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Abstract

Obtaining sentence representations from BERT-
based models as feature extractors is invaluable
as it takes much less time to pre-compute a one-
time representation of the data and then use
it for the downstream tasks, rather than fine-
tune the whole BERT. Most previous works
acquire a sentence’s representation by passing
it to BERT and averaging its last layer. In this
paper, we propose that the combination of cer-
tain layers of a BERT-based model rested on
the data set and model can achieve substan-
tially better results. We empirically show the
effectiveness of our method for different BERT-
based models on different tasks and data sets.
Specifically, on seven standard semantic textual
similarity data sets, we outperform the baseline
BERT by improving the Spearman’s correlation
by up to 25.75% and on average 16.32% with-
out any further training. We also achieved state-
of-the-art results on eight transfer data sets by
reducing the relative error by up to 37.41% and
on average 17.92%. 1

1 Introduction

Learning sentence vector representations is a cru-
cial problem in natural language processing (NLP)
and has been widely studied in the literature (Con-
neau et al., 2017; Cer et al., 2018; Li et al., 2020).
Given a sentence, the goal is to acquire a vector
that semantically and/or syntactically represents it.
BERT (Devlin et al., 2019) has set new state-of-the-
art records on many NLP tasks (Madabushi et al.,
2020; Hu et al., 2022; Skorupa Parolin et al., 2022;
Wang and Kuo, 2020). However, this is achieved
by fine-tuning all of BERT’s layers. The disadvan-
tage of fine-tuning is that it is computationally ex-
pensive as even BERT-base has 110M parameters;
hence, pre-computing a representation of the data
and using it for the downstream task is much less
computationally expensive (Devlin et al., 2019).

1Our code is available at: https://github.com/
DiamondRock/BERT-Layers-Combination

Moreover, for sentence-pair tasks, BERT uses a
cross-encoder; nonetheless, this setup is inappropri-
ate for certain pair regression tasks, such as finding
the most similar sentence in a data set to a spe-
cific sentence due to the large number of possible
combinations (Reimers and Gurevych, 2019).

Considering the aforementioned drawbacks, re-
searchers have tried to derive fixed-sized sentence
embeddings from BERT or proposed new BERTs
with the exact same architecture but different ways
of training (Reimers and Gurevych, 2019; Li et al.,
2020). After training, the resultant BERT is used in
a feature-based manner by passing the sentence to
it and obtaining its embedding vector in different
ways, such as averaging the last layer of BERT.

In this paper, we present a simple, yet effective
and novel method called BERT-LC (BERT Layers
Combination). BERT-LC combines certain layers
of BERT in order to obtain the representation of a
sentence. As we will show, this model significantly
outperforms its correspondent BERT baseline with
no need of any further training. Our work was
inspired by Jawahar et al. (2019), who show that
different layers of BERT carry different features,
such as surface, syntactic, and semantic. We argue
that each data set with its unique distribution might
need a different set of features for its sentences,
which can only be fully exploited by combining
different layers of BERT in an unsupervised way.

Our contributions are as follows: (1) We pro-
pose a new method called BERT-LC that is capable
of acquiring superior results by combining certain
layers of BERT instead of just the last layer, in an
unsupervised manner. We also include the embed-
ding layer, which was to our knowledge ignored in
previous works. (2) We additionally show that our
method improves SBERT (Reimers and Gurevych,
2019) and SimCSE (Gao et al., 2021), which were
specifically designed for obtaining sentence repre-
sentations (opposite to BERT and RoBERTa (Liu
et al., 2019)). (3) We developed an algorithm that
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speeds up the process of finding the best layer com-
bination (among 213 layer combinations in base
cases) by a factor of 189 times. (4) We propose
an innovative method that integrates the layer com-
bination method with the CLS pooling head, im-
proving the performance metrics for certain models.
(5) We achieve state-of-the-art performance on the
transfer tasks using layer combination.

We demonstrate the superiority of our approach
through conducting extensive experiments on seven
standard semantic textual similarity (STS) data sets
and eight transfer tasks. On the STS data sets,
our method is able to outperform its corresponding
baseline by up to 25.75% and on average 16.32%
for BERT-large-uncased. We also achieve the state-
of-the-art performances on transfer tasks, reducing
the previous best model’s relative error rate by an
average of 17.92% and up to 37.41%.

2 Related Work

Learning sentence embeddings is a well-studied
realm in NLP. There are mainly two methods used
for this purpose: methods that use unlabeled data
or labeled data. Although the latter use labeled
data, the target data sets and tasks on which they
are tested are different from the training data set
and task. Early work on sentence embedding
utilized the distributional hypothesis by predict-
ing surrounding sentences of a sentence (Kiros
et al., 2015; Hill et al., 2016; Logeswaran and
Lee, 2018). Pagliardini et al. 2018 build on the
idea of word2vec (Mikolov et al., 2013) using n-
gram embeddings. Some researchers simply use
the average of BERT’s last layer embeddings as
the sentence embedding (Reimers and Gurevych,
2019). Recently, contrastive learning has proven to
be very powerful in many domains (Khorram et al.,
2022; Munia et al., 2021; Hu et al., 2021); thus,
some recent methods exploit contrastive learning
( Gao et al., 2021; Zhang et al., 2022; Yan et al.,
2021) and utilize the same sentence by looking at
it from multiple angles. For instance, the popular
method SimCSE leverages different outputs of the
same sentence from BERT’s standard dropout.

There are some previous works (Ethayarajh,
2019; Jawahar et al., 2019; Bommasani et al., 2020)
that investigate the impact of different BERT lay-
ers. However, they either investigate each layer
individually or are restricted to considering a set of
consecutive layers strictly starting from layer 1.

We apply our method to different variations of

BERT, RoBERTa, SBERT, and SimCSE. To the
best of our knowledge, no similar work has been
done that whether combines different and arbitrary
layers of these models or further integrates layer
combination and the CLS pooling head.

3 Approach

Given an input sentence S = (s1, s2, . . . , sN ), the
goal of a sentence embedding model is to output a
vector ES ∈ IRd which carries the semantic and/or
syntactic information of the sentence. In order
to obtain a sentence embedding, we first pass the
sentence to a BERT-like model, which outputs the
tensor H ∈ IRL′×N×d, in which d is the dimension
of the token vectors in each layer, and L′ = L+1 is
the number of layers (including Layer 0) in BERT.
We then apply to this tensor a pooling function
p, which can be max or mean, but we choose
mean as it yielded better results in our experiments.
The pooling is done across all the tokens in all
the desired layers set, D. For example, for mean
pooling, p is defined as:

p(H,D) =
1

|D|
∑

l∈D

1

N

N∑

n=1

Hl,n,: (1)

where Hl,n,: ∈ IRd is the Transformer vector at
layer number l corresponding to the nth token.

