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Abstract
Multilingual understanding models (or encoder-
based), pre-trained via masked language mod-
eling, have achieved promising results on many
language understanding tasks (e.g., mBERT).
However, these models are not capable of
generating high-quality text compared with
decoder-based causal language models. Can we
transform a pre-trained language understand-
ing model into an effective language genera-
tion model? We propose a Semantic-Guided
Alignment-then-Denoising (SGA) approach to
adapt a multilingual encoder to a multilingual
generator with a small number of additional
parameters. Experiments show that the pro-
posed approach is an effective adaption method,
outperforming widely-used initialization-based
methods with gains of 9.4 BLEU on machine
translation, 8.1 Rouge-L on question genera-
tion, and 5.5 METEOR on story generation on
XLM-Rlarge. On the other hand, we observe
that XLM-R is still inferior to mBART in super-
vised settings despite better results on zero-shot
settings, indicating that more exploration is re-
quired to make understanding models strong
generators. Our code is available at https:
//github.com/chengzhipanpan/XLMR4MT.

1 Introduction

Multilingual encoder-based models (e.g., mBERT
(Pires et al., 2019), XLM-R (Conneau et al., 2020)),
pre-trained via masked language modeling, have
demonstrated strong performance on a wide range
of understanding tasks (Conneau et al., 2018; Liang
et al., 2020; Hu et al., 2020). Existing multi-
lingual pre-trained models can be classified into
two settings: autoregressive models (Liu et al.,
2020; Xue et al., 2021; Scao et al., 2022) and non-
autoregressive models (Pires et al., 2019; Conneau
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Figure 1: An overview of semantic-guided generation
using pre-trained understanding models. The encoding
step is responsible for mapping the source input into
a shared space that supervises the following genera-
tion. By taking the source input and a blank sentence
(white noise) as input, the alignment stage generates
target tokens simultaneously. Then, we feed the source
representations and the generated sequence into the de-
noising stage for NAR denoising. The denoising step
is performed iteratively until the generated text keeps
unchanged or reaches the maximum loop.

et al., 2020; Ouyang et al., 2021). Typically, the
AR framework, where a target sequence is gener-
ated from left to right, succeeds in multilingual
generation tasks (Chen et al., 2022; Qi et al., 2018).
As a comparison, encoder-based models are NAR
models that are usually limited to understanding
tasks (Conneau et al., 2018). Despite superior un-
derstanding results over AR models, these NAR
models still struggle to handle a wide range of mul-
tilingual generation tasks. However, NAR models
still have obvious advantages in generation effi-
ciency and decoding flexibility (Gu et al., 2018;
Qian et al., 2021; Huang et al., 2021; Ghazvinine-
jad et al., 2019; Saharia et al., 2020), which enables
generating multiple tokens at one time in arbitrary
order. Considering these strengths, this paper aims
to explore methods to make multilingual encoder-
based models better generators with a small number
of new parameters.

There is limited research focusing on empow-
ering understanding models with the generation
ability. Traditional methods usually use pre-trained
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encoders as initializers for AR models in various
monolingual generation tasks (Su et al., 2021). De-
spite promising results, it does not satisfy our tar-
get that fixes pre-trained parameters to build a
unified model for any language tasks. More re-
cently, researchers have focused on learning-free
approaches (Wang and Cho, 2019; Kumar et al.,
2022b; Qin et al., 2022). One typical approach
is iteratively choosing tokens to mask and sam-
pling proposals using energy models (Mireshghal-
lah et al., 2022), resulting in surprising high latency.
Furthermore, these learning-free methods are usu-
ally limited to controllable generation and are still
inferior in handling complicated tasks like ma-
chine translation. Unlike these monolingual stud-
ies, adapting multilingual understanding models
to multilingual generation has its own challenges:
semantic constraints under conditional generation
where the generation process should follow the
semantic constraints given source texts in any lan-
guage, and parameter efficiency constraints where
a single model can serve text generation in any
language.

We propose a semantic-guided approach to ad-
dress these challenges, with a two-stage generation
process: alignment-then-denoising. The two stages
share the same pre-trained parameters and only
add a small number of new prompt parameters for
adaptation. Given that masked language model-
ing (MLM) is also a denoising objective, existing
multilingual pre-trained models can be naturally
adapted to good denoisers. Therefore, we intro-
duce a denoising stage into our framework. The
whole generation process is shown in Figure 1. The
encoding part maps the source input into a shared
space that supervises the following generation. By
taking the source input and a blank sentence as
input, the alignment stage generates target tokens
simultaneously. We feed the source representa-
tions and the generated sequence into the denoising
module for NAR denoising. The denoising step is
performed iteratively until the generated text keeps
unchanged or the maximum loop is reached.

