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Abstract

Fine-grained entity typing (FGET) aims to as-
sign appropriate fine-grained types to entity
mentions within their context, which is an im-
portant foundational task in natural language
processing. Previous approaches for FGET
only utilized textual context information. How-
ever, in the form of short text, the contex-
tual semantic information is often insufficient
for FGET. In many real-world scenarios, text
is often accompanied by images, and the vi-
sual context is valuable for FGET. To this
end, we firstly propose a new task called mul-
timodal fine-grained entity typing (MFGET).
Then we construct a large-scale dataset for
multimodal fine-grained entity typing called
MFIGER based on FIGER. To fully leverage
both textual and visual information, we pro-
pose a novel Multimodal Object-Level Visual
Context Network (MOVCNet). MOVCNet
can capture fine-grained semantic information
by detecting objects in images, and effectively
merge both textual and visual context. Exper-
imental results demonstrate that our approach
achieves superior classification performance
compared to previous approaches.

1 Introduction

Fine-Grained Entity Typing (FGET) aims to clas-
sify an entity mention with its context into one
or more fine-grained types. For example, given
a sentence “Lionel Messi won the championship
of 2022 FIFA World Cup”, the mention “Lionel
Messi” should be classified as Person as its coarse-
grained type and Athlete as its fine-grained type.
FGET serves many down-stream NLP applications,
such as relation extraction (Liu et al., 2014) and
entity linking (Onoe and Durrett, 2020; Sui et al.,
2022), thus is the foundation for building knowl-
edge graphs.

One major challenge of FGET lies in its rich
and fine-grained labels with some kind of hierarchi-

∗Corresponding author.

(a) Lionel Messi [Person,
Athlete] won the cham-
pionship of 2022 FIFA
World Cup.

(b) Ronald Reagan [Per-
son, Actor, Politician] au-
ditioned for the movie The
Philadelphia Story.

Figure 1: Two examples for Multimodal Fine-Grained
Entity Typing (MFGET). Entity mentions and their fine-
grained types in brackets are highlighted.

cal structure (Ling and Weld, 2012; Gillick et al.,
2014; Choi et al., 2018). Without taking into ac-
count labels’ interdependencies, it’s hard to classify
entity mention in isolation due to the large label set.
Some recent works attempt to address this issue by
leveraging label structures or statistics (Lin and Ji,
2019; Chen et al., 2020; Liu et al., 2021). Most of
the previous methods only focus on textual content.
However, in some certain situations, text can not
provide sufficient contextual information to serve
as the basis for classification, making it difficult
to directly determine the ground truth label of the
entity mention.

In many real-world scenarios, texts are often ac-
companied by images and the images also contain
rich semantic information, which provides addi-
tional help to the FGET task. The advantages of
incorporating visual contexts of images into textual
contexts for FGET are summarized as follows:

1. Visual context could enhance the indicative
ability of textual context. As shown in Fig-
ure 1(a), given the sentence “Lionel Messi won
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the championship of 2022 FIFA World Cup”,
we cannot accurately determine from the tex-
tual context whether the mention “Lionel Messi”
refers to a person or a sports team. However,
with the help of visual context, we can accu-
rately classify the ambiguous “Lionel Messi”
as Person and Athlete based on the detected ob-
jects in the image, e.g. sneakers and football.

2. Visual context provides complementary se-
mantics to the textual context. As shown in
Figure 1(b), given the sentence “Ronald Rea-
gan auditioned for the movie The Philadelphia
Story”, we can classify the mention “Ronald
Reagan” as Person and Actor using the textual
context “auditioned” and “movie”. However,
based on the visual context of objects like the
American flag and suit, we could also infer
its category as Politician. Together we infer
all the ground truth labels of {Person, Actor,
Politician}.

Therefore, considering that visual context is
helpful for FGET, we try to introduce images
into FGET, proposing a new task called Multi-
modal Fine-Grained Entity Typing (MFGET). In
the meanwhile, we construct an MFGET dataset
with a corresponding image for each sentence.
The images are derived from Wikidata.1 To in-
corporate visual information, we propose a multi-
modal object-level visual context network MOVC-
Net. MOVCNet can effectively extract local ob-
ject features in the image that are relevant to the
text. Through the object-based attention mecha-
nism, MOVCNet can better fuse the text and image
context and further improve the performance of
fine-grained classification. Experimental results
demonstrate the effectiveness of MOVCNet com-
pared with previous approaches.

The main contributions of this work can be sum-
marized as follows:

• To the best of our knowledge, we are the first
to propose the task called Multimodal Fine-
Grained Entity Typing (MFGET). Based on
a widely used dataset FIGER for FGET, We
construct a new dataset MFIGER for MFGET.

• We propose a multimodal object-level vi-
sual context network MOVCNet for MFGET.
MOVCNet can effectively identify objects in
images and fuse visual and textual context, aid-
ing in classifying entity mention with its con-

1https://www.wikidata.org

text into fine-grained types.
• We evaluate the proposed method MOVCNet

on our constructed dataset MFIGER. Com-
pared with previous baselines, our method can
effectively improve the performance of fine-
grained entity typing.

2 Related Work

2.1 Fine-Grained Entity Typing
Two major challenges of FGET have been exten-
sively studied by researchers. One challenge is
that distant supervision introduces a significant
amount of noise to FGET. Some researches divide
the dataset into clean set and noisy set, and model
them separately (Ren et al., 2016; Abhishek et al.,
2017; Xu and Barbosa, 2018). Onoe and Durrett
(2019) proposed a two-stage denoising method in-
cluding filtering and relabeling function. Zhang
et al. (2020) proposed a probabilistic automatic
relabeling method with pseudo-truth label distri-
bution estimation. Pan et al. (2022) proposed a
method to correct and identify noisy labels. Pang
et al. (2022) tried to mitigate the effect of noise by
feature clustering and loss correction.

