
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 15419–15431
December 6-10, 2023 ©2023 Association for Computational Linguistics

BERT Has More to Offer: BERT Layers Combination Yields Better
Sentence Embeddings

MohammadSaleh Hosseini*, Munawara Saiyara Munia†, Latifur Khan*

*Department of Computer Science
†Department of Electrical and Computer Engineering

The University of Texas at Dallas
{seyyedmohammadsaleh.hosseini, munawarasaiyara.munia,

lkhan}@utdallas.edu

Abstract

Obtaining sentence representations from BERT-
based models as feature extractors is invaluable
as it takes much less time to pre-compute a one-
time representation of the data and then use
it for the downstream tasks, rather than fine-
tune the whole BERT. Most previous works
acquire a sentence’s representation by passing
it to BERT and averaging its last layer. In this
paper, we propose that the combination of cer-
tain layers of a BERT-based model rested on
the data set and model can achieve substan-
tially better results. We empirically show the
effectiveness of our method for different BERT-
based models on different tasks and data sets.
Specifically, on seven standard semantic textual
similarity data sets, we outperform the baseline
BERT by improving the Spearman’s correlation
by up to 25.75% and on average 16.32% with-
out any further training. We also achieved state-
of-the-art results on eight transfer data sets by
reducing the relative error by up to 37.41% and
on average 17.92%. 1

1 Introduction

Learning sentence vector representations is a cru-
cial problem in natural language processing (NLP)
and has been widely studied in the literature (Con-
neau et al., 2017; Cer et al., 2018; Li et al., 2020).
Given a sentence, the goal is to acquire a vector
that semantically and/or syntactically represents it.
BERT (Devlin et al., 2019) has set new state-of-the-
art records on many NLP tasks (Madabushi et al.,
2020; Hu et al., 2022; Skorupa Parolin et al., 2022;
Wang and Kuo, 2020). However, this is achieved
by fine-tuning all of BERT’s layers. The disadvan-
tage of fine-tuning is that it is computationally ex-
pensive as even BERT-base has 110M parameters;
hence, pre-computing a representation of the data
and using it for the downstream task is much less
computationally expensive (Devlin et al., 2019).

1Our code is available at: https://github.com/
DiamondRock/BERT-Layers-Combination

Moreover, for sentence-pair tasks, BERT uses a
cross-encoder; nonetheless, this setup is inappropri-
ate for certain pair regression tasks, such as finding
the most similar sentence in a data set to a spe-
cific sentence due to the large number of possible
combinations (Reimers and Gurevych, 2019).

Considering the aforementioned drawbacks, re-
searchers have tried to derive fixed-sized sentence
embeddings from BERT or proposed new BERTs
with the exact same architecture but different ways
of training (Reimers and Gurevych, 2019; Li et al.,
2020). After training, the resultant BERT is used in
a feature-based manner by passing the sentence to
it and obtaining its embedding vector in different
ways, such as averaging the last layer of BERT.

In this paper, we present a simple, yet effective
and novel method called BERT-LC (BERT Layers
Combination). BERT-LC combines certain layers
of BERT in order to obtain the representation of a
sentence. As we will show, this model significantly
outperforms its correspondent BERT baseline with
no need of any further training. Our work was
inspired by Jawahar et al. (2019), who show that
different layers of BERT carry different features,
such as surface, syntactic, and semantic. We argue
that each data set with its unique distribution might
need a different set of features for its sentences,
which can only be fully exploited by combining
different layers of BERT in an unsupervised way.

Our contributions are as follows: (1) We pro-
pose a new method called BERT-LC that is capable
of acquiring superior results by combining certain
layers of BERT instead of just the last layer, in an
unsupervised manner. We also include the embed-
ding layer, which was to our knowledge ignored in
previous works. (2) We additionally show that our
method improves SBERT (Reimers and Gurevych,
2019) and SimCSE (Gao et al., 2021), which were
specifically designed for obtaining sentence repre-
sentations (opposite to BERT and RoBERTa (Liu
et al., 2019)). (3) We developed an algorithm that

15419

https://github.com/DiamondRock/BERT-Layers-Combination
https://github.com/DiamondRock/BERT-Layers-Combination

speeds up the process of finding the best layer com-
bination (among 213 layer combinations in base
cases) by a factor of 189 times. (4) We propose
an innovative method that integrates the layer com-
bination method with the CLS pooling head, im-
proving the performance metrics for certain models.
(5) We achieve state-of-the-art performance on the
transfer tasks using layer combination.

We demonstrate the superiority of our approach
through conducting extensive experiments on seven
standard semantic textual similarity (STS) data sets
and eight transfer tasks. On the STS data sets,
our method is able to outperform its corresponding
baseline by up to 25.75% and on average 16.32%
for BERT-large-uncased. We also achieve the state-
of-the-art performances on transfer tasks, reducing
the previous best model’s relative error rate by an
average of 17.92% and up to 37.41%.

2 Related Work

Learning sentence embeddings is a well-studied
realm in NLP. There are mainly two methods used
for this purpose: methods that use unlabeled data
or labeled data. Although the latter use labeled
data, the target data sets and tasks on which they
are tested are different from the training data set
and task. Early work on sentence embedding
utilized the distributional hypothesis by predict-
ing surrounding sentences of a sentence (Kiros
et al., 2015; Hill et al., 2016; Logeswaran and
Lee, 2018). Pagliardini et al. 2018 build on the
idea of word2vec (Mikolov et al., 2013) using n-
gram embeddings. Some researchers simply use
the average of BERT’s last layer embeddings as
the sentence embedding (Reimers and Gurevych,
2019). Recently, contrastive learning has proven to
be very powerful in many domains (Khorram et al.,
2022; Munia et al., 2021; Hu et al., 2021); thus,
some recent methods exploit contrastive learning
(Gao et al., 2021; Zhang et al., 2022; Yan et al.,
2021) and utilize the same sentence by looking at
it from multiple angles. For instance, the popular
method SimCSE leverages different outputs of the
same sentence from BERT’s standard dropout.

There are some previous works (Ethayarajh,
2019; Jawahar et al., 2019; Bommasani et al., 2020)
that investigate the impact of different BERT lay-
ers. However, they either investigate each layer
individually or are restricted to considering a set of
consecutive layers strictly starting from layer 1.

We apply our method to different variations of

BERT, RoBERTa, SBERT, and SimCSE. To the
best of our knowledge, no similar work has been
done that whether combines different and arbitrary
layers of these models or further integrates layer
combination and the CLS pooling head.

3 Approach

Given an input sentence S = (s1, s2, . . . , sN), the
goal of a sentence embedding model is to output a
vector ES ∈ IRd which carries the semantic and/or
syntactic information of the sentence. In order
to obtain a sentence embedding, we first pass the
sentence to a BERT-like model, which outputs the
tensor H ∈ IRL′×N×d, in which d is the dimension
of the token vectors in each layer, and L′ = L+1 is
the number of layers (including Layer 0) in BERT.
We then apply to this tensor a pooling function
p, which can be max or mean, but we choose
mean as it yielded better results in our experiments.
The pooling is done across all the tokens in all
the desired layers set, D. For example, for mean
pooling, p is defined as:

p(H,D) =
1

|D|
∑

l∈D

1

N

N∑

n=1

Hl,n,: (1)

where Hl,n,: ∈ IRd is the Transformer vector at
layer number l corresponding to the nth token.