Experiments demonstrate that our model has
achieved better results on various generation tasks
than traditional fine-tuning-based approaches that
directly use NAR pre-trained models as initializa-
tion, with gains of 9.4 BLEU on machine trans-
lation, 8.1 Rouge-L on question generation, and
5.5 METEOR on story generation on XLM-Rlarge.
More promisingly, our method has achieved im-

pressive zero-shot cross-lingual ability in transla-
tion tasks, outperforming a multilingual AR adap-
tation model, mGPT + MSP by a large margin.
On the other hand, we also notice the gap be-
tween XLM-R and AR models. Generally, XLM-
R with fine-tuning is largely inferior to mBART
fine-tuning. With our methods, the gap is largely
reduced but still exists. In future work, we would
like to explore pre-training methods to make multi-
lingual understanding models better generators.

Our contributions can be summarized as follows:

• We propose an efficient adaptation method
to make multilingual understanding models
better generators in a parameter-efficient way.

• We present a semantic-guided denoiser, which
can efficiently improve the generation quality.

• Experiments show that our proposed method
outperforms traditional initialization-based
adaptation methods by a large margin.

2 Related Work

In this section, we review the related studies in-
cluding parameter-efficient adaptation, adapting en-
coder models as generators, and non-autoregressive
generation.

Parameter efficient adaptation Pre-trained lan-
guage models (PLMs) (Devlin et al., 2019; Liu
et al., 2019; Clark et al., 2020; Conneau et al., 2020)
have achieved overwhelming performance in a vari-
ety of downstream tasks. Parameter-efficient tuning
is a hot research direction to adapt PLMs to down-
stream tasks with only training on a few parameters.
Adapter-based methods (Bapna and Firat, 2019) are
one of the popular parameter-efficient approaches.
Recent studies (Üstün et al., 2021; Cooper Stick-
land et al., 2021) proposed to use adapters on the
top of an mBART (Liu et al., 2020) model, enabling
a flexible and well-performed method for plug-and-
play translation. More recently, prefix tuning and
other prompt-based methods (Li and Liang, 2021;
Lester et al., 2021; Liu et al., 2022; Tan et al., 2022)
have proved to be extremely helpful, and can easily
support mixed-task inference as it does not require
changing the architecture of PLMs. In this work,
we follow this research thread for efficient adap-
tation and apply prompt-based approaches in our
work.
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Figure 2: An overview of the generation units. All units share the same pre-trained parameters and individual
prompt parameters (shown in blue square, purple square, and brown square). The encoder maps the source input
into a sequence of hidden representations (yellow), which are then fed into a decoder and a denoiser for target
generation. The alignment unit is responsible for generating a piece of target text. The denoiser is responsible for
refining the generated text.

Adapting encoder-based models for generation
Previous works proposed to use pre-trained un-
derstanding models to initialize encoder-decoder
models (Chen et al., 2021; Ma et al., 2021) or use
the contextualized embeddings produced by under-
standing models as more aligned inputs for gener-
ation (Xu et al., 2021a). With the trend of scaling
up models in recent years, it gradually becomes
impossible to fine-tune the whole language model
in each language direction. In addition, there have
been several learning-free methods that adopt en-
coder models as energy scorers for controllable
text generation (Mireshghallah et al., 2022; Kumar
et al., 2022a). Although these methods do not need
to fine-tune the pre-trained model, they require
multi-steps of sampling and refinement, resulting
in surprising inference latency.

Non-autoregressive generation Our work aims
at adapting multilingual encoders to multilingual
generators, instead of developing a NAR archi-
tecture like previous NAR literature does. There-
fore, there is a lot of difference between our work
with previous NAR studies. Despite different
motivations, our implementation also uses sev-
eral NAR techniques, like CTC (Graves et al.,
2006; Libovický and Helcl, 2018) and Mask-
Predict (Ghazvininejad et al., 2019). For clarifi-
cation, we also review the thread of NAR gener-
ation. Single-step NAR generation is a popular
research direction that generates text at one time.
To mitigate the gap between single-step NAR meth-
ods and AR methods, researchers have proposed
alignment-based methods (Libovický and Helcl,
2018; Ghazvininejad et al., 2020; Du et al., 2021)
or glancing-based methods (Qian et al., 2021). As
a compromise, iterative NAR methods can provide