Another challenge in FGET is label hierarchy
and interdependency. Xu and Barbosa (2018) intro-
duced hierarchical loss normalization to deal with
type hierarchy. Lin and Ji (2019) proposed a hybrid
classification model to utilize type hierarchy. Chen
et al. (2020) proposed a novel model with a multi-
level learning-to-rank loss and a coarse-to-fine de-
coder. Liu et al. (2021) proposed a label reasoning
network to capture extrinsic and intrinsic depen-
dencies. Zuo et al. (2022) modeled type hierar-
chy by hierarchical contrastive strategy. Moreover,
some works attempted to model FGET in hyper-
bolic space (López et al., 2019) or box space (Onoe
et al., 2021) instead of traditional vector space.

However, images often co-occur with text in
many real-world scenarios, yet no one has inves-
tigated the impact of images on FGET. Therefore,
we introduce images to FGET and propose a new
task called multimodal fine-grained entity typing,
and then study the effect of images on FGET.

2.2 Multimodal Information Extraction
Multimodal information extraction aims to extract
structured knowledge from various modalities, in-
cluding unstructured and semi-structured text, im-
ages, videos, etc. There exists some tasks like
multimodal named entity recognition(Wang et al.,
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Figure 2: The overall architecture of our proposed model MOVCNet. "Representation" denotes the text and visual
representation. "Fusion" denotes text-guided multimodal fusion. "HCM" denotes hybrid classification model.

2022b; Chen et al., 2022; Xu et al., 2022), multi-
modal relation extraction(Zhao et al., 2023; Chen
et al., 2022), and multimodal entity linking(Zhang
et al., 2023; Wang et al., 2022c). Information ex-
traction techniques that incorporate multimodality
form the foundation for constructing multimodal
knowledge bases, providing ample data support for
applications such as question-answering systems,
information retrieval, and more.

Multimodal named entity recognition (MNER)
aims to detect named entities and determine their
corresponding entity types based on a {sentence,
image} pair (Moon et al., 2018; Zhang et al.,
2018; Lu et al., 2018). Multimodal relation ex-
traction (MRE) aims to predict relations between
two named entities in a sentence with the help of
images (Zheng et al., 2021a,b). Multimodal entity
linking (MEL) aims to map an ambiguous mention
in a sentence to an entity in a knowledge base with
textual and visual information (Adjali et al., 2020;
Wang et al., 2022a). Most previous multimodal
information extraction works focus on extracting
better representations of both textual and visual
modalities and designing better task-specific fusion
models of two modalities.

However, existing multimodal information ex-
traction methods cannot be directly applied to mul-
timodal fine-grained entity typing. For example,
existing MNER methods only consider coarse-
grained labels like Person, Location and Organiza-
tion, these coarse-grained labels can not provide a

precise characterization of the entities. Therefore,
when applying them to MFGET, they cannot ac-
curately classify entity mentions into their ground
truth fine-grained labels. To this end, we propose
a novel multimodal object-level visual context net-
work MOVCNet for MFGET.

3 Methodolgy

In this section, we first introduce the definition of
FGET and MFGET tasks. Next, we provide a de-
tailed explanation of how to construct the MFIGER
dataset. Then, we elaborate on the implementation
details of our proposed model MOVCNet in four
parts. Figure 2 shows the comprehensive architec-
ture of MOVCNet.

3.1 Definition

Traditional fine-grained entity typing datasets con-
sist of a massive collection of (mention, context)
tuples: D = {(m1, c1),(m2, c2),..., (mn, cn)}.
Given an instance (m, c), the FGET task aims to
predict its appropriate types y ⊆ T , where T =
{t1, t2, ..., t|T |} is the pre-defined fine-grained type
set and |T | is the number of candidate types.

Different from FGET, multimodal fine-grained
entity typing datasets consist of a massive collec-
tion of (mention, context, image) tuples: D =
{(m1, c1, v1),(m2, c2, v2),..., (mn, cn, vn)}. The
additional image information helps models predict
corresponding types more accurately.
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3.2 Dataset Construction

FIGER was proposed by (Ling and Weld, 2012),
which contains 113 types with a 2-level hierar-
chy. Based on FIGER, we construct a new dataset
MFIGER for Multimodal Fine-Grained Entity
Typing. The detailed procedure consists of the
following four steps:

1. Based on a mapping file from Wikipedia titles
to Freebase mids, we first retrieve the Free-
base mid of each mention within its context.

2. Based on a mapping file from Freebase enti-
ties to Wikidata entities, we get the Wikidata
id of each entity mention within its context.

3. We get images from the Wikidata webpage ac-
cording to the Wikidata id, ultimately obtain-
ing one image corresponding to each entity
mention within its context.

4. The original size of FIGER is 2,010,563, and
after the above three steps, 935,744 instances
have images. We divide them into the training
set, validation set, and test set by 7:1:2.

MFIGER contains 102 types with a 2-level hier-
archy like FIGER. And the statistical information
is presented in Section 4.1.