Previous works usually set D to {L} or use CLS
pooler, the output of the MLP layer attached to the
last layer’s first token ([CLS]) to obtain the sen-
tence embedding. Using CLS pooler was shown
to underperform last layer averaging (Reimers and
Gurevych, 2019). Further, as we will empirically
show, choosing D = {L} leads to significant un-
derperformance as well; hence, in this work, we
iterate through all possible Ds (D ∈ P(A) − ∅,
where A = {0, . . . , L}), and choose the best-
performing D as our layers to pool from.

As iterating through all possible Ds is very time-
consuming, we propose an algorithm that speeds
up the process of finding the best layer combination
(213 layer combinations in base cases) by a factor
of 189 times, which can be found in Appendix A.

We further propose an extension to our method,
and that is exploiting the MLP head and layer
combination simultaneously. The idea is to pass
p(H,D) in Eq. 1 to the MLP head and use the out-
put of the MLP head as the new p. We spot that this
method works better than merely using the layer
combination on SimCSE. We conjecture that this is
because SimCSE’s MLP head was trained for learn-

15420

ing sentence embeddings as opposed to the other
methods, such as BERT, SBERT, and RoBERTa;
hence, it carries important information to be uti-
lized. Consequently, we use the two-step pipeline
of layer combination and MLP for SimCSE mod-
els, and we propose that the two-step pipeline is
utilized for any other BERT-based sentence embed-
ding model whose MLP head has been trained for
sentence embedding.

4 Experiments and Results

We carry out our experiments on two different tasks:
transfer and STS tasks. In this section, we discuss
the tranasfer tasks, while the STS tasks are dis-
cussed in Appendix B.

4.1 Data Sets and Evaluation Setup

For transfer tasks, we use eight data sets from
the popular SentEval toolkit (Conneau and Kiela,
2018), which is used for assessing the quality of
sentence embeddings: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST and SSTM
(binary and six-class Stanford Sentiment Tree-
banks)(Socher et al., 2013), TREC (Li and Roth,
2002), and MRPC (Dolan et al., 2004).

For each data set, we combine all of its data
subsets and randomly split them into training-
development (train-dev) and test data with ratios
85% and 15%. This outer cross-validation is done
randomly for 10 times, and the average accuracy
results on the test data are reported. We further
utilize a 10-fold inner cross-validation on train-dev
data set, with ratios 82% (train) and 18% (dev).

The sentence embeddings by our method or the
baselines are used as feature vectors for a logistic
regression classifier. Note that even though there
exists a training data set, it is only utilized by the
logistic regression classifier and not in our method.

4.2 Baselines and Hyper-parameters

We use the following baselines and apply our
layer combination method to them: BERT
base/large (un)cased (BERT-(B/L)(un)cased),
RoBERTA base/large (RoBERTa-B/L), SBERT
and SRoBERTa base/large (SBERT/SRoBERTa-
B/L), (un)supervised SimCSE BERT/RoBERTa
base/large ((Un)SupSimCSE-(B/R)(B/L)), and
SupSimCSE-RB/RLM , which are SimCSE
models trained with an additional MLM head.

For the base and large models, we consider layer

combinations with up to four and three layers, re-
spectively, as we did not spot much difference when
combining more layers.

For the logistic regression, we use SAGA (De-
fazio et al., 2014) as the optimizer, 0.01 as the
tolerance level, 200 as the maximum number of
iterations, and 10 as the regularization parameter.

4.3 Results and Discussion
The results for our proposed method and the base-
lines on transfer tasks are shown in Table 1. The
results are statistically significant (p-value < 0.01).
Note that our methods are denoted by an LC
at the end of them (e.g., RoBERTa-L-LC means
RoBERTa-L when layer combination is used).

Since all models have accuracies close to 100%
on most of the transfer data sets, we believe it is
more reasonable to see how much improvement
we are acquiring by considering the relative error
reduction. Relative error for a model and its base-
line with respective accuracies of AM and AMB is
defined as AM−AMB

1−AMB
. From Table 1, we observe

that our method significantly outperforms its corre-
sponding baselines for all the models on all the data
sets. For example, RoBERTa-B-LC, SBERT-L-
LC, and UnSupSimCSE-RL-LC improve on their
baselines by reducing the relative errors by up
to 36.19%, 45.93%, and 40.80% and on average
19.89%, 14.95%, and 27.31%, respectively.

Furthermore, we spot that our method is more
effective on unsupervised versions of SimCSE mod-
els. For instance, the relative error improvement
over UnSupSimCSE-RL is 27.31%, whereas it is
14.61% for SupSimCSE-RL. However, there is still
important information to be extracted from all the
layers of the supervised SimCSE models as well.

We see that even an unsupervised model such as
RoBERTa-L when upgraded with LC can achieve
84.58%, beating SupSimCSE-RL, a supervised
model which held the previous best average re-
sult (83.73%). RoBERTA-L-LC’s average accuracy
does not fall very short of the new state-of-the-art
model, SupSimCSE-RL-LC (84.68% vs. 85.89%).
Finally, we have improved the previous state-of-
the-art models on all of the transfer data sets by
reducing the relative (absolute) errors by up to
37.41% (3.67%) and on average 17.92% (1.90%),
respectively. We achieve a state-of-the-art average
accuracy of 86.36% on the transfer data sets. We
have provided more baselines, which can be found
in Appendix D.

15421

MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

BERT-Buncased-CLS 80.16 83.17 93.97 84.35 46.66 74.74 70.87 85.01 77.37
BERT-Buncased-last avg81.19 86.17 95.07 88.10 47.53 85.76 73.66 87.08 80.57
BERT-Buncased-LC 82.24 86.60 95.40 90.42 49.22 88.76 77.17 88.17 82.25

BERT-Bcased-CLS 77.88 83.07 92.33 85.29 45.19 69.97 70.64 83.45 75.98
BERT-Bcased-last avg 80.55 85.19 94.64 87.63 46.48 83.65 74.30 85.83 79.78
BERT-Bcased-LC 81.42 86.56 95.11 89.88 47.76 88.00 75.36 86.86 81.37

RoBERTa-B-last avg 82.58 84.69 94.55 85.83 50.26 81.90 72.51 87.28 79.95
RoBERTa-B-LC 85.89 90.23 95.68 89.24 52.39 86.92 74.85 89.65 83.11

UnSupSimCSE-BB 80.67 85.29 94.29 88.75 45.14 83.96 72.94 85.86 79.61
UnSupSimCSE-BB-LC 81.61 86.77 95.16 90.03 47.07 89.05 77.29 87.49 81.81

UnSupSimCSE-RB 80.85 85.36 92.40 86.70 47.25 76.13 72.74 85.67 78.39
UnSupSimCSE-RB-LC 84.00 88.99 94.69 88.84 50.50 86.02 77.59 88.33 82.37

BERT-Luncased-CLS 83.22 85.64 93.03 80.75 46.73 69.45 69.10 84.01 76.49
BERT-Luncased-last avg 83.88 88.29 95.52 86.51 49.88 83.81 71.49 88.48 80.98
BERT-Luncased-LC 85.21 89.88 96.08 90.17 51.06 88.89 76.57 89.96 83.48

BERT-Lcased-CLS 81.65 82.79 91.43 83.49 45.76 64.23 70.02 84.83 75.53
BERT-Lcased-last avg 84.28 88.68 94.95 88.03 49.23 84.10 72.62 88.75 81.33
BERT-Lcased-LC 85.34 90.19 95.41 90.50 50.92 88.62 77.17 90.00 83.52

RoBERTa-L-last avg 84.30 85.22 94.93 87.25 50.59 81.75 67.24 89.41 80.09
RoBERTa-L-LC 88.04 91.68 96.51 91.11 54.11 88.06 75.01 92.08 84.58