Previous works usually set D to {L} or use CLS
pooler, the output of the MLP layer attached to the
last layer’s first token ([CLS]) to obtain the sen-
tence embedding. Using CLS pooler was shown
to underperform last layer averaging (Reimers and
Gurevych, 2019). Further, as we will empirically
show, choosing D = {L} leads to significant un-
derperformance as well; hence, in this work, we
iterate through all possible Ds (D ∈ P(A) − ∅,
where A = {0, . . . , L}), and choose the best-
performing D as our layers to pool from.

As iterating through all possible Ds is very time-
consuming, we propose an algorithm that speeds
up the process of finding the best layer combination
(213 layer combinations in base cases) by a factor
of 189 times, which can be found in Appendix A.

We further propose an extension to our method,
and that is exploiting the MLP head and layer
combination simultaneously. The idea is to pass
p(H,D) in Eq. 1 to the MLP head and use the out-
put of the MLP head as the new p. We spot that this
method works better than merely using the layer
combination on SimCSE. We conjecture that this is
because SimCSE’s MLP head was trained for learn-
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ing sentence embeddings as opposed to the other
methods, such as BERT, SBERT, and RoBERTa;
hence, it carries important information to be uti-
lized. Consequently, we use the two-step pipeline
of layer combination and MLP for SimCSE mod-
els, and we propose that the two-step pipeline is
utilized for any other BERT-based sentence embed-
ding model whose MLP head has been trained for
sentence embedding.

4 Experiments and Results

We carry out our experiments on two different tasks:
transfer and STS tasks. In this section, we discuss
the tranasfer tasks, while the STS tasks are dis-
cussed in Appendix B.

4.1 Data Sets and Evaluation Setup

For transfer tasks, we use eight data sets from
the popular SentEval toolkit (Conneau and Kiela,
2018), which is used for assessing the quality of
sentence embeddings: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST and SSTM
(binary and six-class Stanford Sentiment Tree-
banks)(Socher et al., 2013), TREC (Li and Roth,
2002), and MRPC (Dolan et al., 2004).

For each data set, we combine all of its data
subsets and randomly split them into training-
development (train-dev) and test data with ratios
85% and 15%. This outer cross-validation is done
randomly for 10 times, and the average accuracy
results on the test data are reported. We further
utilize a 10-fold inner cross-validation on train-dev
data set, with ratios 82% (train) and 18% (dev).

The sentence embeddings by our method or the
baselines are used as feature vectors for a logistic
regression classifier. Note that even though there
exists a training data set, it is only utilized by the
logistic regression classifier and not in our method.

4.2 Baselines and Hyper-parameters

We use the following baselines and apply our
layer combination method to them: BERT
base/large (un)cased (BERT-(B/L)(un)cased),
RoBERTA base/large (RoBERTa-B/L), SBERT
and SRoBERTa base/large (SBERT/SRoBERTa-
B/L), (un)supervised SimCSE BERT/RoBERTa
base/large ((Un)SupSimCSE-(B/R)(B/L)), and
SupSimCSE-RB/RLM , which are SimCSE
models trained with an additional MLM head.

For the base and large models, we consider layer

combinations with up to four and three layers, re-
spectively, as we did not spot much difference when
combining more layers.

For the logistic regression, we use SAGA (De-
fazio et al., 2014) as the optimizer, 0.01 as the
tolerance level, 200 as the maximum number of
iterations, and 10 as the regularization parameter.

4.3 Results and Discussion
The results for our proposed method and the base-
lines on transfer tasks are shown in Table 1. The
results are statistically significant (p-value < 0.01).
Note that our methods are denoted by an LC
at the end of them (e.g., RoBERTa-L-LC means
RoBERTa-L when layer combination is used).

Since all models have accuracies close to 100%
on most of the transfer data sets, we believe it is
more reasonable to see how much improvement
we are acquiring by considering the relative error
reduction. Relative error for a model and its base-
line with respective accuracies of AM and AMB is
defined as AM−AMB

1−AMB
. From Table 1, we observe

that our method significantly outperforms its corre-
sponding baselines for all the models on all the data
sets. For example, RoBERTa-B-LC, SBERT-L-
LC, and UnSupSimCSE-RL-LC improve on their
baselines by reducing the relative errors by up
to 36.19%, 45.93%, and 40.80% and on average
19.89%, 14.95%, and 27.31%, respectively.

Furthermore, we spot that our method is more
effective on unsupervised versions of SimCSE mod-
els. For instance, the relative error improvement
over UnSupSimCSE-RL is 27.31%, whereas it is
14.61% for SupSimCSE-RL. However, there is still
important information to be extracted from all the
layers of the supervised SimCSE models as well.

We see that even an unsupervised model such as
RoBERTa-L when upgraded with LC can achieve
84.58%, beating SupSimCSE-RL, a supervised
model which held the previous best average re-
sult (83.73%). RoBERTA-L-LC’s average accuracy
does not fall very short of the new state-of-the-art
model, SupSimCSE-RL-LC (84.68% vs. 85.89%).
Finally, we have improved the previous state-of-
the-art models on all of the transfer data sets by
reducing the relative (absolute) errors by up to
37.41% (3.67%) and on average 17.92% (1.90%),
respectively. We achieve a state-of-the-art average
accuracy of 86.36% on the transfer data sets. We
have provided more baselines, which can be found
in Appendix D.
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MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

BERT-Buncased-CLS 80.16 83.17 93.97 84.35 46.66 74.74 70.87 85.01 77.37
BERT-Buncased-last avg81.19 86.17 95.07 88.10 47.53 85.76 73.66 87.08 80.57
BERT-Buncased-LC 82.24 86.60 95.40 90.42 49.22 88.76 77.17 88.17 82.25

BERT-Bcased-CLS 77.88 83.07 92.33 85.29 45.19 69.97 70.64 83.45 75.98
BERT-Bcased-last avg 80.55 85.19 94.64 87.63 46.48 83.65 74.30 85.83 79.78
BERT-Bcased-LC 81.42 86.56 95.11 89.88 47.76 88.00 75.36 86.86 81.37