3.3 Text Representation

Following (Onoe et al., 2021; Ding et al., 2022; Pan
et al., 2022), we adopt BERT (Devlin et al., 2019)
as our text encoder, the input of BERT is the sen-
tence represented as S = [CLS] mention [SEP] con-
text [SEP]. The output is X = [x0, x1, ..., xn+2]
including 3 special tokens, where xi ∈ Rdj denotes
the contextualized representation of the i-th word
in the sentence, dj denotes the dimension of hid-
den layer in BERT, and n denotes the length of the
input sentence. Finally, by taking the hidden vector
at [CLS] token, we encode the whole sequence into
a single vector t:

t = BERT(S ; θbert) ∈ Rdj (1)

where θbert is the parameter of BERT encoder,
dj = 768 is the dimension of BERT hidden state.

3.4 Object-Level Visual Representation

For the visual representation, traditional CNNs
like VGG (Simonyan and Zisserman, 2015) and
ResNet (He et al., 2016) can effectively extract
global features of an image. However, the types in

MFGET are fine-grained with some kind of hier-
archy, so it is crucial to extract highly informative
and nuanced features from images. The objects in
an image can be used to deduce the fine-grained
type of an entity mention, e.g. a badminton racket
implies that he is an athlete. So by extracting local
object features in an image, we can improve the
precision and effectiveness of MFGET.

Thus, we adopt the object detector of
VinVL (Zhang et al., 2021) as our visual encoder,
which is a large pre-trained vision-language model
and contains a large-scale object-attribute detec-
tion model based on ResNeXt-152 C4 architecture.
Given an image v, we extract top m local visual
objects as follows:

f = VinVL(v) ∈ Rm×dv (2)

where m is the number of objects, dv = 2048 is
the dimension of object feature representation.

3.5 Text-Guided Multimodal Fusion
We use Multi-Head Attention (Vaswani et al., 2017)
to effectively fuse textual and visual context infor-
mation. To align the dimensions of the both textual
and visual representation, we add a fully connected
layer on the visual representation f as follows:

p = W ff ∈ Rm×dj (3)

where W f ∈ Rdj×dv is a trainable parameter.
Specifically, we treat the textual representation t

as the query, and the transformed visual represen-
tation p as the key and value. We get text-aware
visual representation g as follows:

g = MultiHead(Q,K,V )

= Concat(head1, ..., headh)WO
(4)

where h is the number of attention head, headi
represents the output of the i-th attention head, and
WO is the output transformation matrix. The out-
put of each head headi can be calculated as fol-
lows:

headi = Attention(Qi,Ki,Vi), i = 1, ..., h (5)

where Attention is the calculation function of atten-
tion, and

Qi = QWQ
i ,

Ki = KWK
i ,

Vi = V W V
i , i = 1, ..., h

(6)
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where WQ
i , WK

i , W V
i are the transformation

matrix of the i-th query, key and value respectively.
We get the final representation a, which is the

concatenation of textual representation t and text-
aware visual object representation g.

a = Concat(t, g) (7)

3.6 Hybrid Classification Model
Following Lin and Ji (2019), we use a hybrid type
classification model consisting of two classifiers:
known type classifier and latent type classifier.

Our known type classifier trains a linear transfor-
mation matrix W a to independently predict each
type without considering their interdependencies:

ỹa = W aa (8)

where ỹa
i is the predicted probability for the i-th

type, W a ∈ Rdn×2dj and dn is the number of
types.

To fully leverage the type interdependency and
hierarchy, we use a latent type classifier motivated
by Principle Label Space Transformation (Tai and
Lin, 2012). Based on the hypercube sparsity as-
sumption, where 2dn is significantly larger than the
size of the training set, Tai and Lin (2012) utilize
Singular Value Decomposition (SVD) to reduce
the dimensionality of high-dimensional type vec-
tors by projecting them into a lower-dimensional
space. This projection allows us to uncover the
underlying type correlations that go beyond first-
order co-occurrence. The formula of SVD is as
follows:

Y ≈ Ỹ = UΣL⊤ (9)

where U ∈ Rdn×dl , Σ ∈ Rdl×dl , L ∈ RN×dl , and
dn ≫ dl. The resulting low-dimensional space
resembles the hidden concept space found in La-
tent Semantic Analysis (Deerwester et al., 1990).
Each row of the matrix L represents the latent rep-
resentation of a specific type vector. Subsequently,
we predict the latent type representation from the
feature vector:

l = V la (10)

where V l ∈ Rdl×2dj is a trainable parameter. Us-
ing a linear transformation matrix W l, we recon-
struct the type vector based on l:

ỹb = W ll = UΣl (11)

where ỹb
i is the predicted probability for the i-th

type, W l ∈ Rdn×dl is a trainable parameter.

No. Coarse #Fine Train Dev Test
C1 Person 14 217,430 30,971 61,992
C2 Location 13 314,283 44,948 90,045
C3 Organization 12 118,016 16,820 33,607
C4 Art 4 19,444 2,727 5,414
C5 Event 6 27,140 3,899 7,778
C6 Building 6 27,370 3,889 7,802
C7 Product 10 12,904 1,885 3,634
C8 Others 30 62,320 8,744 17,817

Total 8 95 655,022 93,574 187,148

Table 1: MFIGER type statistics.2

Finally, we combine the above two classifiers
using the following formula:

ỹ = ỹa + λỹb (12)

where ỹi is the overall predicted probability for the
i-th type of the two classifiers. λ is a scalar with an
initial value of 0.1, and λ is dynamically adjusted
during the training phase.