UnSupSimCSE-BL 84.85 88.15 95.09 89.13 48.84 83.63 74.09 89.02 81.60
UnSupSimCSE-BL-LC 84.85 89.84 95.77 90.62 50.93 89.07 77.10 90.04 83.53

UnSupSimCSE-RL 82.29 86.24 92.77 88.12 45.98 82.02 73.91 88.08 79.93
UnSupSimCSE-RL-LC 86.75 91.01 95.72 90.85 52.83 87.93 79.13 91.57 84.47

(a) Unsupervised Models

MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

SBERT-B 82.90 88.96 93.93 89.58 47.53 80.04 74.34 89.19 80.81
SBERT-B-LC 83.61 89.95 95.17 91.06 49.01 88.56 78.71 89.65 83.22

SRoBERTa-B 84.67 90.12 92.57 89.21 50.59 81.79 77.13 90.12 82.03
SRoBERTa-B-LC 85.76 91.75 94.80 90.51 53.65 87.95 78.92 90.78 84.26

SupSimCSE-BB 81.85 89.31 94.60 89.73 50.16 82.75 74.60 88.81 81.48
SupSimCSE-BB-LC 81.85 89.31 95.68 90.87 50.16 89.09 77.68 89.67 83.04

SupSimCSE-RB 84.29 91.50 93.12 90.19 52.69 81.12 76.14 90.14 82.40
SupSimCSE-RB-LC 86.00 92.38 95.21 90.89 54.00 87.97 78.76 90.97 84.52

SupSimCSE-RBM 84.56 91.89 93.29 89.49 52.28 81.88 76.23 90.13 82.47
SupSimCSE-RBM -LC86.11 92.38 95.81 90.63 54.10 88.40 78.14 91.00 84.57

SBERT-L 84.69 90.62 94.40 90.25 49.24 79.71 74.99 90.92 81.85
SBERT-L-LC 85.41 91.64 95.61 91.15 51.84 89.03 79.03 91.46 84.40

SRoBERTa-L 86.85 90.83 93.16 90.69 50.82 83.14 77.36 92.44 83.16
SRoBERTa-L-LC 87.95 92.49 95.35 92.06 54.23 88.51 79.56 92.94 85.39

SupSimCSE-BL 85.47 90.69 95.01 90.38 51.16 84.28 73.70 90.83 82.69
SupSimCSE-BL-LC 85.60 90.69 95.88 91.30 52.20 89.47 77.01 91.39 84.19

SupSimCSE-RL 88.00 90.69 94.80 90.86 51.89 86.52 74.21 92.84 83.73
SupSimCSE-RL-LC 89.24 90.69 96.29 92.01 55.39 90.19 79.82 93.49 85.89

SupSimCSE-RLM 87.78 92.10 94.72 90.51 52.43 83.85 74.39 92.60 83.55
SupSimCSE-RLM -LC 89.09 93.44 96.41 91.43 56.10 88.06 78.97 93.44 85.87

(b) Supervised Models

Table 1: Transfer task results for different sentence embedding models (measured as accuracy * 100)

Size Scale

A
cc

ur
ac

y

48

53

58

63

68

73

78

83

88

1/32 1/16 1/8 1/4 1/2 1

RB-last RB-LC BBC-last BBC-LC SRB

SRB-LC

(a) TREC

Size Scale

A
cc

ur
ac

y

47

52

57

62

67

72

77

82

87

92

97

1/2
56

1/1
92

1/1
28 1/9

6
1/6

4
1/3

2
1/1

6 1/8 1/4 1/2 1

RB-last RB-LC BBC-last BBC-LC SRB

SRB-LC

(b) SUBJ

Size Scale

A
cc

ur
ac

y

60

65

70

75

80

85

1/64 1/32 1/16 1/8 1/4 1/2 1

RB-last RB-LC BBC-last BBC-LC SRB

SRB-LC

(c) MR
Figure 1: Varying the size of the training data for transfer tasks.

5 Ablation Studies

While more ablation studies, such as the effect of
the number of layers in layer combination and the
effect of excluding a particular layer from layer
combination, can be found in Appendix E, in this
section, we discuss the performance of layer com-
bination in limited data settings. For this, we re-
duce the size of training data for MR, SUBJ, and
TREC, while keeping the test data untouched. Fig.
1 shows the results for RoBERTA-B (RB), BERT-
Bcased (BBC) and SRoBERTa-B (SRB) on these
data sets. We report the average results of 10 dif-
ferent seeds. As we can see, for all the models on
all the data sets, the more reduction in size is done,
the more the difference is between the LC version
and the last layer average. For instance, for RB on
SUBJ, on the original training data, the accuracies
for RB-LC and RB are 94.77% and 93.73%, re-
spectively, while when reducing the size to 1/256th,
the respective accuracies are 78.99% and 50.83%.
This suggests that it is even more beneficial to use
LC when one has small training data.

6 Conclusion and Future Work

In this paper, we proposed a new method called
BERT Layer Combination, a simple, yet effec-
tive framework, which when applied to various
BERT-based models, significantly improves them
for the downstream tasks of STS and transfer learn-
ing. Further, it achieves the state-of-the-art perfor-
mances on eight transfer tasks. Our method com-
bines certain layers of BERT-based models in an
unsupervised manner, which shows that different
layers of BERT hold important information which
was previously ignored. We demonstrated the effec-
tiveness of our approach by conducting comprehen-
sive experiments on various BERT-based models
and on a host of different tasks and data sets.

As future work, we would like to apply the tech-
nique of layer combination to other NLP tasks (e.g.,
punctuation insertion (Hosseini and Sameti, 2017)
and question answering (Qu et al., 2019)) and also
utilize it in other domains where deep learning mod-
els are used (e.g., biosignal analysis (Munia et al.,
2020, Munia et al., 2023) and image captioning

15422

(Huang et al., 2019)).

7 Limitation

One limitation of our work is that though we ap-
plied our layer combination technique to a raft of
different models, all of them are BERT based; ergo,
whether or not this technique works on other deep
learning NLP models remains unsettled. We leave
this experimentation as future work.

8 Acknowledgement

This research was supported in part by NSF awards
DMS-1737978, DGE-2039542, OAC-1828467,
OAC- 1931541, and DGE-1906630. The material
presented here is partially based on High Perfor-
mance Computing (HPC) resources supported by
the University of Arizona TRIF, UITS, and Re-
search, Innovation, and Impact (RII) and main-
tained by the UArizona Research Technologies de-
partment.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, Colorado. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. SemEval-2014 task 10: Multilingual semantic
textual similarity. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 81–91, Dublin, Ireland. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evaluation
(SemEval-2016), pages 497–511, San Diego, Califor-
nia. Association for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume

2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393, Montréal, Canada. Association for Computa-
tional Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Confer-
ence and the Shared Task: Semantic Textual Similar-
ity, pages 32–43, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020.
Interpreting Pretrained Contextualized Representa-
tions via Reductions to Static Embeddings. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4758–
4781, Online. Association for Computational Lin-
guistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
2014. Saga: A fast incremental gradient method with
support for non-strongly convex composite objec-
tives. In Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

15423

https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.18653/v1/2020.acl-main.431
https://doi.org/10.18653/v1/2020.acl-main.431
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://proceedings.neurips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In COL-
ING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, pages 350–
356, Geneva, Switzerland. COLING.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016. Learning distributed representations of sen-
tences from unlabelled data. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1367–1377, San
Diego, California. Association for Computational
Linguistics.