RoBERTa-B-last avg 82.58 84.69 94.55 85.83 50.26 81.90 72.51 87.28 79.95
RoBERTa-B-LC 85.89 90.23 95.68 89.24 52.39 86.92 74.85 89.65 83.11

UnSupSimCSE-BB 80.67 85.29 94.29 88.75 45.14 83.96 72.94 85.86 79.61
UnSupSimCSE-BB-LC 81.61 86.77 95.16 90.03 47.07 89.05 77.29 87.49 81.81

UnSupSimCSE-RB 80.85 85.36 92.40 86.70 47.25 76.13 72.74 85.67 78.39
UnSupSimCSE-RB-LC 84.00 88.99 94.69 88.84 50.50 86.02 77.59 88.33 82.37

BERT-Luncased-CLS 83.22 85.64 93.03 80.75 46.73 69.45 69.10 84.01 76.49
BERT-Luncased-last avg 83.88 88.29 95.52 86.51 49.88 83.81 71.49 88.48 80.98
BERT-Luncased-LC 85.21 89.88 96.08 90.17 51.06 88.89 76.57 89.96 83.48

BERT-Lcased-CLS 81.65 82.79 91.43 83.49 45.76 64.23 70.02 84.83 75.53
BERT-Lcased-last avg 84.28 88.68 94.95 88.03 49.23 84.10 72.62 88.75 81.33
BERT-Lcased-LC 85.34 90.19 95.41 90.50 50.92 88.62 77.17 90.00 83.52

RoBERTa-L-last avg 84.30 85.22 94.93 87.25 50.59 81.75 67.24 89.41 80.09
RoBERTa-L-LC 88.04 91.68 96.51 91.11 54.11 88.06 75.01 92.08 84.58

UnSupSimCSE-BL 84.85 88.15 95.09 89.13 48.84 83.63 74.09 89.02 81.60
UnSupSimCSE-BL-LC 84.85 89.84 95.77 90.62 50.93 89.07 77.10 90.04 83.53

UnSupSimCSE-RL 82.29 86.24 92.77 88.12 45.98 82.02 73.91 88.08 79.93
UnSupSimCSE-RL-LC 86.75 91.01 95.72 90.85 52.83 87.93 79.13 91.57 84.47

(a) Unsupervised Models

MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

SBERT-B 82.90 88.96 93.93 89.58 47.53 80.04 74.34 89.19 80.81
SBERT-B-LC 83.61 89.95 95.17 91.06 49.01 88.56 78.71 89.65 83.22

SRoBERTa-B 84.67 90.12 92.57 89.21 50.59 81.79 77.13 90.12 82.03
SRoBERTa-B-LC 85.76 91.75 94.80 90.51 53.65 87.95 78.92 90.78 84.26

SupSimCSE-BB 81.85 89.31 94.60 89.73 50.16 82.75 74.60 88.81 81.48
SupSimCSE-BB-LC 81.85 89.31 95.68 90.87 50.16 89.09 77.68 89.67 83.04

SupSimCSE-RB 84.29 91.50 93.12 90.19 52.69 81.12 76.14 90.14 82.40
SupSimCSE-RB-LC 86.00 92.38 95.21 90.89 54.00 87.97 78.76 90.97 84.52

SupSimCSE-RBM 84.56 91.89 93.29 89.49 52.28 81.88 76.23 90.13 82.47
SupSimCSE-RBM -LC86.11 92.38 95.81 90.63 54.10 88.40 78.14 91.00 84.57

SBERT-L 84.69 90.62 94.40 90.25 49.24 79.71 74.99 90.92 81.85
SBERT-L-LC 85.41 91.64 95.61 91.15 51.84 89.03 79.03 91.46 84.40

SRoBERTa-L 86.85 90.83 93.16 90.69 50.82 83.14 77.36 92.44 83.16
SRoBERTa-L-LC 87.95 92.49 95.35 92.06 54.23 88.51 79.56 92.94 85.39

SupSimCSE-BL 85.47 90.69 95.01 90.38 51.16 84.28 73.70 90.83 82.69
SupSimCSE-BL-LC 85.60 90.69 95.88 91.30 52.20 89.47 77.01 91.39 84.19

SupSimCSE-RL 88.00 90.69 94.80 90.86 51.89 86.52 74.21 92.84 83.73
SupSimCSE-RL-LC 89.24 90.69 96.29 92.01 55.39 90.19 79.82 93.49 85.89

SupSimCSE-RLM 87.78 92.10 94.72 90.51 52.43 83.85 74.39 92.60 83.55
SupSimCSE-RLM -LC 89.09 93.44 96.41 91.43 56.10 88.06 78.97 93.44 85.87

(b) Supervised Models

Table 1: Transfer task results for different sentence embedding models (measured as accuracy * 100)
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Figure 1: Varying the size of the training data for transfer tasks.

5 Ablation Studies

While more ablation studies, such as the effect of
the number of layers in layer combination and the
effect of excluding a particular layer from layer
combination, can be found in Appendix E, in this
section, we discuss the performance of layer com-
bination in limited data settings. For this, we re-
duce the size of training data for MR, SUBJ, and
TREC, while keeping the test data untouched. Fig.
1 shows the results for RoBERTA-B (RB), BERT-
Bcased (BBC) and SRoBERTa-B (SRB) on these
data sets. We report the average results of 10 dif-
ferent seeds. As we can see, for all the models on
all the data sets, the more reduction in size is done,
the more the difference is between the LC version
and the last layer average. For instance, for RB on
SUBJ, on the original training data, the accuracies
for RB-LC and RB are 94.77% and 93.73%, re-
spectively, while when reducing the size to 1/256th,
the respective accuracies are 78.99% and 50.83%.
This suggests that it is even more beneficial to use
LC when one has small training data.

6 Conclusion and Future Work

In this paper, we proposed a new method called
BERT Layer Combination, a simple, yet effec-
tive framework, which when applied to various
BERT-based models, significantly improves them
for the downstream tasks of STS and transfer learn-
ing. Further, it achieves the state-of-the-art perfor-
mances on eight transfer tasks. Our method com-
bines certain layers of BERT-based models in an
unsupervised manner, which shows that different
layers of BERT hold important information which
was previously ignored. We demonstrated the effec-
tiveness of our approach by conducting comprehen-
sive experiments on various BERT-based models
and on a host of different tasks and data sets.

As future work, we would like to apply the tech-
nique of layer combination to other NLP tasks (e.g.,
punctuation insertion (Hosseini and Sameti, 2017)
and question answering (Qu et al., 2019)) and also
utilize it in other domains where deep learning mod-
els are used (e.g., biosignal analysis (Munia et al.,
2020, Munia et al., 2023) and image captioning
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(Huang et al., 2019)).