We regard MFGET as a multi-label classifica-
tion problem, so a multi-label training objective is
needed. We optimize a multi-label binary cross-
entropy-based objective:

L = − 1

N

N∑

i

yi log ỹi + (1− yi) log(1− ỹi) (13)

where yi is set the value 1 if the mention is classi-
fied as the i-th type, N is the number of types.

During the test phase, we make predictions for
each type based on the probability ỹi > 0.5. If all
probabilities are lower than 0.5, we select the type
with the highest probability using argmax ỹi.

4 Experiments

In this section, we compare our proposed method
with previous state-of-the-art approaches to vali-
date the effectiveness of our model. We first in-
troduce the dataset and the statistical information
that we use. Then, we provide a brief overview of
the baseline models for comparison and our imple-
mentation details. Finally, we present the overall
results and analysis on the performance comparison
between our model and others.

4.1 Datasets

We evaluate our model on our own constructed mul-
timodal dataset MFIGER, which comprises pairs
of sentences with annotated entity mentions and
their associated images. The detailed explanation

2Note that an entity mention may have multiple types.
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Model Total Coarse Fine
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1

NFETC (2018) 54.23 85.53 79.21 82.04 93.25 89.26 57.12 78.69 69.78
Lin and Ji (2019) 72.80 92.13 91.58 93.59 96.97 96.23 75.45 88.49 87.91
ML-L2R (2020) 47.99 84.19 79.44 84.43 93.69 90.88 52.43 75.06 68.20
Box (2021) 79.72 94.20 93.67 95.63 97.88 97.39 81.21 91.27 90.72
NFETC-FCLC (2022) 48.93 83.15 76.32 82.05 93.34 89.32 53.10 73.07 63.29
DenoiseFET (2022) 67.83 90.87 89.72 93.05 96.68 95.87 69.91 86.48 85.03
UMT (2020) 88.56 95.93 96.09 96.95 98.29 98.05 89.43 94.05 94.56
MAF (2022) 77.17 92.07 92.04 94.11 96.70 96.22 78.69 88.67 88.69
MOVCNet 90.99 96.80 96.92 97.54 98.65 98.44 91.67 95.27 95.70

Table 2: Overall results of different label granularity on MFIGER test set. "Coarse" represents the results on 8
coarse-grained types, "Fine" represents the results on fine-grained types. The best results are highlighted.

of the dataset construction process is in Section 3.2.
We have summarized 8 coarse-grained categories
and 95 fine-grained categories. Table 1 presents the
type statistics of the dataset. We can see that train,
dev, and test set share a similar type distribution.

4.2 Baselines

For multimodal fine-grained entity typing task, we
compare our model with the following text-based
and multimodal state-of-the-art approaches:

• NFETC (Xu and Barbosa, 2018) tries to solve
noisy label problems by a variant of the cross-
entropy loss function, and deals with type hi-
erarchy by hierarchical loss normalization.

• Lin and Ji (Lin and Ji, 2019) presents a two-
step attention mechanism and a hybrid classi-
fication method to utilize label co-occurrence.

• ML-L2R (Chen et al., 2020) proposes a novel
multi-level learning-to-rank especially for hi-
erarchical classification problems.

• Box (Onoe et al., 2021) is the first to intro-
duce box space to FGET instead of traditional
vector space.

• NFETC-FCLC (Pang et al., 2022) designs a
feature-clustering method with loss correction
on each cluster.

• DenoiseFET (Pan et al., 2022) proposes a
method to automatically correct and identify
noisy labels.

• UMT (Yu et al., 2020) designs a unified mul-
timodal transformer with an entity span de-
tection module which can better capture the
intrinsic correlations between modalities.

• MAF (Xu et al., 2022) proposes a matching
and alignment framework to make text and
image more consistent.

4.3 Implementation Details
We adopt BERT-Base(cased) (Devlin et al., 2019)
as encoder, Adam optimizer (Kingma and Ba,
2015) with a learning rate of BERT at 5e-5. The
training batch size is 32, the hidden size of BERT
encoder is 768, and the dropout rate is 0.1. For
VinVL (Zhang et al., 2021), we set the number of
local visual objects m = 10. For Multi-Head At-
tention, we set the number of attention head h = 4.
Our experiments are conducted on NVIDIA RTX
2080 Ti GPUs, and all models are implemented
using PyTorch. Our experimental code is available
here 2.

Following previous work (Ling and Weld, 2012),
we use strict accuracy(Acc), macro-averaged F1
score(Ma-F1), and micro-averaged F1 score(Mi-
F1) to evaluate the performance of models.

4.4 Overall Results
Table 2 shows the overall results of different la-
bel granularity of all baselines and our method on
our own constructed dataset MFIGER test set. We
can clearly see that our proposed method MOVC-
Net significantly outperforms previous methods,
whether at the total level, at the coarse-grained
level, or at the fine-grained level.

At the total level, we get the evaluation re-
sults of all baselines and our method on total of
102 labels, including 8 coarse-grained labels and
95 fine-grained labels. Compared with previous
SOTA method UMT (Yu et al., 2020), MOVC-
Net achieves 2.43% improvement in strict accuracy
(from 88.56% to 90.99%), 0.87% improvement on

2https://github.com/Web-FAN/MOVCNet
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Model Total Coarse Fine
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1

MOVCNet 90.99 96.80 96.92 97.54 98.65 98.44 91.67 95.27 95.70
w/o BERT 87.60 95.71 95.91 96.70 98.19 97.94 88.69 93.78 94.34
w/o object 89.98 96.06 96.29 97.11 98.27 98.11 90.62 94.33 94.93
w/o attention 90.75 96.37 96.60 97.23 98.39 98.21 91.40 94.84 95.38

Table 3: Ablation study of different label granularity on MFIGER. "w/o BERT" denotes replacing BERT with
ELMo. "w/o object" denotes replacing object features with global image features from VGG16. "w/o attention"
denotes replacing multi-head attention with average pooling.

macro-averaged F1 score (from 95.93% to 96.80%),
0.83% improvement on micro-averaged F1 score
(from 96.09% to 96.92%).