Seyyed MohammadSaleh Hosseini and Hossein Sameti.
2017. Creating a corpus for automatic punctuation
prediction in persian texts. In 2017 Iranian Confer-
ence on Electrical Engineering (ICEE), pages 1537–
1542.

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In Proceedings of the
Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04,
page 168–177, New York, NY, USA. Association for
Computing Machinery.

Xiang Hu, Teng Li, Tong Zhou, Yu Liu, and Yuanxi
Peng. 2021. Contrastive learning based on trans-
former for hyperspectral image classification. Ap-
plied Sciences, 11(18):8670.

Yibo Hu, MohammadSaleh Hosseini, Erick Sko-
rupa Parolin, Javier Osorio, Latifur Khan, Patrick
Brandt, and Vito D’Orazio. 2022. ConfliBERT: A
pre-trained language model for political conflict and
violence. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, pages 5469–5482, Seattle, United States.
Association for Computational Linguistics.

Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong
Wei. 2019. Attention on attention for image caption-
ing. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4634–4643.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Soheil Khorram, Jaeyoung Kim, Anshuman Tripathi,
Han Lu, Qian Zhang, and Hasim Sak. 2022. Con-
trastive siamese network for semi-supervised speech
recognition. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7207–7211. IEEE.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Skip-thought vectors. In Advances in
Neural Information Processing Systems, volume 28.
Curran Associates, Inc.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th International Con-
ference on Computational Linguistics - Volume 1,
COLING ’02, page 1–7, USA. Association for Com-
putational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence representa-
tions. CoRR, abs/1803.02893.

Harish Tayyar Madabushi, Elena Kochkina, and
Michael Castelle. 2020. Cost-sensitive bert for gener-
alisable sentence classification with imbalanced data.
arXiv preprint arXiv:2003.11563.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 216–223, Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

15424

https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/N16-1162
https://doi.org/10.18653/v1/N16-1162
https://doi.org/10.1109/IranianCEE.2017.7985288
https://doi.org/10.1109/IranianCEE.2017.7985288
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.18653/v1/2022.naacl-main.400
https://doi.org/10.18653/v1/2022.naacl-main.400
https://doi.org/10.18653/v1/2022.naacl-main.400
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.3115/1072228.1072378
https://doi.org/10.3115/1072228.1072378
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
http://arxiv.org/abs/1803.02893
http://arxiv.org/abs/1803.02893
http://arxiv.org/abs/1803.02893
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in Neural Information Processing Sys-
tems, volume 26. Curran Associates, Inc.

Munawara Saiyara Munia, Seyyed MohammadSaleh
Hosseini, Mehrdad Nourani, Jay Harvey, and Hina
Dave. 2021. Imbalanced EEG analysis using one-
shot learning with siamese neural network. IEEE.

Munawara Saiyara Munia, Mehrdad Nourani, Jay Har-
vey, and Hina Dave. 2023. Interictal epileptiform dis-
charge detection using multi-head deep convolutional
neural network. In 2023 45th Annual International
Conference of the IEEE Engineering in Medicine
Biology Society (EMBC).

Munawara Saiyara Munia, Mehrdad Nourani, and
Sammy Houari. 2020. Biosignal oversampling us-
ing wasserstein generative adversarial network. In
2020 IEEE International Conference on Healthcare
Informatics (ICHI), pages 1–7.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 528–540, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd Annual Meeting on Association for Com-
putational Linguistics, ACL ’04, page 271–es, USA.
Association for Computational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 115–124, Ann
Arbor, Michigan. Association for Computational Lin-
guistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine

learning in python. Journal of machine learning re-
search, 12(Oct):2825–2830.

Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft,
Yongfeng Zhang, and Mohit Iyyer. 2019. Bert with
history answer embedding for conversational ques-
tion answering. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR’19, page
1133–1136, New York, NY, USA. Association for
Computing Machinery.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Erick Skorupa Parolin, MohammadSaleh Hosseini,
Yibo Hu, Latifur Khan, Patrick T. Brandt, Javier
Osorio, and Vito D’Orazio. 2022. Multi-coped: A
multilingual multi-task approach for coding politi-
cal event data on conflict and mediation domain. In
Proceedings of the 2022 AAAI/ACM Conference on
AI, Ethics, and Society, AIES ’22, page 700–711,
New York, NY, USA. Association for Computing
Machinery.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Bin Wang and C-C Jay Kuo. 2020. Sbert-wk: A sen-
tence embedding method by dissecting bert-based
word models. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28:2146–2157.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language Resources and Evaluation,
39:165–210.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. ConSERT: A con-
trastive framework for self-supervised sentence repre-
sentation transfer. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5065–5075, Online. Association for
Computational Linguistics.

Yuhao Zhang, Hongji Zhu, Yongliang Wang, Nan Xu,
Xiaobo Li, and Binqiang Zhao. 2022. A contrastive
framework for learning sentence representations from
pairwise and triple-wise perspective in angular space.
In Proceedings of the 60th Annual Meeting of the

15425

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1109/ichi52183.2021.00015
https://doi.org/10.1109/ichi52183.2021.00015
https://doi.org/10.1109/ICHI48887.2020.9374315
https://doi.org/10.1109/ICHI48887.2020.9374315
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.18653/v1/N18-1049
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/3514094.3534178
https://doi.org/10.1145/3514094.3534178
https://doi.org/10.1145/3514094.3534178
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2022.acl-long.336
https://doi.org/10.18653/v1/2022.acl-long.336
https://doi.org/10.18653/v1/2022.acl-long.336

Association for Computational Linguistics (Volume
1: Long Papers), pages 4892–4903, Dublin, Ireland.
Association for Computational Linguistics.

A Optimized Algorithm for Finding the
Best Layer Combination

For a data set X = {(x1, y1), . . . , (x|X|, y|X|)}
where each sample consists of a list of sentences
xi = {S1

i , . . . , S
n
i } (n=2 for sentence-pair tasks

such as STS) and a label yi, the best-performing
layers set (D∗) is calculated by the following equa-
tion:
D∗

= argmax
D∈P+(A)

m
((
f1, . . . , f|X|

)
,
(
y1, . . . , y|X|

))

(2)
where m is the desired metric function, and fi is

(3)fi = f
(
p
(
H1

i , D
)
, . . . , p (Hn

i , D)
)

in which H i
j is the tensor of the ith sample’s jth

sentence, and f is a function, such as cosine simi-
larity.

Eq. 3 requires calculating p(H,D) for each
sentence in X and for every possible D, which
can be very time-consuming. In this subsection,
we discuss our proposed algorithm for efficiently
calculating all p(H,D)s in a step-by-step manner.
Each method improves over the previous one, with
Method 1 being the naive algorithm. The algo-
rithms discussed here utilize mean as the pooling
function, yet they can be easily modified to use
other functions such as max.
Method 1: For every D ∈ P+(A) = P(A) − ∅,
calculate p(H,D).
Method 2: For every D ∈ {{i}|0 ≤ i ≤ L}
calculate pl = p(H,D) = 1

N

∑N
n=1Hl,n,:. Then,

for every other D ∈ P+(A), calculate p(H,D) as
p(H,D) = 1

|D|
∑

l∈D pl.
Method 3: This method is explained in Al-
gos. 1 and 2 (maxOptim=False). The idea is
that for calculating every p(H,D), we can ex-
ploit other P (H,D′)s that we have calculated
before. For instance, p(H, {1, 3, 6, 8, 10}) =
3∗p(H,{1,3,6})+2∗p(H,{8,10})

5 . This method uses
bottom-up dynamic programming to store the pre-
vious p(H,D)s. powerset(A, i) in Algo. 1 is
equal to {D|D ∈ P(A) ∧ |D|= i}. mem is a
hash map with key-value pairs as (D, p(H,D)).
greedyPart(D,mem) returns an array of parti-
tions of D such that all partitions are present in
mem, and each partition has the highest length
possible. This is done in a greedy manner, by first

dividing D into two partitions, and then three par-
titions, and so on. If no such partitions exist, the
resultant array is empty.
Method 4: This method further improves over
Method 3 by avoiding certain multiplications (Algo.
2, maxOptim=True). For instance, if α =
p(H, {1, . . . , 4}) and β = p(H, {5, . . . , 8}), then
p(H, {1, . . . , 8}) can be calculated as α+β

2 instead
of α∗4+β∗4

8 , reducing two vector multiplications.
getPartLens(parts) in Algo. 2 returns a set of
the lengths of parts’ elements.