7 Limitation

One limitation of our work is that though we ap-
plied our layer combination technique to a raft of
different models, all of them are BERT based; ergo,
whether or not this technique works on other deep
learning NLP models remains unsettled. We leave
this experimentation as future work.
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A Optimized Algorithm for Finding the
Best Layer Combination

For a data set X = {(x1, y1), . . . , (x|X|, y|X|)}
where each sample consists of a list of sentences
xi = {S1

i , . . . , S
n
i } (n=2 for sentence-pair tasks

such as STS) and a label yi, the best-performing
layers set (D∗) is calculated by the following equa-
tion:
D∗

= argmax
D∈P+(A)

m
((
f1, . . . , f|X|

)
,
(
y1, . . . , y|X|

))

(2)
where m is the desired metric function, and fi is

(3)fi = f
(
p
(
H1

i , D
)
, . . . , p (Hn

i , D)
)

in which H i
j is the tensor of the ith sample’s jth

sentence, and f is a function, such as cosine simi-
larity.

Eq. 3 requires calculating p(H,D) for each
sentence in X and for every possible D, which
can be very time-consuming. In this subsection,
we discuss our proposed algorithm for efficiently
calculating all p(H,D)s in a step-by-step manner.
Each method improves over the previous one, with
Method 1 being the naive algorithm. The algo-
rithms discussed here utilize mean as the pooling
function, yet they can be easily modified to use
other functions such as max.
Method 1: For every D ∈ P+(A) = P(A) − ∅,
calculate p(H,D).
Method 2: For every D ∈ {{i}|0 ≤ i ≤ L}
calculate pl = p(H,D) = 1

N

∑N
n=1Hl,n,:. Then,

for every other D ∈ P+(A), calculate p(H,D) as
p(H,D) = 1

|D|
∑

l∈D pl.
Method 3: This method is explained in Al-
gos. 1 and 2 (maxOptim=False). The idea is
that for calculating every p(H,D), we can ex-
ploit other P (H,D′)s that we have calculated
before. For instance, p(H, {1, 3, 6, 8, 10}) =
3∗p(H,{1,3,6})+2∗p(H,{8,10})

5 . This method uses
bottom-up dynamic programming to store the pre-
vious p(H,D)s. powerset(A, i) in Algo. 1 is
equal to {D|D ∈ P(A) ∧ |D|= i}. mem is a
hash map with key-value pairs as (D, p(H,D)).
greedyPart(D,mem) returns an array of parti-
tions of D such that all partitions are present in
mem, and each partition has the highest length
possible. This is done in a greedy manner, by first

dividing D into two partitions, and then three par-
titions, and so on. If no such partitions exist, the
resultant array is empty.
Method 4: This method further improves over
Method 3 by avoiding certain multiplications (Algo.
2, maxOptim=True). For instance, if α =
p(H, {1, . . . , 4}) and β = p(H, {5, . . . , 8}), then
p(H, {1, . . . , 8}) can be calculated as α+β

2 instead
of α∗4+β∗4

8 , reducing two vector multiplications.
getPartLens(parts) in Algo. 2 returns a set of
the lengths of parts’ elements.

Algorithm 1: Layer Combination Iterator
input :Tensor H , Set A, Bool

maxOptim, Int maxMem
output :Set D, Array P

1 from Algo. 2 use pool
2 Function layerIterator(H , A,

maxOptim, maxMem):
3 mem = hashMap()
4 for i = 1 to A.length do
5 for D in powerset(A, i) do
6 P = pool(H , D, mem, maxMem)
7 yield D, P

To show the effectiveness of our algorithm, we
carried out an experiment. We randomly select
1000 samples from the SICK dataset and try to find
the best layer combination among all possible 8192
layer combinations, once with our algorithm and
once with the naive algorithm (Method 2). We do
this experimentation five times and report the av-
erage results. Our algorithm takes 5.65 seconds
to find the best layer combination after the ten-
sor of all layer and token vectors are obtained by
BERT-base-uncased, while Method 2 takes 1067
seconds. The one-time forward pass of BERT takes
10 seconds.

B STS Tasks’ Experiments and Results

B.1 Data Sets and Evaluation Setup
For STS tasks, we use the seven standard STS
data sets: STS2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017), and SICK Relatedness (Marelli et al.,
2014). These data sets consist of sentence pairs
and a similarity score from 1 to 5 assigned to each
one of them. For each data set, we first combine
all of its data subsets, shuffle it, and choose a small
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Algorithm 2: Layer Combination Pooler
input :Tensor H , Set D, HashMap mem,

Bool maxOptim, Int maxMem
output :Array P

1 Function pool(H , D, mem, maxOptim,
maxMem):

2 parts = greedyPart (D, mem)
3 if parts!= [] then
4 P = array(parts [0].length, 0) ;

// array(N, v) returns an array

of size N filled with vs

5 denom = D.length
6 if maxOptim then
7 lens = getPartLens(parts)
8 foreach len in lens do
9 curP = array(P .length, 0)

10 foreach part of size len in parts
do

11 curP += mem [part ]

12 if lens.length > 1 then
13 curP *= len

14 else
15 denom = len

16 P += curP

17 else
18 foreach part in parts do
19 P += mem [part ] * len

20 P /= denom

21 else
22 P = p(H,D)

23 if mem.length < maxMem then
24 mem [part ] = P

25 return P

subset (the first 350 sentence pairs) as our devel-
opment data set and the rest as our test data set.
We do this splitting 5 times randomly and report
the average test performance. Please note that our
method does not require training data. Nonetheless,
we note that our method still needs a development
data set in order for it to be bootstrapped. However,
the required data set can be as small as 350 samples.
Furthermore, as opposed to the other models, this
data is not leveraged for fine-tuning, which is very
time-consuming.

We use the sentence embeddings obtained by

our method or the baselines to calculate the co-
sine similarity between two sentences and then use
Spearman’s correlation (ρ) for evaluating the mod-
els’ performances as suggested by (Reimers and
Gurevych, 2019).

B.2 Baselines and Hyper-parameters
We use the same baselines that we use for the trans-
fer tasks except for the MLM versions of the Sim-
CSE models as those were proposed in the SimCSE
paper to strengthen their models for the transfer
tasks.