At the coarse-grained level, we get the evalua-
tion results of all baselines and our method only on
8 coarse-grained labels. Compared with previous
SOTA method UMT (Yu et al., 2020), MOVCNet
achieves 0.59% improvement on strict accuracy
(from 96.95% to 97.54%), 0.36% improvement on
macro-averaged F1 score (from 98.29% to 98.65%),
0.39% improvement on micro-averaged F1 score
(from 98.05% to 98.44%). Besides, most base-
line models perform well on coarse-grained entity
typing, achieving an accuracy of over 80%, and
some models even surpass 90%. This indicates that
the coarse-grained entity typing task is relatively
simple, as the coarse-grained types of entity men-
tions can be accurately inferred from the contextual
information contained in the text alone.

At the fine-grained level, we get the evaluation
results of all baselines and our method only on
95 fine-grained labels. Compared with the previ-
ous SOTA method UMT (Yu et al., 2020), MOVC-
Net achieves 2.24% improvement in strict accuracy
(from 89.43% to 91.67%), 1.22% improvement on
macro-averaged F1 score (from 94.05% to 95.27%),
1.14% improvement on micro-averaged F1 score
(from 94.56% to 95.70%).

Compared to the coarse-grained level, our multi-
modal model MOVCNet shows a greater improve-
ment at the fine-grained level. The fine-grained
entity typing task is relatively complex, as it is diffi-
cult to accurately infer the fine-grained category of
an entity mention based solely on the textual con-
text or a combination of textual context and global
image features. Our multimodal model introduces
visual context from images, effectively leveraging
the objects contained in the images and interact-
ing with the textual context for fusion. Through
this approach, the images can effectively assist in
classifying the entity mentions into fine-grained

categories, ultimately improving the performance
of fine-grained entity typing, including strict accu-
racy, micro-averaged F1 score, and micro-averaged
F1 score.

4.5 Ablation Study

To study the effects of different modules in our
model, we design three variants of MOVCNet. Ta-
ble 3 shows the results of the ablation study of
different label granularity on our dataset MFIGER.

Effect of BERT. We replace BERT with
ELMo (Peters et al., 2018) as our sentence en-
coder, as (Lin and Ji, 2019) is the first to use ELMo
to get contextualized word representations. Com-
pared with ELMo, BERT brings 3.39% improve-
ment on strict accuracy, 1.09% improvement on
macro-averaged F1 score. This demonstrates that
in the MFGET task, BERT is more capable of ob-
taining better text representations, which in turn
facilitates the fusion with image representations.

Effect of Object Feature. We replace the local
object features detected by VinVL with global im-
age features extracted by traditional Convolutional
Neural Network (CNN) VGG16 (Simonyan and
Zisserman, 2015). Compared with VGG16, the
object feature brings 1.01% improvement in strict
accuracy, 0.74% improvement in macro-averaged
F1 score. VGG can extract global features from im-
ages, but it may not capture certain details. On the
other hand, VinVL can effectively extract objects
in the image, and these objects provide fine-grained
visual context to aid in fine-grained entity typing.

Effect of Attention Mechanism. We replace
Multi-Head Attention with the average representa-
tion over top m objects. Compared with average
representation, Multi-Head Attention brings 0.24%
improvement on strict accuracy, 0.43% improve-
ment in macro-averaged F1 score. With the atten-
tion mechanism, we can determine which objects
are relevant to the entity mentions in the sentence,
and thereby obtain image representations that are
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(a) It is a song by southern
rock band Lynyrd Skynyrd
[Person, Musician] released
on its 1974 album.

(b) Justine Henin [Person,
Athlete] won her first tourna-
ment since her comeback at
the Tennis Grand.

Figure 3: Two examples of attention visualization. The
more the color tends towards red, the higher the weight
of attention.

perceptually aligned with the text. This allows the
most relevant objects to assist in fine-grained entity
typing, improving the classification performance.

Based on the analysis of the above three variants,
we can draw the following conclusions. In our
model, the module that has the greatest positive
impact on multimodal fine-grained entity typing is
BERT, followed by the detected objects, and finally
the attention mechanism.

4.6 Attention Visualization

To study the effectiveness of the attention mecha-
nism in our model MOVCNet, we visualized the
attention in Figure 3. In figure 3(a), the ground
truth type is Person and Musician. We can see
that the guitars are given more attention, providing
strong visual cues for the classification of Musician.
In figure 3(b), the ground truth type is Person and
Athlete. We can see that the tennis ball, the tennis
racket, and the sportswear are given more attention,
providing useful visual context for the classification
of Athlete. These two examples demonstrate that
the Multi-Head Attention used in our model can ef-
fectively extract visual contextual information from
the images, and the visual cues are relevant to the
entity mention in the sentence. Therefore, MOVC-
Net can achieve better classification performance
than previous models.