Algorithm 1: Layer Combination Iterator
input :Tensor H , Set A, Bool

maxOptim, Int maxMem
output :Set D, Array P

1 from Algo. 2 use pool
2 Function layerIterator(H , A,

maxOptim, maxMem):
3 mem = hashMap()
4 for i = 1 to A.length do
5 for D in powerset(A, i) do
6 P = pool(H , D, mem, maxMem)
7 yield D, P

To show the effectiveness of our algorithm, we
carried out an experiment. We randomly select
1000 samples from the SICK dataset and try to find
the best layer combination among all possible 8192
layer combinations, once with our algorithm and
once with the naive algorithm (Method 2). We do
this experimentation five times and report the av-
erage results. Our algorithm takes 5.65 seconds
to find the best layer combination after the ten-
sor of all layer and token vectors are obtained by
BERT-base-uncased, while Method 2 takes 1067
seconds. The one-time forward pass of BERT takes
10 seconds.

B STS Tasks’ Experiments and Results

B.1 Data Sets and Evaluation Setup
For STS tasks, we use the seven standard STS
data sets: STS2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017), and SICK Relatedness (Marelli et al.,
2014). These data sets consist of sentence pairs
and a similarity score from 1 to 5 assigned to each
one of them. For each data set, we first combine
all of its data subsets, shuffle it, and choose a small

15426

Algorithm 2: Layer Combination Pooler
input :Tensor H , Set D, HashMap mem,

Bool maxOptim, Int maxMem
output :Array P

1 Function pool(H , D, mem, maxOptim,
maxMem):

2 parts = greedyPart (D, mem)
3 if parts!= [] then
4 P = array(parts [0].length, 0) ;

// array(N, v) returns an array

of size N filled with vs

5 denom = D.length
6 if maxOptim then
7 lens = getPartLens(parts)
8 foreach len in lens do
9 curP = array(P .length, 0)

10 foreach part of size len in parts
do

11 curP += mem [part]

12 if lens.length > 1 then
13 curP *= len

14 else
15 denom = len

16 P += curP

17 else
18 foreach part in parts do
19 P += mem [part] * len

20 P /= denom

21 else
22 P = p(H,D)

23 if mem.length < maxMem then
24 mem [part] = P

25 return P

subset (the first 350 sentence pairs) as our devel-
opment data set and the rest as our test data set.
We do this splitting 5 times randomly and report
the average test performance. Please note that our
method does not require training data. Nonetheless,
we note that our method still needs a development
data set in order for it to be bootstrapped. However,
the required data set can be as small as 350 samples.
Furthermore, as opposed to the other models, this
data is not leveraged for fine-tuning, which is very
time-consuming.

We use the sentence embeddings obtained by

our method or the baselines to calculate the co-
sine similarity between two sentences and then use
Spearman’s correlation (ρ) for evaluating the mod-
els’ performances as suggested by (Reimers and
Gurevych, 2019).

B.2 Baselines and Hyper-parameters
We use the same baselines that we use for the trans-
fer tasks except for the MLM versions of the Sim-
CSE models as those were proposed in the SimCSE
paper to strengthen their models for the transfer
tasks.

For the base models with 13 layers, we iterate
through all the possible layer combinations for
choosing the best one, yet for the large models
with 25 layers, we only iterate through all the layer
combinations with up to eight layers since in our
experiments, we observed that combining more
than eight layers hurts the performance.

B.3 Results and Discussion
The results for STS tasks are shown in Table
2. From this table, we observe that our method
significantly outperforms its corresponding varia-
tions of BERT, RoBERTa, SBERT, and SRoBERTa
baselines on all the STS data sets. For instance,
for BERT-Luncased, RoBERTa-L, and SRoBERTa-
B, we obtain ρ improvements of up to 25.75%,
13.94%, and 3.95% and on average 16.32%, 9.52%,
and 2.75%, respectively, compared to their best
baselines (last avg). SimCSE-LC versions also out-
perform most of their baselines by a decent margin.
For example, UnSupSimCSE-BL-LC improves its
baseline’s ρ by up to 2.30% and on average 0.70%.
Finally, the best SimCSE (Sup-RL)’s performances
are also improved by up to 1.14%.

We can also see that our method is more effec-
tive on unsupervised models such as BERT and
RoBERTa, as we spot a higher improvement com-
pared with the supervised models such as SBERT
or SupSimCSE. This suggests that the unsuper-
vised models’ layers hold more important infor-
mation than the supervised models for STS tasks.
However, there is still crucial information to be ex-
ploited from all the layers of the supervised models
as well.

We also observe that we have higher improve-
ments for uncased BERT versions over their base-
line compared to the cased versions. Nonetheless,
after applying our method to either one, the final
ρs are within a 1.25% range of each other. This
suggests that a lot of BERTuncased’s information

15427

is carried in its layers, and when exploited, it can
perform more closely to BERTcased-LC.

C Computation Setup

To conduct the experiments discussed in this paper,
we used a computer with 128GB of RAM and one
Intel Core i9-9980XE CPU. Our code uses PyTorch
(Paszke et al., 2019), huggingface 2, and sci-kit
learn (Pedregosa et al., 2011).

D More Baselines

In this section, we compare the results of the
layer combination technique with more baselines
on both STS and transfer tasks. We use the
same baseline models as shown in Table 2, but
instead of only comparing with the last layer for
BERT/RoBERTa models and original SimCSE and
SBERT/SRoBERTa models (which use CLS pooler
and last layer average, respectively), we also com-
pare the results with these two new baselines: last
four layers average and random layers. The re-
sults are shown in Table 3 and Table 4. The results
show that our method performs better than the new
baselines as well.

E Ablation studies

E.1 Effect of the Number of Layers
In this subsection, we show the effect of combining
only N layers of a model, N varying from 1 to 13
for the base models. To this end, we show this ef-
fect on the data sets STS16, STSB, and SICK, and
for the models BERT-Bcased, RoBERTa-B, SBERT-
B, and SRoBERTa-B. From Figs. 2 and 3, we can
see that (1) For all the data sets and all the models
adding more layers shows an upward trend in per-
formance up to some peak point (e.g., N = 4 for
BERT-Bcased on STS16), and adding more layers
after that point shows a downward trend in perfor-
mance; however, this point is different for different
models and data sets, yet it is always at most 6.
(2) For BERT-Bcased, RoBERTa-B, and SBERT-B,
moving from one layer to two layers leads to a
huge increase in performances for all but one data
set-model pairs, yet combining more than two lay-
ers always leads to a further substantial increase in
performance. For instance, on STSB, an absolute ρ
improvement of 1.22% can be obtained when mov-
ing from two layers to six layers. We, nonetheless,

2https://huggingface.co/transformers/

do not see drastic changes for SRoBERTa-B when
moving from one layer to two layers.

