We cluster the two gaze features using the DB-
SCAN algorithm (Ester et al., 1996) to find the
spatial distribution of gaze and identify its ‘dense
region’ (Tran et al., 2020), both horizontally and
vertically. This dense region typically represents
the target which explainees gaze at most of the time
during an interaction. After the dense region has
been detected, we use a 3 × 3 grid-based labelling
scheme (inspired by Xu et al., 2022) and label the
gaze points inside the dense region with ‘5’. Depend-
ing on whether the gaze direction is horizontally or
vertically away from the dense region, eight other
number-based labels are used for the gaze points
outside the dense region (see Table 1). A similar
approach is used for the depth-component selected
from the eye gaze vectors. DBSCAN-clustering is
used to find the dense region where the gaze of
the left eye and right eye are located in the depth
dimension. The eye gaze vector inside the dense
region is again given the label ‘5’. Based on how
close the left eye vector or right eye vector is to the
dense region, eight different labels are used (see
Table 2).

Given the label 𝑥𝑑 ∈ [1, 9] for the gaze direction
value and the label 𝑥𝑣 ∈ [1, 9] for the gaze vector, a
combined label 𝑦, that represents the gaze informa-

left of DR DR right of DR

Above DR 7 8 9
DR 4 5 6
Below DR 1 2 3

Table 1: Label decisions criterion for direction value
representation of eye gaze (DR: dense region).

RE forward DR RE backward

LE forward 9 8 7
DR 6 5 4
LE backward 3 2 1

Table 2: Label decisions criterion for vector representa-
tion of eye gaze (RE: right eye; LE: left eye).

tion, is generated as y = (𝑥𝑑−1) ·9+𝑥𝑣 (𝑦 ∈ [1, 81]
representing the set of possible eye gaze labels).

4.3 Automatic speech recognition for the
interaction

Transcriptions of the dialogues were created auto-
matically using ‘Whisper’ (Radford et al., 2022),
which creates speech segments with a start and
an end time. In order to calculate word timings,
we approximated word onsets by calculating the
duration of each speech segment, dividing it by its
length in words, and approximating word duration
(assuming, for this study, that words have uniform
length). Eye gaze labels are then aligned with words
based on video frame rate (50 fps). Figure 2 shows
an example of this alignment. After pre-processing,
we concatenate all of the utterance-aligned gaze
sequences and use them as training and test data for
the neural sequential model.

4.4 Processing gaze sequences
Analogous to the processing the information density
of linguistic units according in the UID hypothesis
(see section 2.2), we consider eye movements as

42 42 42 42 42 42 42 42 42 42

Das Problem ist wir haben nur ein billiges U-Boot wo

wenig Sauerstoff ist und wir müssen den teilen
42 42 42 42 42 41 45 42 45 45

unsdrin

gegeneinander
45 45 45 45 45 45 44 44

spielenwirGegnereigentlichalsosindWir

aber wir nutzen den gleichen Sauerstoff
41 41 41 41 41 41

Figure 2: Example of the alignment of speech segments
(grey) and gaze label sequences (white).
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sequences of gaze labels and need to estimate its
underlying probability distribution. We approach
this by training an autoregressive model, more
specifically a Transformer model (Vaswani et al.,
2017), which we have chosen since it has a strong
psychometric predictive power compared to LSTM-
RNNs models(Wilcox et al., 2020). To compute the
local entropy of a gaze sequence, we first calculate
its negative log probability:

NLL(𝑒1, 𝑒2, . . . , 𝑒𝑇 )

= −( log 𝑃(𝑒1) +
𝑇∑︁
𝑖=2

log 𝑃(𝑒𝑖 |𝑒1, . . . , 𝑒𝑖−1)
)

where 𝑇 is the maximum index of a given eye move-
ment sequence and 𝑒𝑖 ∈ [1, 81]. The local entropy
𝐻 (𝑒1, 𝑒2, . . . 𝑒𝑖) of the gaze sequence is then the
exponential of NLL (perplexity). The learning task
is thus to predict the next gaze label 𝑒𝑖 based on the
preceding sequence ⟨𝑒1, . . . , 𝑒𝑖−1⟩ and minimise
its negative log probability NLL.

4.5 Processing dialogue data
To compare the local entropy of the gaze se-
quences with the local entropy of the corre-
sponding speech segments, we compute the lat-
ter using a pre-trained language model (specifi-
cally dbmdz/german-gpt2; Schweter, 2020). For
the computation we use whole dialogues, i.e., both
explainer and explainee utterances, as both con-
tribute to the dialogue and explainee utterances are
conditioned on what the explainer has said before
and vice versa. Some of the utterances contain only
backchannels (such as “yes”, “uh-huh”, or “okay”;
Yngve, 1970), which play an important role in the
dialogue as linguistic ‘feedback’ to previous ut-
terances (Allwood et al., 1992; Clark, 1996). In
our data, backchannels are usually produced by ex-
plainees and we do not exclude them as semantically
irrelevant words.