4.7 Results on Different Categories

To further analyze the effect of images in fine-
grained entity typing task, we conduct a compara-
tive experiment on the classification performance
of our model and three baseline models. Figure 4
shows the fine-grained classification results sum-
marized across 8 coarse-grained types respectively,
there are several fine-grained types under each

C1 C2 C3 C4 C5 C6 C7 C8
50

60

70

80

90

100

Lin and Ji (2019)
Box (2021)

UMT (2020)
MOVCNet

Figure 4: Results across 8 coarse-grained types respec-
tively. C1-C8 refers to the 8 coarse-grained types de-
scribed in Table 1. Y-axis refers to the strict classifica-
tion accuracy (%), it begins from 50%.

coarse-grained type.
Compared with previous baselines, our model

achieves significant improvements in the strict clas-
sification accuracy on 8 coarse-grained types. The
gain in classification performance, from highest to
lowest, is as follows: Person (C1), Building (C6),
Art (C4), Organization (C3), Product (C7), Others
(C8), Location (C2), Event (C5).

We can infer that the fine-grained types under
the coarse-grained type Person are relatively com-
plex, such as Actor, Musician and Politician, as it
requires strong textual cues to indicate a person’s
profession. Given an entity mention within a sen-
tence with Person as its ground truth label, we can
hardly classify it into specific fine-grained types di-
rectly. Because the textual context alone is always
limited, it may not contain sufficient fine-grained
information to assist in fine-grained classification.
Besides, the global features of an image do not
contain sufficient fine-grained object information.
Similarly, for mentions belonging to Building or
Art, it is also hard to determine their fine-grained
types from the textual context or global image fea-
tures.

Under the circumstances, our model introduces
object-level image information to FGET. MOVC-
Net can extract the most relevant local objects in
images and integrate information from both modal-
ities effectively. So MOVCNet can provide impor-
tant visual cues to the textual context, e.g. guitar or
racket for Person, parking apron for Building, piano
sheet music for Art. These objects are valuable for
identifying the profession of a person, the type of a
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building or an art, so the classification performance
of our model can significantly surpass that of the
compared baseline models across 8 coarse-grained
types respectively.

5 Conclusion

In this paper, we propose a new task called multi-
modal fine-grained entity typing (MFGET). Based
on FIGER, we construct a multimodal dataset
MFIGER with both text and accompanying images
for MFGET. We propose a novel multimodal model
MOVCNet to incorporate object-level visual con-
text for FGET. Specifically, MOVCNet can capture
relevant objects in images and merge visual and
textual contexts effectively. Experimental results
on MFIGER demonstrate that our proposed model
achieves the best performance compared with com-
petitive existing models.

Limitations

Although our model MOVCNet has achieved ex-
cellent results, it should be noted that we have used
a simple off-the-shelf object detection tool VinVL
that can effectively extract the objects from the im-
ages and get their features. However, there may
be better methods for object detection, or we can
design a dedicated object detection method specifi-
cally for multimodal fine-grained entity typing to
better extract local object features that are relevant
to the text. These areas can be further explored in
future work.

Acknowledgements

This research is supported by the National Natu-
ral Science Foundation of China (No. 62272250),
the Natural Science Foundation of Tianjin, China
(No. 22JCJQJC00150, 22JCQNJC01580), the
Fundamental Research Funds for the Central Uni-
versities (No. 63231149), Tianjin Research In-
novation Project for Postgraduate Students (No.
2022SKYZ232).

References
Abhishek Abhishek, Ashish Anand, and Amit Awekar.

2017. Fine-grained entity type classification by
jointly learning representations and label embeddings.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 797–807,
Valencia, Spain. Association for Computational Lin-
guistics.

Omar Adjali, Romaric Besançon, Olivier Ferret,
Hervé Le Borgne, and Brigitte Grau. 2020. Mul-
timodal entity linking for tweets. In Advances in
Information Retrieval - 42nd European Conference
on IR Research, ECIR 2020, Lisbon, Portugal, April
14-17, 2020, Proceedings, Part I, volume 12035 of
Lecture Notes in Computer Science, pages 463–478.
Springer.

Tongfei Chen, Yunmo Chen, and Benjamin Van Durme.
2020. Hierarchical entity typing via multi-level learn-
ing to rank. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8465–8475, Online. Association for Computa-
tional Linguistics.

Xiang Chen, Ningyu Zhang, Lei Li, Yunzhi Yao,
Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si,
and Huajun Chen. 2022. Good visual guidance
make a better extractor: Hierarchical visual prefix
for multimodal entity and relation extraction. In
Findings of the Association for Computational Lin-
guistics: NAACL 2022, pages 1607–1618, Seattle,
United States. Association for Computational Lin-
guistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 87–96, Melbourne, Australia. Association for
Computational Linguistics.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. J. Am.
Soc. Inf. Sci., 41(6):391–407.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yulin Chen, Xu Han, Guangwei Xu, Xi-
aobin Wang, Pengjun Xie, Haitao Zheng, Zhiyuan
Liu, Juanzi Li, and Hong-Gee Kim. 2022. Prompt-
learning for fine-grained entity typing. In Findings
of the Association for Computational Linguistics:
EMNLP 2022, pages 6888–6901, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. CoRR,
abs/1412.1820.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision

15388

https://aclanthology.org/E17-1075
https://aclanthology.org/E17-1075
https://doi.org/10.1007/978-3-030-45439-5_31
https://doi.org/10.1007/978-3-030-45439-5_31
https://doi.org/10.18653/v1/2020.acl-main.749
https://doi.org/10.18653/v1/2020.acl-main.749
https://doi.org/10.18653/v1/2022.findings-naacl.121
https://doi.org/10.18653/v1/2022.findings-naacl.121
https://doi.org/10.18653/v1/2022.findings-naacl.121
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.findings-emnlp.512
https://aclanthology.org/2022.findings-emnlp.512
http://arxiv.org/abs/1412.1820
http://arxiv.org/abs/1412.1820
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90


and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 770–778. IEEE
Computer Society.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ying Lin and Heng Ji. 2019. An attentive fine-grained
entity typing model with latent type representation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6197–
6202, Hong Kong, China. Association for Computa-
tional Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained
entity recognition. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, July
22-26, 2012, Toronto, Ontario, Canada. AAAI Press.