both comparable performance and better latency
with AR baselines (Lee et al., 2018; Ghazvininejad
et al., 2019; Huang et al., 2021; Saharia et al., 2020).
For example, SUNDAE (Savinov et al., 2021) pro-
posed step-unrolled denoising, and achieved good
performance in both machine translation and text
infilling. Similar iterative idea has been adopted at
recent diffusion models (Li et al., 2022; Gong et al.,
2022). In this work, we adopt an iterative decoding
idea to take advantage of the denoising abilities of
encoder-based models which are pre-trained with
denoising objectives.

3 Notation and Background

Prompt tuning For efficient adaption, we fol-
low mGPT+MSP (Tan et al., 2022) and use prompt
tuning to adapt an existing pre-trained NAR pre-
trained multilingual understanding models to gen-
erators. Formally, we denote K l and V l as the
key-value pairs in the l-th Transformer layer. The
introduced prompt-tuning parameters are (K,V )
pairs, which will be concatenated with current key-
value pairs during training and inference. In prompt
tuning, we denote the forward pass of a pre-trained
LM as fLM (θp, X), which accepts two inputs in-
cluding prompt parameters θp and the source se-
quence X .

4 SGA Approach

4.1 Overview

Based on a fixed multilingual understanding model,
Figure 2 presents the overview of our proposed
SGA, which contains three stages, including seman-
tic encoding, alignment and then denoising. Sec-
tion 4.2 presents the semantic encoding unit, which
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maps sentences in all languages to a unified space.
Section 4.3 presents the alignment unit, which gen-
erates a target sentence. Section 4.3 presents the
denoising unit, which refines the generated sen-
tences under the guidance of semantics.

4.2 Semantic Encoding

Suppose a pre-trained multilingual language model
with L layers. we define prompt parameters θps =
(K1:L

s , V 1:L
s ) for all layers. These parameters are

then concatenated with the key-value pairs of at-
tention in each layer to extract the hidden represen-
tation of the source sequence X = [x1, x2, ..., xt].
Therefore, we can get the layer-wise hidden repre-
sentation h1:Ls via

h1:Ls = fLM (θps , X) (1)

For semantic guidance, we directly pass h1:Ls

to the alignment unit and denoising unit as new
prompt parameters. We use additional two pro-
jection layers WK and WV to project h1:LS into
semantic hidden states, denoted as K1:L

s and V 1:L
s .

K1:L
s = h1:Ls WK

V 1:L
s = h1:Ls WV

(2)

4.3 Semantic-guided Alignment

This unit generates the target sequence in parallel,
by taking a sequence of white noise as input, de-
noted as Yblank (a sequence of <mask> tokens in
our experiments). Similarly, we introduce align-
ment prompt θpa = (K1:L

a , V 1:L
a ) to efficiently

adapt the pre-trained model to generate a target
sequence. To grab information from the source se-
quence, we directly concatenate (K1:L

a , V 1:L
a ) and

(K1:L
s , V 1:L

s ), where we get

θpa = (concat([K1:L
s ,K1:L

a ]),

concat([V 1:L
s , V 1:L

a ]))
(3)

The alignment output is obtained via:

T0 = fLM (θpa , Yblank) (4)

Formally, we define the alignment loss as
L1(θps , θpa) given training pair (X,Y ) sampling
from a dataset. For alignment, we use two vari-
ants of non-autoregressive loss to train new pa-
rameters, including Connectionist Temporal Clas-
sification(CTC) (Libovický and Helcl, 2018) and
Mask-Predict (Ghazvininejad et al., 2019). For

constrained generation tasks, specifically, trans-
lation, we choose CTC loss objective for its ef-
ficiency in speed, as it is a one-step NAR gen-
eration method. For free generation tasks, CTC
loss performs poorly because free-generation tasks
intensify the multi-modality problem (Gu et al.,
2018), which we will discuss in Section 5.5. On
the contrary, iterative methods choose the best pos-
sible modality during early iterations of generation.
Therefore, we use Mask-Predict, which is an itera-
tive NAR generation method that sacrifices speed
for performance.