5 Results and discussion
Figure 3 shows the combined eye gaze sequences
from all 58 videos. The x-axes represent the dia-
logue position of the speech segments (with each
dialogue position corresponding to about 7s of
speech) and the y-axes represent the local entropy
of the gaze sequences. Figure 3A, shows a generally
rising trend of the local entropy, Figure 3B shows a
replot of the data without the effect from entropy
spikes shown in 3A (which we consider as outlier
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Figure 3: Change of the perplexity (local entropy) of eye
gaze during the dialogues. A shows the general trend, B
shows the normalised trend without the effect from the
entropy spikes.

values), and yields a globally rising trend, but also a
decreasing trend for the first 75 dialogue positions.

The 58 explanations vary in length (see Sec-
tion 4.1), so plotting them together introduces some
bias into the visualisation. We have therefore di-
vided the dataset into four groups (based on the
total length of the explanations) and plotted the
local entropy of the gaze sequences separately in
Figure 4. Besides the common rising trend in all
of four sub-plots Figure 4A–D, they also share a
decreasing tendency at the beginning, resulting in
(roughly) convex shapes. One explanation for this
phenomenon may be that, at the beginning of the
interaction, explainees focus on the explanation
of the game and direct their gaze (and attention)
mainly to the explainer, thus signalling their partic-
ipation role (Brône et al., 2017). As a result, there
is little variation of gaze labels. However, as the
explanation progresses, the explainees’ cognitive
load may increase, a known cause of gaze aversive
behaviour (Morency et al., 2006; Doherty-Sneddon
and Phelps, 2005). Another explanation for the in-
creasing trend could be that explainers are likely
to provide non-verbal feedback to explainers (e.g.
head nodding or other head movements; Heylen,
2006), signalling understanding etc., which could
also lead to changes in gaze behaviour. In any case,
the result is a higher diversity of gaze labels and
thus an increase in local entropy.

We chose a board game explanation so that the
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Figure 4: General trends in perplexity (local entropy)
of explainees’ eye gaze during explanations, grouped
by length of dialogues (in dialogue positions): A: 4
dialogues shorter than 25; B: 29 dialogues between 25
to 49; C: 10 dialogues between 50 to 74; D: 15 dialogues
longer than 74.

linguistic content of the dialogue is limited. This
gives us a good opportunity to look at whether
different individuals organise their speech in a ‘ra-
tional’ way (following the ERC principle; Xu and
Reitter, 2018). According to Figure 5, it turns out
that, given the same topic (the explanation of the
board game), different explainers organise the ex-
planation in a rational way, as evidenced by the
increasing trend of the local entropy. Moreover, this
increasing trend of local entropy for both the speech
segments across dialogues and their corresponding
gaze sequences indicates a potential congruence
between the information density of speech and the
gaze behaviour of explainees/listeners.

6 Conclusions
This study attempts to find out whether (i) gaze
as an important non-verbal communication signal
follows the entropy rate constancy principle, and
whether (ii) the information density of listeners’
gaze behaviour correlates with that of the dialogue
content. We recorded interaction videos, trained a
transformer model, and used a pre-trained language
model to approximate the information density of
listeners’ gaze and dialogue content.

We find that listeners’ gaze roughly follows the
ERC principle, which can be taken as further ev-
idence that non-verbal communication generally
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Figure 5: Change of perplexity(local entropy) of the
speech segments during the dialogue.The shaded area is
the bootstrapped 95% confidence intervals

follows the ERC principle (at least to some extent;
Xu et al., 2022) – although the result is inconclusive
in that the information density of listeners’ gaze
fluctuates along the interaction. A congruence be-
tween dialogues content and listeners’ gaze can be
roughly confirmed, as the local entropy of listeners’
gaze and the local entropy of speech both show an
increasing tendency. The fluctuation of the entropy
rate value (Figure 3A as well as Figure 4) indicates
that the property of non-verbal communication can-
not simply be explained by ERC principles.

As a next step, we plan to look more closely
at listeners’ eye gaze and further analyse whether
sudden changes in the local entropy of gaze be-
haviour can be aligned with changes in the local
entropy of speech, and if so, under what kinds of
context. We also plan to perform further linguistic
analysis on the entropy spikes, looking at dialogue
acts and calculating the syntactic complexity of the
corresponding dialogue positions. Possible future
research includes simplifying or compressing the
dialogue context based on changes in the entropy
values of the listener’s gaze.