Qing Liu, Hongyu Lin, Xinyan Xiao, Xianpei Han,
Le Sun, and Hua Wu. 2021. Fine-grained entity
typing via label reasoning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4611–4622, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yang Liu, Kang Liu, Liheng Xu, and Jun Zhao. 2014.
Exploring fine-grained entity type constraints for dis-
tantly supervised relation extraction. In COLING
2014, 25th International Conference on Computa-
tional Linguistics, Proceedings of the Conference:
Technical Papers, August 23-29, 2014, Dublin, Ire-
land, pages 2107–2116. ACL.

Federico López, Benjamin Heinzerling, and Michael
Strube. 2019. Fine-grained entity typing in hyper-
bolic space. In Proceedings of the 4th Workshop on
Representation Learning for NLP (RepL4NLP-2019),
pages 169–180, Florence, Italy. Association for Com-
putational Linguistics.

Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang,
and Heng Ji. 2018. Visual attention model for name
tagging in multimodal social media. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1990–1999, Melbourne, Australia. Association
for Computational Linguistics.

Seungwhan Moon, Leonardo Neves, and Vitor Carvalho.
2018. Multimodal named entity recognition for short
social media posts. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
852–860, New Orleans, Louisiana. Association for
Computational Linguistics.

Yasumasa Onoe, Michael Boratko, Andrew McCallum,
and Greg Durrett. 2021. Modeling fine-grained entity
types with box embeddings. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2051–2064, Online. As-
sociation for Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
denoise distantly-labeled data for entity typing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2407–2417,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Yasumasa Onoe and Greg Durrett. 2020. Fine-grained
entity typing for domain independent entity linking.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
8576–8583. AAAI Press.

Weiran Pan, Wei Wei, and Feida Zhu. 2022. Automatic
noisy label correction for fine-grained entity typing.
In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, pages 4317–4323.
ijcai.org.

Kunyuan Pang, Haoyu Zhang, Jie Zhou, and Ting Wang.
2022. Divide and denoise: Learning from noisy la-
bels in fine-grained entity typing with cluster-wise
loss correction. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1997–2006,
Dublin, Ireland. Association for Computational Lin-
guistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng
Ji, and Jiawei Han. 2016. AFET: Automatic fine-
grained entity typing by hierarchical partial-label em-
bedding. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1369–1378, Austin, Texas. Association
for Computational Linguistics.

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In 3rd International Conference on

15389

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D19-1641
https://doi.org/10.18653/v1/D19-1641
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152
https://doi.org/10.18653/v1/2021.emnlp-main.378
https://doi.org/10.18653/v1/2021.emnlp-main.378
https://aclanthology.org/C14-1199/
https://aclanthology.org/C14-1199/
https://doi.org/10.18653/v1/W19-4319
https://doi.org/10.18653/v1/W19-4319
https://doi.org/10.18653/v1/P18-1185
https://doi.org/10.18653/v1/P18-1185
https://doi.org/10.18653/v1/N18-1078
https://doi.org/10.18653/v1/N18-1078
https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/N19-1250
https://doi.org/10.18653/v1/N19-1250
https://ojs.aaai.org/index.php/AAAI/article/view/6380
https://ojs.aaai.org/index.php/AAAI/article/view/6380
https://doi.org/10.24963/ijcai.2022/599
https://doi.org/10.24963/ijcai.2022/599
https://doi.org/10.18653/v1/2022.acl-long.141
https://doi.org/10.18653/v1/2022.acl-long.141
https://doi.org/10.18653/v1/2022.acl-long.141
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D16-1144
https://doi.org/10.18653/v1/D16-1144
https://doi.org/10.18653/v1/D16-1144
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Xuhui Sui, Ying Zhang, Kehui Song, Baohang Zhou,
Guoqing Zhao, Xin Wei, and Xiaojie Yuan. 2022. Im-
proving zero-shot entity linking candidate generation
with ultra-fine entity type information. In Proceed-
ings of the 29th International Conference on Compu-
tational Linguistics, COLING 2022, Gyeongju, Re-
public of Korea, October 12-17, 2022, pages 2429–
2437. International Committee on Computational
Linguistics.

Farbound Tai and Hsuan-Tien Lin. 2012. Multilabel
classification with principal label space transforma-
tion. Neural Comput., 24(9):2508–2542.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Peng Wang, Jiangheng Wu, and Xiaohang Chen. 2022a.
Multimodal entity linking with gated hierarchical fu-
sion and contrastive training. In SIGIR ’22: The 45th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, Madrid,
Spain, July 11 - 15, 2022, pages 938–948. ACM.

Xinyu Wang, Min Gui, Yong Jiang, Zixia Jia, Nguyen
Bach, Tao Wang, Zhongqiang Huang, and Kewei
Tu. 2022b. ITA: Image-text alignments for multi-
modal named entity recognition. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3176–3189,
Seattle, United States. Association for Computational
Linguistics.