E.2 Effect of Excluding a Particular Layer
from Layer Combination

In this section, we discuss how excluding one par-
ticular layer from layer combination affects the
performances. For this, we show the results for the
models BERT-Bcased, RoBERTa-B, and SBERT-B
on the data sets STS16, STSB, and SICK in Fig. 4.
We can mention these observations:

1. Most of the time, excluding layer 11 hurts the
performance, showing that this is an important
layer.

2. Excluding either of the layers 4, 5, or 6 does
not hurt the performance, suggesting that
these layers are not important for these models
and data sets.

3. Last layer (L12) is always important for
SBERT-B, is important for BERT-Bcased in
two cases (STS16 and STSB), and is only im-
portant for RoBERTa-B in one case (STSB).

4. Layer 0, which is the embedding layer, proves
to be important in more than half of the cases
here, showing that it carries important infor-
mation to be considered for STS tasks, and it
cannot be ignored.

5. Excluding any particular layer in any of the
nine model-data set pairs shown in Fig. 4,
leads to a maximum decrease of 0.97% (L12
for SBERT-B on STS16) in the performance.
However as shown in Table 2, in any of these
9 cases, we get at least an improvement of
1.86% by combining certain layers (consid-
ering all the layers). This suggests that layer
combination still outperforms the baselines
even if one (any) layer is not considered at all.

15428

https://huggingface.co/transformers/

Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

BERT-Buncased-CLS 7.23 28.44 12.48 15.79 28.21 5.36 29.83 18.19
BERT-Buncased-last 31.08 59.58 47.39 60.17 63.04 46.24 57.90 52.20
BERT-Buncased − LC 50.89 64.67 54.94 72.22 67.95 59.42 63.54 61.95

BERT-Bcased-CLS 14.16 22.51 16.41 24.11 27.52 12.69 39.22 22.37
BERT-Bcased-last 38.30 62.12 53.25 64.43 63.86 55.86 58.92 56.68
BERT-Bcased − LC 50.55 66.25 57.91 72.51 67.90 62.98 61.57 62.81

RoBERTa-B-last 32.18 56.27 45.05 61.11 60.81 55.13 62.10 53.24
RoBERTa-B-LC 45.58 60.83 51.20 69.23 64.68 60.17 64.00 59.38

BERT-Luncased-CLS 18.66 21.47 13.79 11.01 23.29 13.31 25.11 18.09
BERT-Luncased-last 27.76 55.11 44.37 51.59 61.10 46.52 53.56 48.57
BERT-Luncased − LC 53.51 68.19 58.45 74.43 71.03 63.97 64.64 64.89

BERT-Lcased-CLS 14.64 8.27 6.04 9.74 25.00 10.69 26.99 14.48
BERT-Lcased-last 45.77 63.81 54.41 68.87 64.53 58.25 63.24 59.84
BERT-Lcased − LC 53.87 70.23 61.04 75.66 70.70 66.16 65.22 66.13

RoBERTa-L-last 33.49 57.64 45.49 62.74 61.40 51.59 57.86 52.89
RoBERTa-L-LC 47.43 65.33 55.14 72.44 69.04 62.60 64.88 62.41

UnSupSimCSE-BL 69.21 83.93 75.58 83.86 78.98 77.89 73.47 77.56
UnSupSimCSE-BL-LC 69.21 84.82 75.88 84.41 79.85 80.19 73.47 78.26

UnSupSimCSE-RL 72.11 83.41 74.96 84.03 80.79 81.74 70.82 78.27
UnSupSimCSE-RL-LC 72.11 83.66 75.03 84.37 80.68 82.06 72.53 78.63

(a) Unsupervised Models. CLS: CLS pooler, last: last layer’s average.

Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

SBERT-B 70.78 76.69 73.13 79.08 74.20 76.66 72.75 74.76
SBERT-B-LC 72.02 79.18 74.50 82.63 76.42 78.52 76.51 77.11

SRoBERTa-B 70.82 73.06 70.61 78.34 74.17 76.65 74.31 73.99
SRoBERTa-B-LC 72.94 76.14 72.83 82.29 77.13 78.99 76.90 76.75

SBERT-L 72.15 78.49 74.91 80.93 76.72 78.82 73.63 76.52
SBERT-L-LC 72.79 81.39 76.75 84.14 79.15 80.43 77.22 78.84

SRoBERTa-L 74.06 77.04 73.07 81.59 76.69 78.24 74.08 76.40
SRoBERTa-L-LC 74.96 80.25 75.54 84.71 79.52 80.78 77.72 79.07

SupSimCSE-BL 75.51 86.56 80.22 86.09 81.64 84.86 80.93 82.26
SupSimCSE-BL-LC 75.51 86.56 80.22 86.09 82.42 84.86 80.93 82.37

SupSimCSE-RL 77.35 87.36 82.18 86.59 83.92 86.58 81.72 83.67
SupSimCSE-RL-LC 77.35 87.82 82.18 87.12 85.05 86.60 81.72 83.98

(b) Supervised Models

Table 2: Spearman’s rank correlation ρ * 100 between the cosine similarity of sentence representations and the gold
labels for different STS tasks. The highest numbers among models with the same encoder are boldfaced.

Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

BERT-Buncased-last 31.08 59.58 47.39 60.17 63.04 46.24 57.90 52.20
BERT-Buncased-last 4 36.44 59.08 49.24 64.83 62.01 47.02 58.36 53.85
BERT-Buncased-rand 45.23 61.48 51.89 69.54 61.76 56.73 62.17 58.40
BERT-Buncased-LC 50.89 64.67 54.94 72.22 67.95 59.42 63.54 61.95

BERT-Bcased-last 38.30 62.12 53.25 64.43 63.86 55.86 58.92 56.68
BERT-Bcased-last 4 38.20 60.32 51.75 65.95 62.29 54.11 59.37 56.00
BERT-Bcased-rand 45.52 62.42 55.90 71.27 65.62 57.89 60.34 59.85
BERT-Bcased-LC 50.55 66.25 57.91 72.51 67.90 62.98 61.57 62.81

RoBERTa-B-last 32.18 56.27 45.05 61.11 60.81 55.13 62.10 53.24
RoBERTa-B-last 4 35.63 56.30 46.31 64.03 63.33 55.35 62.09 54.72
RoBERTa-B-rand 43.75 58.88 47.54 68.56 63.81 58.69 62.51 57.68
RoBERTa-B-LC 45.58 60.83 51.20 69.23 64.68 60.17 64.00 59.38

BERT-Luncased-last 27.76 55.11 44.37 51.59 61.10 46.52 53.56 48.57
BERT-Luncased-last 4 34.91 58.09 49.01 59.16 61.30 48.95 54.56 52.28
BERT-Luncased-rand 45.09 62.32 53.19 71.18 67.35 60.51 62.02 60.24
BERT-Luncased-LC 53.51 68.19 58.45 74.43 71.03 63.97 64.64 64.89

BERT-Lcased-last 45.77 63.81 54.41 68.87 64.53 58.25 63.24 59.84
BERT-Lcased-last 4 43.52 61.48 52.87 68.32 63.78 54.70 63.15 58.26
BERT-Lcased-rand 52.30 65.77 52.46 72.25 68.80 62.70 62.92 62.46
BERT-Lcased-LC 53.87 70.23 61.04 75.66 70.70 66.16 65.22 66.13