For the base models with 13 layers, we iterate
through all the possible layer combinations for
choosing the best one, yet for the large models
with 25 layers, we only iterate through all the layer
combinations with up to eight layers since in our
experiments, we observed that combining more
than eight layers hurts the performance.

B.3 Results and Discussion
The results for STS tasks are shown in Table
2. From this table, we observe that our method
significantly outperforms its corresponding varia-
tions of BERT, RoBERTa, SBERT, and SRoBERTa
baselines on all the STS data sets. For instance,
for BERT-Luncased, RoBERTa-L, and SRoBERTa-
B, we obtain ρ improvements of up to 25.75%,
13.94%, and 3.95% and on average 16.32%, 9.52%,
and 2.75%, respectively, compared to their best
baselines (last avg). SimCSE-LC versions also out-
perform most of their baselines by a decent margin.
For example, UnSupSimCSE-BL-LC improves its
baseline’s ρ by up to 2.30% and on average 0.70%.
Finally, the best SimCSE (Sup-RL)’s performances
are also improved by up to 1.14%.

We can also see that our method is more effec-
tive on unsupervised models such as BERT and
RoBERTa, as we spot a higher improvement com-
pared with the supervised models such as SBERT
or SupSimCSE. This suggests that the unsuper-
vised models’ layers hold more important infor-
mation than the supervised models for STS tasks.
However, there is still crucial information to be ex-
ploited from all the layers of the supervised models
as well.

We also observe that we have higher improve-
ments for uncased BERT versions over their base-
line compared to the cased versions. Nonetheless,
after applying our method to either one, the final
ρs are within a 1.25% range of each other. This
suggests that a lot of BERTuncased’s information
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is carried in its layers, and when exploited, it can
perform more closely to BERTcased-LC.

C Computation Setup

To conduct the experiments discussed in this paper,
we used a computer with 128GB of RAM and one
Intel Core i9-9980XE CPU. Our code uses PyTorch
(Paszke et al., 2019), huggingface 2, and sci-kit
learn (Pedregosa et al., 2011).

D More Baselines

In this section, we compare the results of the
layer combination technique with more baselines
on both STS and transfer tasks. We use the
same baseline models as shown in Table 2, but
instead of only comparing with the last layer for
BERT/RoBERTa models and original SimCSE and
SBERT/SRoBERTa models (which use CLS pooler
and last layer average, respectively), we also com-
pare the results with these two new baselines: last
four layers average and random layers. The re-
sults are shown in Table 3 and Table 4. The results
show that our method performs better than the new
baselines as well.

E Ablation studies

E.1 Effect of the Number of Layers
In this subsection, we show the effect of combining
only N layers of a model, N varying from 1 to 13
for the base models. To this end, we show this ef-
fect on the data sets STS16, STSB, and SICK, and
for the models BERT-Bcased, RoBERTa-B, SBERT-
B, and SRoBERTa-B. From Figs. 2 and 3, we can
see that (1) For all the data sets and all the models
adding more layers shows an upward trend in per-
formance up to some peak point (e.g., N = 4 for
BERT-Bcased on STS16), and adding more layers
after that point shows a downward trend in perfor-
mance; however, this point is different for different
models and data sets, yet it is always at most 6.
(2) For BERT-Bcased, RoBERTa-B, and SBERT-B,
moving from one layer to two layers leads to a
huge increase in performances for all but one data
set-model pairs, yet combining more than two lay-
ers always leads to a further substantial increase in
performance. For instance, on STSB, an absolute ρ
improvement of 1.22% can be obtained when mov-
ing from two layers to six layers. We, nonetheless,

2https://huggingface.co/transformers/

do not see drastic changes for SRoBERTa-B when
moving from one layer to two layers.

E.2 Effect of Excluding a Particular Layer
from Layer Combination

In this section, we discuss how excluding one par-
ticular layer from layer combination affects the
performances. For this, we show the results for the
models BERT-Bcased, RoBERTa-B, and SBERT-B
on the data sets STS16, STSB, and SICK in Fig. 4.
We can mention these observations:

1. Most of the time, excluding layer 11 hurts the
performance, showing that this is an important
layer.

2. Excluding either of the layers 4, 5, or 6 does
not hurt the performance, suggesting that
these layers are not important for these models
and data sets.

3. Last layer (L12) is always important for
SBERT-B, is important for BERT-Bcased in
two cases (STS16 and STSB), and is only im-
portant for RoBERTa-B in one case (STSB).

4. Layer 0, which is the embedding layer, proves
to be important in more than half of the cases
here, showing that it carries important infor-
mation to be considered for STS tasks, and it
cannot be ignored.

5. Excluding any particular layer in any of the
nine model-data set pairs shown in Fig. 4,
leads to a maximum decrease of 0.97% (L12
for SBERT-B on STS16) in the performance.
However as shown in Table 2, in any of these
9 cases, we get at least an improvement of
1.86% by combining certain layers (consid-
ering all the layers). This suggests that layer
combination still outperforms the baselines
even if one (any) layer is not considered at all.
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Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

BERT-Buncased-CLS 7.23 28.44 12.48 15.79 28.21 5.36 29.83 18.19
BERT-Buncased-last 31.08 59.58 47.39 60.17 63.04 46.24 57.90 52.20
BERT-Buncased − LC 50.89 64.67 54.94 72.22 67.95 59.42 63.54 61.95

BERT-Bcased-CLS 14.16 22.51 16.41 24.11 27.52 12.69 39.22 22.37
BERT-Bcased-last 38.30 62.12 53.25 64.43 63.86 55.86 58.92 56.68
BERT-Bcased − LC 50.55 66.25 57.91 72.51 67.90 62.98 61.57 62.81

RoBERTa-B-last 32.18 56.27 45.05 61.11 60.81 55.13 62.10 53.24
RoBERTa-B-LC 45.58 60.83 51.20 69.23 64.68 60.17 64.00 59.38

BERT-Luncased-CLS 18.66 21.47 13.79 11.01 23.29 13.31 25.11 18.09
BERT-Luncased-last 27.76 55.11 44.37 51.59 61.10 46.52 53.56 48.57
BERT-Luncased − LC 53.51 68.19 58.45 74.43 71.03 63.97 64.64 64.89

BERT-Lcased-CLS 14.64 8.27 6.04 9.74 25.00 10.69 26.99 14.48
BERT-Lcased-last 45.77 63.81 54.41 68.87 64.53 58.25 63.24 59.84
BERT-Lcased − LC 53.87 70.23 61.04 75.66 70.70 66.16 65.22 66.13

RoBERTa-L-last 33.49 57.64 45.49 62.74 61.40 51.59 57.86 52.89
RoBERTa-L-LC 47.43 65.33 55.14 72.44 69.04 62.60 64.88 62.41

UnSupSimCSE-BL 69.21 83.93 75.58 83.86 78.98 77.89 73.47 77.56
UnSupSimCSE-BL-LC 69.21 84.82 75.88 84.41 79.85 80.19 73.47 78.26

UnSupSimCSE-RL 72.11 83.41 74.96 84.03 80.79 81.74 70.82 78.27
UnSupSimCSE-RL-LC 72.11 83.66 75.03 84.37 80.68 82.06 72.53 78.63

(a) Unsupervised Models. CLS: CLS pooler, last: last layer’s average.

Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

SBERT-B 70.78 76.69 73.13 79.08 74.20 76.66 72.75 74.76
SBERT-B-LC 72.02 79.18 74.50 82.63 76.42 78.52 76.51 77.11

SRoBERTa-B 70.82 73.06 70.61 78.34 74.17 76.65 74.31 73.99
SRoBERTa-B-LC 72.94 76.14 72.83 82.29 77.13 78.99 76.90 76.75

SBERT-L 72.15 78.49 74.91 80.93 76.72 78.82 73.63 76.52
SBERT-L-LC 72.79 81.39 76.75 84.14 79.15 80.43 77.22 78.84

SRoBERTa-L 74.06 77.04 73.07 81.59 76.69 78.24 74.08 76.40
SRoBERTa-L-LC 74.96 80.25 75.54 84.71 79.52 80.78 77.72 79.07

SupSimCSE-BL 75.51 86.56 80.22 86.09 81.64 84.86 80.93 82.26
SupSimCSE-BL-LC 75.51 86.56 80.22 86.09 82.42 84.86 80.93 82.37

SupSimCSE-RL 77.35 87.36 82.18 86.59 83.92 86.58 81.72 83.67
SupSimCSE-RL-LC 77.35 87.82 82.18 87.12 85.05 86.60 81.72 83.98

(b) Supervised Models

Table 2: Spearman’s rank correlation ρ * 100 between the cosine similarity of sentence representations and the gold
labels for different STS tasks. The highest numbers among models with the same encoder are boldfaced.

Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

BERT-Buncased-last 31.08 59.58 47.39 60.17 63.04 46.24 57.90 52.20
BERT-Buncased-last 4 36.44 59.08 49.24 64.83 62.01 47.02 58.36 53.85
BERT-Buncased-rand 45.23 61.48 51.89 69.54 61.76 56.73 62.17 58.40
BERT-Buncased-LC 50.89 64.67 54.94 72.22 67.95 59.42 63.54 61.95

BERT-Bcased-last 38.30 62.12 53.25 64.43 63.86 55.86 58.92 56.68
BERT-Bcased-last 4 38.20 60.32 51.75 65.95 62.29 54.11 59.37 56.00
BERT-Bcased-rand 45.52 62.42 55.90 71.27 65.62 57.89 60.34 59.85
BERT-Bcased-LC 50.55 66.25 57.91 72.51 67.90 62.98 61.57 62.81

RoBERTa-B-last 32.18 56.27 45.05 61.11 60.81 55.13 62.10 53.24
RoBERTa-B-last 4 35.63 56.30 46.31 64.03 63.33 55.35 62.09 54.72
RoBERTa-B-rand 43.75 58.88 47.54 68.56 63.81 58.69 62.51 57.68
RoBERTa-B-LC 45.58 60.83 51.20 69.23 64.68 60.17 64.00 59.38

BERT-Luncased-last 27.76 55.11 44.37 51.59 61.10 46.52 53.56 48.57
BERT-Luncased-last 4 34.91 58.09 49.01 59.16 61.30 48.95 54.56 52.28
BERT-Luncased-rand 45.09 62.32 53.19 71.18 67.35 60.51 62.02 60.24
BERT-Luncased-LC 53.51 68.19 58.45 74.43 71.03 63.97 64.64 64.89

BERT-Lcased-last 45.77 63.81 54.41 68.87 64.53 58.25 63.24 59.84
BERT-Lcased-last 4 43.52 61.48 52.87 68.32 63.78 54.70 63.15 58.26
BERT-Lcased-rand 52.30 65.77 52.46 72.25 68.80 62.70 62.92 62.46
BERT-Lcased-LC 53.87 70.23 61.04 75.66 70.70 66.16 65.22 66.13

RoBERTa-L-last 33.49 57.64 45.49 62.74 61.40 51.59 57.86 52.89
RoBERTa-L-last 4 34.28 59.01 47.27 64.86 66.23 57.98 62.24 55.98
RoBERTa-L-rand 44.52 61.20 52.47 70.37 68.14 61.47 63.85 60.29
RoBERTa-L-LC 47.43 65.33 55.14 72.44 69.04 62.60 64.88 62.41

UnSupSimCSE-BL 69.21 83.93 75.58 83.86 78.98 77.89 73.47 77.56
UnSupSimCSE-BL-last 4 64.83 83.43 74.94 83.79 78.16 78.14 72.61 76.56
UnSupSimCSE-BL-rand 52.67 64.63 56.26 75.56 66.91 69.87 66.78 64.67
UnSupSimCSE-BL-LC 69.21 84.82 75.88 84.41 79.85 80.19 73.47 78.26

UnSupSimCSE-RL 72.11 83.41 74.96 84.03 80.79 81.74 70.82 78.27
UnSupSimCSE-RL-last 4 69.44 83.28 74.89 83.95 80.21 82.00 71.55 77.90
UnSupSimCSE-RL-rand 59.92 79.44 67.06 81.83 75.26 59.52 67.31 70.05
UnSupSimCSE-RL-LC 72.11 83.66 75.03 84.37 80.68 82.06 72.53 78.63

(a) Unsupervised Models. last: last layer’s average.

Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

SBERT-B 70.78 76.69 73.13 79.08 74.20 76.66 72.75 74.76
SBERT-B-last 4 69.86 77.50 73.14 78.97 74.27 77.25 72.38 74.77
SBERT-B-rand 66.91 72.83 66.02 70.65 72.92 70.47 67.60 69.63
SBERT-B-LC 72.02 79.18 74.50 82.63 76.42 78.52 76.51 77.11

SRoBERTa-B 70.82 73.06 70.61 78.34 74.17 76.65 74.31 73.99
SRoBERTa-B-last 4 71.31 74.64 71.76 77.61 73.88 76.92 74.16 74.33
SRoBERTa-B-rand 59.44 74.73 71.22 78.89 65.09 67.33 75.33 70.29
SRoBERTa-B-LC 72.94 76.14 72.83 82.29 77.13 78.99 76.90 76.75

SBERT-L 72.15 78.49 74.91 80.93 76.72 78.82 73.63 76.52
SBERT-L-last 4 70.03 78.40 74.82 80.05 73.97 77.98 72.54 75.40
SBERT-L-rand 63.69 74.69 61.10 83.55 71.49 76.06 73.70 72.04
SBERT-L-LC 72.79 81.39 76.75 84.14 79.15 80.43 77.22 78.84

SRoBERTa-L 74.06 77.04 73.07 81.59 76.69 78.24 74.08 76.40
SRoBERTa-L-last 4 71.52 77.67 73.35 79.28 75.73 77.98 72.85 75.48
SRoBERTa-L-rand 54.05 62.17 66.58 75.98 68.35 79.03 76.83 69.00
SRoBERTa-L-LC 74.96 80.25 75.54 84.71 79.52 80.78 77.72 79.07

SupSimCSE-BL 75.51 86.56 80.22 86.09 81.64 84.86 80.93 82.26
SupSimCSE-BL-last 4 71.16 85.17 77.17 85.19 80.80 83.14 80.18 80.40
SupSimCSE-BL-rand 52.84 71.87 65.08 76.55 69.46 64.42 68.65 66.98
SupSimCSE-BL-LC 75.51 86.56 80.22 86.09 82.42 84.86 80.93 82.37

SupSimCSE-RL 77.35 87.36 82.18 86.59 83.92 86.58 81.72 83.67
SupSimCSE-RL-last 4 75.64 87.58 81.41 85.92 83.73 86.20 80.54 83.00
SupSimCSE-RL-rand 70.06 85.95 56.54 83.06 82.04 80.93 69.46 75.43
SupSimCSE-RL-LC 77.35 87.82 82.18 87.12 85.05 86.60 81.72 83.98

(b) Supervised Models

Table 3: STS Task’s Results with more baselines. The same metric as in Table 2 is used (ρ * 100). last 4 is the
average of the last 4 layers, and rand is the random layers combination.
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Model MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

BERT-Buncased-last 81.19 86.77 95.08 87.97 47.48 85.76 73.66 87.20 80.64
BERT-Buncased-last 4 82.05 86.74 95.45 88.85 48.38 87.61 75.72 87.88 81.59
BERT-Buncased-rand 80.89 84.69 94.46 88.8 47.09 85.39 76.49 85.74 80.44
BERT-Buncased-LC 82.24 87.20 95.45 90.12 49.01 88.76 77.08 88.22 82.26

BERT-Bcased-last 80.55 85.19 94.64 87.82 45.69 83.65 74.30 85.83 79.71
BERT-Bcased-last 4 81.38 86.17 94.89 88.55 46.75 87.10 73.95 86.45 80.66
BERT-Bcased-rand 79.41 84.12 94.06 89.10 45.38 86.11 73.57 85.65 79.68
BERT-Bcased-LC 81.42 86.98 95.11 90.08 46.99 88.00 75.45 86.88 81.36

RoBERTa-B-last 82.58 84.69 94.55 85.28 50.10 81.90 72.51 87.28 79.86
RoBERTa-B-last 4 85.01 88.04 95.44 87.53 51.30 85.85 71.93 88.83 81.74
RoBERTa-B-rand 84.41 87.15 94.78 87.56 50.08 85.08 72.12 88.31 81.19
RoBERTa-B-LC 85.89 90.23 95.65 88.66 52.48 86.92 74.85 89.65 83.04

UnSupSimCSE-BB 80.67 85.29 94.29 88.75 46.13 83.96 72.55 85.86 79.69
UnSupSimCSE-BB-last 481.64 85.93 95.01 89.52 47.95 87.73 76.97 87.38 81.52
UnSupSimCSE-BB-rand 76.46 84.47 94.05 89.52 46.78 86.62 73.75 86.52 79.77
UnSupSimCSE-BB-LC 81.61 86.77 95.23 90.12 48.25 89.05 77.36 87.55 81.99

UnSupSimCSE-RB 80.85 85.36 92.40 86.70 47.25 76.13 72.90 85.67 78.41
UnSupSimCSE-RB-last 483.09 87.8 94.49 88.15 49.48 84.01 77.86 87.27 81.52
UnSupSimCSE-RB-rand 82.05 86.70 93.98 88.26 49.64 83.73 75.94 87.28 80.95
UnSupSimCSE-RB-LC 84.00 88.99 94.72 88.67 50.52 86.02 78.07 88.33 82.41

BERT-Luncased-last 83.88 88.29 95.52 86.51 49.88 83.81 71.49 88.48 80.98
BERT-Luncased-last 4 84.90 89.91 95.95 87.23 49.83 86.72 73.15 89.16 82.11
BERT-Luncased-rand 83.29 88.04 95.05 89.38 49.54 86.62 75.68 89.03 82.08
BERT-Luncased-LC 85.21 89.88 96.08 90.17 51.06 88.89 76.57 89.96 83.48

BERT-Lcased-last 84.28 88.68 94.95 88.03 49.23 84.10 72.62 88.75 81.33
BERT-Lcased-last 4 85.14 89.17 95.28 89.13 50.59 86.52 74.67 89.43 82.49
BERT-Lcased-rand 82.62 87.58 94.58 89.86 49.27 86.02 76.10 88.79 81.85
BERT-Lcased-LC 85.34 90.19 95.41 90.50 50.92 88.62 77.17 90.00 83.52

RoBERTa-L-last 84.30 85.22 94.93 87.25 50.59 81.75 67.24 89.41 80.09
RoBERTa-L-last 4 86.03 88.61 95.85 89.52 51.91 86.52 69.49 90.74 82.33
RoBERTa-L-rand 82.85 89.34 95.51 90.27 52.88 86.78 70.33 90.95 82.36
RoBERTa-L-LC 88.04 91.68 96.51 91.11 54.11 88.06 75.01 92.08 84.58

UnSupSimCSE-BL 84.85 88.15 95.09 89.13 48.84 83.63 74.09 89.02 81.60
UnSupSimCSE-BL-last 4 83.91 89.38 95.60 90.14 48.87 86.79 75.49 89.70 82.48
UnSupSimCSE-BL-rand 82.90 86.87 94.90 90.30 49.28 86.31 75.78 88.51 81.86
UnSupSimCSE-BL-LC 84.85 89.84 95.77 90.62 50.93 89.07 77.10 90.04 83.53

UnSupSimCSE-RL 82.29 86.24 92.77 88.12 45.98 82.02 73.91 88.08 79.93
UnSupSimCSE-RL-last 4 84.81 89.45 94.61 88.94 48.97 86.47 78.97 89.98 82.78
UnSupSimCSE-RL-rand 84.64 89.48 91.58 89.91 51.46 87.00 74.19 90.29 82.32
UnSupSimCSE-RL-LC 86.75 91.01 95.72 90.85 52.83 87.93 79.13 91.57 84.47

(a) Unsupervised Models. last: last layer’s average.