4.4 Semantic-guided Denoising

Due to the limitation of trainable parameters and
the non-autoregressive nature, the generation re-
sult of the first-stage alignment is usually far from
satisfying. Thanks to the denoising pre-training
objective MLM, current language models can be
easily adapted to a denoiser. In this step, we
also add prompt parameters for denoising θpD =
(K1:L

D , V 1:L
D ) to efficiently adapt the understanding

model to a language-specific denoiser. Similarly,
we get semantic-guided denoising prompt by the
following equation:

θpd = (concat([K1:L
s ,K1:L

d ]),

concat([V 1:L
s , V 1:L

d ]))
(5)

We take the output sequence in alignment stage
as input which is denoted as T0. To avoid over-
fitting, we add random noise including random
deletion or repetition to sequence T̃0 = T0 + ϵ. We
can then acquire the denoised logits T1 by:

T1 = fLM (θpd , T̃0) (6)

We repeat this step and treat T1 as new input to get
T2. The loop is running until the output sequence
keeps unchanged or we reach the maximum loop
number.

For denoising, we use a CTC-based denoiser
after the alignment process and adopt the CTC loss
L2(θps , θpd) given training pair (Y, Ti) where Ti is
the output sequence at the i-th step. For translation,
the outputs of the alignment stage are directly fed
to the denoiser. For other generation tasks, we
upsample the alignment result by a factor of 2 by
duplicating each token, and then fed the duplicated
sequence to the CTC-based denoiser.
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4.5 Training Objective
The final loss is a combination of the alignment
loss and denoising loss by the following equation:

L = L1(θps , θpa) + L2(θps , θpd) (7)

5 Experiments

5.1 Settings
We run experiments on three multilingual genera-
tion datasets including machine translation, ques-
tion generation, and story generation. Mapping
between language codes and full names of all
languages used in our paper is presented in Ap-
pendix A.

Dataset For experiments on both bilingual and
multilingual translation, we use TED dataset (Qi
et al., 2018). We focus on English-centric settings
and choose 10 languages (Ar, De, Es, Fr, He, It, Ro,
Ru, Tr, Vi) with the most training data to construct
our multilingual translation task. We choose five
additional languages (Kk, Be, Eu, Ms, Bs) with
the least training data (less than 6k) for zero-shot
cross-lingual evaluation. Details are presented in
Appendix B.

For experiments on question generation, we use
the Question Generation (QG) split of XGLUE
dataset (Liang et al., 2020). Since XGLUE only
provides a training set in the English-English di-
rection, we use M2M-100-418M (Fan et al., 2021)
to translate the English training set to all other
languages. We train all models in the En→X direc-
tions and evaluate them on the X→X test sets. For
simplicity, we report results on En→En, En→De
and En→Fr, where results on En→En represent
the monolingual generation ability, and results on
En→De, En→Fr represents zero-shot cross-lingual
generation ability. For experiments on story gen-
eration, we use the Story Generation (SG) split of
MTG dataset (Chen et al., 2022). For simplicity, we
report monolingual generation result on En→En,
and cross-lingual generation results on De→En and
Fr→En.

Implementations We use a batch size of 32k
to train all transformer models in both AT and
NAT. Following (Xu et al., 2021b), we use the
transformer-big setting with a learning rate of 5e-4
and a dropout rate of 0.3. We train these models
for a maximum of 50 epochs, and average the 5
best checkpoints for inference. We use Fairseq (Ott
et al., 2019) for implementation.

For fine-tuning using pre-trained language mod-
els like XLM-R and mBART, we use a batch size of
4k tokens and a much smaller learning rate of 3e-5.
We train the pre-trained models for a maximum of
80,000 steps. We also use Fairseq.

For adaptation methods on PLMs, we directly
follow the hyperparameter setting of (Tan et al.,
2022), with a batch size of 32k tokens and a learn-
ing rate of 7e-4. We train these models for a maxi-
mum of 40,000 steps, and average the 5 best check-
points for inference. We use THUMT (Tan et al.,
2020) for the implementation of the adaptation
methods. For translation tasks, the training takes
around 40 hours on 8 A100-SXM-80GB GPUs in
each translation direction to adapt an XLM-Rlarge

model to generators.

Evaluation Metrics and Hardware We calcu-
late case-sensitive BLEU (Papineni et al., 2002)
using the sacrebleu toolkit (Post, 2018) for transla-
tion evaluation 1. We use ROUGE-L (Lin, 2004)
for both question generation and story generation.
We also report METEOR (Banerjee and Lavie,
2005) for story generation. For speed calculation,
we average the running time on the test set with
batch size set to 1 on a single A100-SXM-80GB
GPU, and statistics are averaged by three runs.