RoBERTa-L-last 33.49 57.64 45.49 62.74 61.40 51.59 57.86 52.89
RoBERTa-L-last 4 34.28 59.01 47.27 64.86 66.23 57.98 62.24 55.98
RoBERTa-L-rand 44.52 61.20 52.47 70.37 68.14 61.47 63.85 60.29
RoBERTa-L-LC 47.43 65.33 55.14 72.44 69.04 62.60 64.88 62.41

UnSupSimCSE-BL 69.21 83.93 75.58 83.86 78.98 77.89 73.47 77.56
UnSupSimCSE-BL-last 4 64.83 83.43 74.94 83.79 78.16 78.14 72.61 76.56
UnSupSimCSE-BL-rand 52.67 64.63 56.26 75.56 66.91 69.87 66.78 64.67
UnSupSimCSE-BL-LC 69.21 84.82 75.88 84.41 79.85 80.19 73.47 78.26

UnSupSimCSE-RL 72.11 83.41 74.96 84.03 80.79 81.74 70.82 78.27
UnSupSimCSE-RL-last 4 69.44 83.28 74.89 83.95 80.21 82.00 71.55 77.90
UnSupSimCSE-RL-rand 59.92 79.44 67.06 81.83 75.26 59.52 67.31 70.05
UnSupSimCSE-RL-LC 72.11 83.66 75.03 84.37 80.68 82.06 72.53 78.63

(a) Unsupervised Models. last: last layer’s average.

Model STS12 STS13 STS14 STS15 STS16 STSB SICK Avg.

SBERT-B 70.78 76.69 73.13 79.08 74.20 76.66 72.75 74.76
SBERT-B-last 4 69.86 77.50 73.14 78.97 74.27 77.25 72.38 74.77
SBERT-B-rand 66.91 72.83 66.02 70.65 72.92 70.47 67.60 69.63
SBERT-B-LC 72.02 79.18 74.50 82.63 76.42 78.52 76.51 77.11

SRoBERTa-B 70.82 73.06 70.61 78.34 74.17 76.65 74.31 73.99
SRoBERTa-B-last 4 71.31 74.64 71.76 77.61 73.88 76.92 74.16 74.33
SRoBERTa-B-rand 59.44 74.73 71.22 78.89 65.09 67.33 75.33 70.29
SRoBERTa-B-LC 72.94 76.14 72.83 82.29 77.13 78.99 76.90 76.75

SBERT-L 72.15 78.49 74.91 80.93 76.72 78.82 73.63 76.52
SBERT-L-last 4 70.03 78.40 74.82 80.05 73.97 77.98 72.54 75.40
SBERT-L-rand 63.69 74.69 61.10 83.55 71.49 76.06 73.70 72.04
SBERT-L-LC 72.79 81.39 76.75 84.14 79.15 80.43 77.22 78.84

SRoBERTa-L 74.06 77.04 73.07 81.59 76.69 78.24 74.08 76.40
SRoBERTa-L-last 4 71.52 77.67 73.35 79.28 75.73 77.98 72.85 75.48
SRoBERTa-L-rand 54.05 62.17 66.58 75.98 68.35 79.03 76.83 69.00
SRoBERTa-L-LC 74.96 80.25 75.54 84.71 79.52 80.78 77.72 79.07

SupSimCSE-BL 75.51 86.56 80.22 86.09 81.64 84.86 80.93 82.26
SupSimCSE-BL-last 4 71.16 85.17 77.17 85.19 80.80 83.14 80.18 80.40
SupSimCSE-BL-rand 52.84 71.87 65.08 76.55 69.46 64.42 68.65 66.98
SupSimCSE-BL-LC 75.51 86.56 80.22 86.09 82.42 84.86 80.93 82.37

SupSimCSE-RL 77.35 87.36 82.18 86.59 83.92 86.58 81.72 83.67
SupSimCSE-RL-last 4 75.64 87.58 81.41 85.92 83.73 86.20 80.54 83.00
SupSimCSE-RL-rand 70.06 85.95 56.54 83.06 82.04 80.93 69.46 75.43
SupSimCSE-RL-LC 77.35 87.82 82.18 87.12 85.05 86.60 81.72 83.98

(b) Supervised Models

Table 3: STS Task’s Results with more baselines. The same metric as in Table 2 is used (ρ * 100). last 4 is the
average of the last 4 layers, and rand is the random layers combination.

15429

Model MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

BERT-Buncased-last 81.19 86.77 95.08 87.97 47.48 85.76 73.66 87.20 80.64
BERT-Buncased-last 4 82.05 86.74 95.45 88.85 48.38 87.61 75.72 87.88 81.59
BERT-Buncased-rand 80.89 84.69 94.46 88.8 47.09 85.39 76.49 85.74 80.44
BERT-Buncased-LC 82.24 87.20 95.45 90.12 49.01 88.76 77.08 88.22 82.26

BERT-Bcased-last 80.55 85.19 94.64 87.82 45.69 83.65 74.30 85.83 79.71
BERT-Bcased-last 4 81.38 86.17 94.89 88.55 46.75 87.10 73.95 86.45 80.66
BERT-Bcased-rand 79.41 84.12 94.06 89.10 45.38 86.11 73.57 85.65 79.68
BERT-Bcased-LC 81.42 86.98 95.11 90.08 46.99 88.00 75.45 86.88 81.36

RoBERTa-B-last 82.58 84.69 94.55 85.28 50.10 81.90 72.51 87.28 79.86
RoBERTa-B-last 4 85.01 88.04 95.44 87.53 51.30 85.85 71.93 88.83 81.74
RoBERTa-B-rand 84.41 87.15 94.78 87.56 50.08 85.08 72.12 88.31 81.19
RoBERTa-B-LC 85.89 90.23 95.65 88.66 52.48 86.92 74.85 89.65 83.04

UnSupSimCSE-BB 80.67 85.29 94.29 88.75 46.13 83.96 72.55 85.86 79.69
UnSupSimCSE-BB-last 481.64 85.93 95.01 89.52 47.95 87.73 76.97 87.38 81.52
UnSupSimCSE-BB-rand 76.46 84.47 94.05 89.52 46.78 86.62 73.75 86.52 79.77
UnSupSimCSE-BB-LC 81.61 86.77 95.23 90.12 48.25 89.05 77.36 87.55 81.99

UnSupSimCSE-RB 80.85 85.36 92.40 86.70 47.25 76.13 72.90 85.67 78.41
UnSupSimCSE-RB-last 483.09 87.8 94.49 88.15 49.48 84.01 77.86 87.27 81.52
UnSupSimCSE-RB-rand 82.05 86.70 93.98 88.26 49.64 83.73 75.94 87.28 80.95
UnSupSimCSE-RB-LC 84.00 88.99 94.72 88.67 50.52 86.02 78.07 88.33 82.41

BERT-Luncased-last 83.88 88.29 95.52 86.51 49.88 83.81 71.49 88.48 80.98
BERT-Luncased-last 4 84.90 89.91 95.95 87.23 49.83 86.72 73.15 89.16 82.11
BERT-Luncased-rand 83.29 88.04 95.05 89.38 49.54 86.62 75.68 89.03 82.08
BERT-Luncased-LC 85.21 89.88 96.08 90.17 51.06 88.89 76.57 89.96 83.48

BERT-Lcased-last 84.28 88.68 94.95 88.03 49.23 84.10 72.62 88.75 81.33
BERT-Lcased-last 4 85.14 89.17 95.28 89.13 50.59 86.52 74.67 89.43 82.49
BERT-Lcased-rand 82.62 87.58 94.58 89.86 49.27 86.02 76.10 88.79 81.85
BERT-Lcased-LC 85.34 90.19 95.41 90.50 50.92 88.62 77.17 90.00 83.52