Model MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

SBERT-B 82.90 89.21 93.93 89.79 48.14 80.04 74.30 89.19 80.94
SBERT-B-last 4 83.56 89.74 95.04 90.17 49.49 85.17 77.91 89.54 82.58
SBERT-B-rand 82.70 89.20 94.47 89.52 49.12 85.91 77.61 88.92 82.18
SBERT-B-LC 83.61 90.05 95.13 91.02 49.48 88.56 78.60 89.68 83.27

SRoBERTa-B 84.67 90.12 92.57 89.3 50.64 81.79 77.43 90.12 82.08
SRoBERTa-B-last 4 85.81 90.97 93.53 89.87 53.13 85.31 78.64 90.54 83.47
SRoBERTa-B-rand 85.05 90.47 94.09 89.91 52.33 84.61 74.56 90.15 82.65
SRoBERTa-B-LC 85.76 91.71 94.89 90.62 53.69 87.95 78.92 90.78 84.29

SupSimCSE-BB 81.85 89.56 94.60 89.92 50.16 82.75 74.60 88.81 81.53
SupSimCSE-BB-last 4 82.67 89.14 95.48 90.74 49.78 87.61 77.33 89.50 82.78
SupSimCSE-BB-rand 76.70 87.26 94.31 90.29 48.91 88.08 76.95 88.09 81.32
SupSimCSE-BB-LC 81.85 89.56 95.68 90.77 50.16 89.09 77.52 89.71 83.04

SupSimCSE-RB 84.29 91.11 93.12 90.19 52.69 81.12 76.14 90.18 82.36
SupSimCSE-RB-last 4 85.64 92.10 95.00 90.76 53.58 87.35 76.60 90.86 83.99
SupSimCSE-RB-rand 84.44 90.61 94.07 90.40 53.01 85.14 72.49 90.32 82.56
SupSimCSE-RB-LC 86.00 92.13 95.21 90.87 53.48 87.97 78.76 91.02 84.43

SupSimCSE-RBM 84.56 91.89 93.29 89.52 52.47 81.88 76.23 90.13 82.50
SupSimCSE-RBM -last 485.79 92.56 95.60 90.43 53.65 87.82 74.39 90.91 83.89
SupSimCSE-RBM -rand 84.91 90.72 94.49 89.88 53.23 87.90 72.79 89.87 82.97
SupSimCSE-RBM -LC 86.11 92.45 95.81 90.62 54.15 88.40 78.14 91.00 84.59

SBERT-L 84.69 90.62 94.40 90.25 49.24 79.71 74.99 90.92 81.85
SBERT-L-last 4 85.12 91.04 95.20 90.46 51.06 84.52 78.00 91.33 83.34
SBERT-L-rand 84.31 91.14 94.50 90.59 49.92 85.12 78.53 86.19 82.54
SBERT-L-LC 85.41 91.64 95.61 91.15 51.84 89.03 79.03 91.46 84.40

SRoBERTa-L 86.85 90.83 93.16 90.69 50.82 83.14 77.36 92.44 83.16
SRoBERTa-L-last 4 87.80 91.50 94.21 91.06 52.02 84.66 77.89 92.58 83.97
SRoBERTa-L-rand 85.81 84.19 94.23 91.34 52.50 86.44 77.55 92.12 83.02
SRoBERTa-L-LC 87.95 92.49 95.35 92.06 54.23 88.51 79.56 92.94 85.39

SupSimCSE-BL 85.47 90.69 95.01 90.38 51.16 84.28 73.70 90.83 82.69
SupSimCSE-BL-last 4 84.84 90.26 95.56 90.76 51.38 86.63 75.68 91.08 83.27
SupSimCSE-BL-rand 83.64 89.66 94.69 90.73 50.88 86.94 74.70 90.52 82.72
SupSimCSE-BL-LC 85.60 90.69 95.88 91.30 52.20 89.47 77.01 91.39 84.19

SupSimCSE-RL 88.00 90.97 94.80 90.86 51.89 86.52 74.21 92.84 83.76
SupSimCSE-RL-last 4 88.84 91.99 95.85 91.36 53.15 88.35 79.72 93.39 85.33
SupSimCSE-RL-rand 86.39 91.67 95.45 91.47 54.56 88.48 72.65 92.97 84.21
SupSimCSE-RL-LC 89.24 92.20 96.29 92.01 55.39 90.19 79.82 93.49 86.08

SupSimCSE-RLM 87.78 92.10 94.72 90.51 52.43 83.85 74.39 92.60 83.55
SupSimCSE-RLM -last 4 88.72 93.16 95.91 91.11 54.20 86.79 77.86 93.29 85.13
SupSimCSE-RLM -rand 87.74 92.73 95.53 88.76 55.46 86.96 72.44 92.79 84.05
SupSimCSE-RLM -LC 89.09 93.44 96.41 91.43 56.10 88.06 78.97 93.44 85.87

(b) Supervised Models

Table 4: Transfer Task’s Results with more baselines. The same metric as in Table 1 is used (accuracy). last 4 is the
average of the last 4 layers, and rand is the random layers combination.

(a) STS16 (b) STSB (c) SICK

Figure 2: Effect of combining N Layers for BERT-Bcased and RoBERTa-B
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(a) STS16 (b) STSB (c) SICK

Figure 3: Effect of combining N Layers for SBERT-B and SRoBERTa

(a) STS16-BERT base cased (b) STS16-RoBERTa base (c) STS16-SBERT base

(d) STSB-BERT base cased (e) STSB-RoBERTa base (f) STSB-SBERT base

(g) SICK-BERT base cased (h) SICK-RoBERTa base (i) SICK-SBERT base

Figure 4: Effect of Excluding a Particular Layer

15431