Supplementary materials Code and data of anal-
yses is available in the following data publication:
https://doi.org/10.6084/m9.figshare.24408073
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Limitations

One limitation of the study is that the dialogues are
not very diverse in content and activity. They are
all explanations of a specific board game.

A second limitation is that because we rely on
video-based gaze information collection rather than
dedicated eye-tracking hardware, the gaze data de-
rived from Openface is sometimes sub-optimal –
the camera setup was not optimised for gaze and
face tracking, as the camera shots were over the
shoulder and thus slightly elevated, rather than at
eye level – so the data may contain noise. This com-
promise was necessary to meet multiple analysis
objectives and also to avoid disrupting the natural-
ness of the conversational setting (e.g., by using
wearable eye-trackers).

A third limitation concerns the alignment of
utterances with gaze labels. Since German words
can be very long (e.g. ‘Tiefseeabenteuer’, the name
of the board game), the simplified assumption that
all words have the same duration and align with the
same number of gaze labels will cause some noise.

Ethics statement

The data collected for this study is for research
purposes only and no commercial use is allowed.
The participants recruited are mainly university
students. Participants gave informed consent for
their participation in the study and the use of their
data, and were paid 10 euros per hour. The study
was approved by the university’s internal ethics and
data protection review boards.
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A Fragment of a game explanation
Figure 6 shows an example fragment of a
game explanation. The timestamped speech seg-
ments were automatically recognised from the
audio of the interaction videos using ‘Whis-
per’ (Radford et al., 2022). Whisper’s word er-
ror rate (WER) for German is given as 4.5%
(see https://github.com/openai/whisper/
blob/main/README.md). The transcripts were not
corrected.

B Hyperparameters selection for
DBSCAN clustering

For the DBSCAN algorithm, we set up a criterion
that only if a point is surrounded by at least ten
samples, it can be considered a core point for a
cluster. A for-loop is used to find an optimal epsilon
value required by the DBSCAN algorithm. The
epsilon value is in the range [0.01, 0.1]. We wanted
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So basically the game is called Deep Sea Adventure and it's basically about you being a diver

in a submarine.

You have to dive out as long as possible to collect the treasures.

Whoever has more treasures at the end wins, that's the basic structure.

You have to imagine that you have the submarine here, we start in there and there you have

you then basically 25 fields, at 25 to 0, that's ultimately our oxygen display and these

we'll share, that'll be important in a moment, not everyone has them individually, we'll share

together an oxygen tank and then we have a lot of small plates right there

are points on it from 1 to 4, the lowest 4, the highest are then just from 1 to

4 laid out along a submarine so that a path is created and then we have it

Also grundsätzlich das Spiel heißt Tiefseeabenteuer und es geht quasi darum, du bist ein Taucher00:00.000 → 00:04.820

in einem U-Boot00:04.820 → 00:05.820

Du musst möglichst lange raustauchen, um dir die Schätze anzusammeln.00:05.820 → 00:09.280

Wer am Ende mehr Schätze hat, hat gewonnen, das ist so der Grundaufbau.00:09.280 → 00:12.800

Du musst dir vorstellen, du hast hier das U-Boot, da starten wir auch drin und da hast00:12.800 → 00:18.400

du dann quasi 25 Felder, bei 25 bis 0, das ist im Ende unsere Sauerstoffanzeige und die00:18.400 → 00:25.480

teilen wir uns, das wird gleich noch wichtig, die hat nicht jeder einzeln, wir teilen uns00:25.480 → 00:28.240

zusammen einen Sauerstofftank und dann haben wir gleich ganz viele kleine Plättchen, da00:28.240 → 00:31.720

sind Punkte drauf von 1 bis 4, die geringsten 4, die höchsten werden dann eben von 1 bis 00:31.720 → 00:37.680

4 an einem U-Boot entlang ausgelegt, dass quasi ein Weg entsteht und dann haben wir00:37.680 → 00:43.240

…00:43.240 → …

Figure 6: Example ASR transcript of a fragment of an explanation dialogue (with English translations).

to find an epsilon value that ensures that the ratio
between the second most frequent cluster label and
the most frequent cluster label is just below 15%,
so that the cluster with the most frequent label is
considered to be the region where an explainee’s
gaze is mostly located.

C Hyperparameter selection for the
training procedure

For the neural sequence model (Transformer) the
batch size is 35, the input size is set to 25, the
hidden layer size is Data is divided into 80% for
training and 20% for testing. The initial learning
rate is 0.05. Both training and testing data sets are
used to compute the local entropy.

To compute the local entropy for the speech
segments, we use the pre-trained language model
dbmdz/german-gpt2 (Schweter, 2020), the input
size is set to 25, which is consistent with the gaze
sequence input size for the neural sequence model.
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