Xuwu Wang, Junfeng Tian, Min Gui, Zhixu Li, Rui
Wang, Ming Yan, Lihan Chen, and Yanghua Xiao.
2022c. WikiDiverse: A multimodal entity linking
dataset with diversified contextual topics and entity
types. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 4785–4797, Dublin,
Ireland. Association for Computational Linguistics.

Bo Xu, Shizhou Huang, Chaofeng Sha, and Hongya
Wang. 2022. MAF: A general matching and align-
ment framework for multimodal named entity recog-
nition. In WSDM ’22: The Fifteenth ACM Interna-
tional Conference on Web Search and Data Mining,
Virtual Event / Tempe, AZ, USA, February 21 - 25,
2022, pages 1215–1223. ACM.

Peng Xu and Denilson Barbosa. 2018. Neural fine-
grained entity type classification with hierarchy-
aware loss. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 16–25, New

Orleans, Louisiana. Association for Computational
Linguistics.

Jianfei Yu, Jing Jiang, Li Yang, and Rui Xia. 2020.
Improving multimodal named entity recognition via
entity span detection with unified multimodal trans-
former. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3342–3352, Online. Association for Computational
Linguistics.

Gongrui Zhang, Chenghuan Jiang, Zhongheng Guan,
and Peng Wang. 2023. Multimodal entity linking
with mixed fusion mechanism. In Database Systems
for Advanced Applications - 28th International Con-
ference, DASFAA 2023, Tianjin, China, April 17-20,
2023, Proceedings, Part III, volume 13945 of Lecture
Notes in Computer Science, pages 607–622. Springer.

Haoyu Zhang, Dingkun Long, Guangwei Xu, Muhua
Zhu, Pengjun Xie, Fei Huang, and Ji Wang. 2020.
Learning with noise: Improving distantly-supervised
fine-grained entity typing via automatic relabeling.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI
2020, pages 3808–3815. ijcai.org.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual representa-
tions in vision-language models. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021, pages 5579–5588.
Computer Vision Foundation / IEEE.

Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang.
2018. Adaptive co-attention network for named en-
tity recognition in tweets. In Proceedings of the AAAI
conference on artificial intelligence, volume 32.

Qihui Zhao, Tianhan Gao, and Nan Guo. 2023. TSVFN:
two-stage visual fusion network for multimodal rela-
tion extraction. Inf. Process. Manag., 60(3):103264.

Changmeng Zheng, Junhao Feng, Ze Fu, Yi Cai, Qing
Li, and Tao Wang. 2021a. Multimodal relation ex-
traction with efficient graph alignment. In MM ’21:
ACM Multimedia Conference, Virtual Event, China,
October 20 - 24, 2021, pages 5298–5306. ACM.

Changmeng Zheng, Zhiwei Wu, Junhao Feng, Ze Fu,
and Yi Cai. 2021b. MNRE: A challenge multimodal
dataset for neural relation extraction with visual evi-
dence in social media posts. In 2021 IEEE Interna-
tional Conference on Multimedia and Expo, ICME
2021, Shenzhen, China, July 5-9, 2021, pages 1–6.
IEEE.

Xinyu Zuo, Haijin Liang, Ning Jing, Shuang Zeng,
Zhou Fang, and Yu Luo. 2022. Type-enriched hi-
erarchical contrastive strategy for fine-grained entity
typing. In Proceedings of the 29th International
Conference on Computational Linguistics, COLING
2022, Gyeongju, Republic of Korea, October 12-17,
2022, pages 2405–2417. International Committee on
Computational Linguistics.

15390

https://aclanthology.org/2022.coling-1.214
https://aclanthology.org/2022.coling-1.214
https://aclanthology.org/2022.coling-1.214
https://doi.org/10.1162/NECO_a_00320
https://doi.org/10.1162/NECO_a_00320
https://doi.org/10.1162/NECO_a_00320
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3477495.3531867
https://doi.org/10.1145/3477495.3531867
https://doi.org/10.18653/v1/2022.naacl-main.232
https://doi.org/10.18653/v1/2022.naacl-main.232
https://doi.org/10.18653/v1/2022.acl-long.328
https://doi.org/10.18653/v1/2022.acl-long.328
https://doi.org/10.18653/v1/2022.acl-long.328
https://doi.org/10.1145/3488560.3498475
https://doi.org/10.1145/3488560.3498475
https://doi.org/10.1145/3488560.3498475
https://doi.org/10.18653/v1/N18-1002
https://doi.org/10.18653/v1/N18-1002
https://doi.org/10.18653/v1/N18-1002
https://doi.org/10.18653/v1/2020.acl-main.306
https://doi.org/10.18653/v1/2020.acl-main.306
https://doi.org/10.18653/v1/2020.acl-main.306
https://doi.org/10.1007/978-3-031-30675-4_45
https://doi.org/10.1007/978-3-031-30675-4_45
https://doi.org/10.24963/ijcai.2020/527
https://doi.org/10.24963/ijcai.2020/527
https://doi.org/10.1109/CVPR46437.2021.00553
https://doi.org/10.1109/CVPR46437.2021.00553
https://doi.org/10.1016/j.ipm.2023.103264
https://doi.org/10.1016/j.ipm.2023.103264
https://doi.org/10.1016/j.ipm.2023.103264
https://doi.org/10.1145/3474085.3476968
https://doi.org/10.1145/3474085.3476968
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.1109/ICME51207.2021.9428274
https://aclanthology.org/2022.coling-1.212
https://aclanthology.org/2022.coling-1.212
https://aclanthology.org/2022.coling-1.212