RoBERTa-L-last 84.30 85.22 94.93 87.25 50.59 81.75 67.24 89.41 80.09
RoBERTa-L-last 4 86.03 88.61 95.85 89.52 51.91 86.52 69.49 90.74 82.33
RoBERTa-L-rand 82.85 89.34 95.51 90.27 52.88 86.78 70.33 90.95 82.36
RoBERTa-L-LC 88.04 91.68 96.51 91.11 54.11 88.06 75.01 92.08 84.58

UnSupSimCSE-BL 84.85 88.15 95.09 89.13 48.84 83.63 74.09 89.02 81.60
UnSupSimCSE-BL-last 4 83.91 89.38 95.60 90.14 48.87 86.79 75.49 89.70 82.48
UnSupSimCSE-BL-rand 82.90 86.87 94.90 90.30 49.28 86.31 75.78 88.51 81.86
UnSupSimCSE-BL-LC 84.85 89.84 95.77 90.62 50.93 89.07 77.10 90.04 83.53

UnSupSimCSE-RL 82.29 86.24 92.77 88.12 45.98 82.02 73.91 88.08 79.93
UnSupSimCSE-RL-last 4 84.81 89.45 94.61 88.94 48.97 86.47 78.97 89.98 82.78
UnSupSimCSE-RL-rand 84.64 89.48 91.58 89.91 51.46 87.00 74.19 90.29 82.32
UnSupSimCSE-RL-LC 86.75 91.01 95.72 90.85 52.83 87.93 79.13 91.57 84.47

(a) Unsupervised Models. last: last layer’s average.

Model MR CR SUBJ MPQA SSTM TREC MRPC SST Avg.

SBERT-B 82.90 89.21 93.93 89.79 48.14 80.04 74.30 89.19 80.94
SBERT-B-last 4 83.56 89.74 95.04 90.17 49.49 85.17 77.91 89.54 82.58
SBERT-B-rand 82.70 89.20 94.47 89.52 49.12 85.91 77.61 88.92 82.18
SBERT-B-LC 83.61 90.05 95.13 91.02 49.48 88.56 78.60 89.68 83.27

SRoBERTa-B 84.67 90.12 92.57 89.3 50.64 81.79 77.43 90.12 82.08
SRoBERTa-B-last 4 85.81 90.97 93.53 89.87 53.13 85.31 78.64 90.54 83.47
SRoBERTa-B-rand 85.05 90.47 94.09 89.91 52.33 84.61 74.56 90.15 82.65
SRoBERTa-B-LC 85.76 91.71 94.89 90.62 53.69 87.95 78.92 90.78 84.29

SupSimCSE-BB 81.85 89.56 94.60 89.92 50.16 82.75 74.60 88.81 81.53
SupSimCSE-BB-last 4 82.67 89.14 95.48 90.74 49.78 87.61 77.33 89.50 82.78
SupSimCSE-BB-rand 76.70 87.26 94.31 90.29 48.91 88.08 76.95 88.09 81.32
SupSimCSE-BB-LC 81.85 89.56 95.68 90.77 50.16 89.09 77.52 89.71 83.04

SupSimCSE-RB 84.29 91.11 93.12 90.19 52.69 81.12 76.14 90.18 82.36
SupSimCSE-RB-last 4 85.64 92.10 95.00 90.76 53.58 87.35 76.60 90.86 83.99
SupSimCSE-RB-rand 84.44 90.61 94.07 90.40 53.01 85.14 72.49 90.32 82.56
SupSimCSE-RB-LC 86.00 92.13 95.21 90.87 53.48 87.97 78.76 91.02 84.43

SupSimCSE-RBM 84.56 91.89 93.29 89.52 52.47 81.88 76.23 90.13 82.50
SupSimCSE-RBM -last 485.79 92.56 95.60 90.43 53.65 87.82 74.39 90.91 83.89
SupSimCSE-RBM -rand 84.91 90.72 94.49 89.88 53.23 87.90 72.79 89.87 82.97
SupSimCSE-RBM -LC 86.11 92.45 95.81 90.62 54.15 88.40 78.14 91.00 84.59

SBERT-L 84.69 90.62 94.40 90.25 49.24 79.71 74.99 90.92 81.85
SBERT-L-last 4 85.12 91.04 95.20 90.46 51.06 84.52 78.00 91.33 83.34
SBERT-L-rand 84.31 91.14 94.50 90.59 49.92 85.12 78.53 86.19 82.54
SBERT-L-LC 85.41 91.64 95.61 91.15 51.84 89.03 79.03 91.46 84.40

SRoBERTa-L 86.85 90.83 93.16 90.69 50.82 83.14 77.36 92.44 83.16
SRoBERTa-L-last 4 87.80 91.50 94.21 91.06 52.02 84.66 77.89 92.58 83.97
SRoBERTa-L-rand 85.81 84.19 94.23 91.34 52.50 86.44 77.55 92.12 83.02
SRoBERTa-L-LC 87.95 92.49 95.35 92.06 54.23 88.51 79.56 92.94 85.39

SupSimCSE-BL 85.47 90.69 95.01 90.38 51.16 84.28 73.70 90.83 82.69
SupSimCSE-BL-last 4 84.84 90.26 95.56 90.76 51.38 86.63 75.68 91.08 83.27
SupSimCSE-BL-rand 83.64 89.66 94.69 90.73 50.88 86.94 74.70 90.52 82.72
SupSimCSE-BL-LC 85.60 90.69 95.88 91.30 52.20 89.47 77.01 91.39 84.19

SupSimCSE-RL 88.00 90.97 94.80 90.86 51.89 86.52 74.21 92.84 83.76
SupSimCSE-RL-last 4 88.84 91.99 95.85 91.36 53.15 88.35 79.72 93.39 85.33
SupSimCSE-RL-rand 86.39 91.67 95.45 91.47 54.56 88.48 72.65 92.97 84.21
SupSimCSE-RL-LC 89.24 92.20 96.29 92.01 55.39 90.19 79.82 93.49 86.08

SupSimCSE-RLM 87.78 92.10 94.72 90.51 52.43 83.85 74.39 92.60 83.55
SupSimCSE-RLM -last 4 88.72 93.16 95.91 91.11 54.20 86.79 77.86 93.29 85.13
SupSimCSE-RLM -rand 87.74 92.73 95.53 88.76 55.46 86.96 72.44 92.79 84.05
SupSimCSE-RLM -LC 89.09 93.44 96.41 91.43 56.10 88.06 78.97 93.44 85.87

(b) Supervised Models

Table 4: Transfer Task’s Results with more baselines. The same metric as in Table 1 is used (accuracy). last 4 is the
average of the last 4 layers, and rand is the random layers combination.

(a) STS16 (b) STSB (c) SICK

Figure 2: Effect of combining N Layers for BERT-Bcased and RoBERTa-B

15430

(a) STS16 (b) STSB (c) SICK

Figure 3: Effect of combining N Layers for SBERT-B and SRoBERTa

(a) STS16-BERT base cased (b) STS16-RoBERTa base (c) STS16-SBERT base

(d) STSB-BERT base cased (e) STSB-RoBERTa base (f) STSB-SBERT base

(g) SICK-BERT base cased (h) SICK-RoBERTa base (i) SICK-SBERT base

Figure 4: Effect of Excluding a Particular Layer

15431