Pre-trained Multilingual Models We mainly
use three kinds of pre-trained multilingual mod-
els in our experiments, including (1) a decoder-
only causal model, mGPT (Tan et al., 2022), (2) an
encoder-decoder model, mBART (Liu et al., 2020),
and (3) an encoder-only model, XLM-R (Conneau
et al., 2020).

5.2 Baselines

We mainly compare the following baselines in our
experiments.

• Transformer (Autoregressive, AT) (Vaswani
et al., 2017). We use the transformer-big set-
ting.

• Transformer (Non-autoregressive, NAT) (Li-
bovický and Helcl, 2018). We conduct NAT
experiments on Transformer with CTC loss
using the transformer-big setting.

• mTransformer. We train a multilingual AT
Transformer with 12 encoder layers and 12

1Signature:nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.0.0
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Group Model Param. Speed Ar→En De→En Es→En Fr→En He→En It→En Ro→En Ru→En Tr→En Vi→En Avg.

Bilingual Transformer (AT) 432M 1.0× 32.1 36.0 41.9 40.5 38.1 38.4 35.5 24.7 26.1 27.1 34.0
Transformer (NAT) 434M 13.4× 17.6 16.2 29.0 26.1 23.3 24.0 19.4 7.1 0.7 12.7 17.6

Multilingual mTransformer - 0.8× 22.2 27.9 34.5 32.7 25.8 30.5 27.5 19.9 17.6 20.8 25.9
+adapter 50M 0.8× 28.0 32.4 38.3 36.5 33.2 34.7 31.8 21.8 22.3 24.1 30.3

PLM Adaptation

mGPT + MSP1 (AT) 19M 0.2× 26.2 29.8 38.9 36.2 30.3 33.1 30.9 21.9 19.4 23.3 29.0
XLM-Rbase

+ AT initialization 390M 0.9× 16.6 23.5 29.5 26.7 21.0 24.9 22.7 16.1 17.6 15.7 21.4
+ SGA w/o. denoising 6M 6.8× 24.6 29.9 36.1 32.6 29.7 30.4 28.7 18.0 15.1 23.5 26.9
+ SGA 8M 3.0× 27.1 33.0 40.0 35.5 33.3 32.8 30.3 20.3 19.6 23.9 29.6

XLM-Rlarge

+ AT initialization 960M 0.6× 19.2 25.7 32.4 29.9 23.4 28.4 24.9 21.5 17.4 18.3 24.1
+ SGA w/o. denoising 15M 3.7× 28.2 33.8 37.9 36.1 35.5 34.1 31.5 21.4 23.4 24.4 30.6
+ SGA 21M 1.9× 30.7 37.0 40.9 38.6 38.5 37.5 34.2 24.0 27.2 26.4 33.5

Group Model Param. Speed En→Ar En→De En→Es En→Fr En→He En→It En→Ro En→Ru En→Tr En→Vi Avg.

Bilingual Transformer (AT) 432M 1.0× 17.0 30.0 39.8 39.1 27.2 34.9 27.0 19.6 15.0 28.8 27.8
Transformer (NAT) 434M 13.4× 6.2 10.6 25.2 23.0 14.6 17.5 13.1 5.3 0.4 15.2 13.1

Multilingual mTransformer - 0.8× 12.3 23.6 33.1 32.2 18.9 28.4 21.7 14.8 11.1 25.2 22.1
+adapter 50M 0.8× 16.3 29.3 38.9 38.4 25.6 33.6 26.3 19.1 15.2 30.3 27.3

PLM Adaptation

mGPT + MSP (AT) 19M 0.2× 11.6 24.1 31.7 32.3 20.7 29.6 19.2 17.9 11.7 24.4 22.3
XLM-Rbase

+ AT initialization 390M 0.9× 7.9 17.6 26.4 22.6 14.1 20.1 15.8 10.6 6.9 18.4 16.0
+ SGA w/o. denoising 6M 6.8× 8.7 19.4 28.8 23.8 16.9 25.6 18.8 11.5 7.2 22.8 18.4
+ SGA 8M 3.0× 11.1 21.7 32.3 27.5 18.9 28.5 21.5 14.7 8.4 24.3 20.9

XLM-Rlarge

+ AT initialization 960M 0.6× 9.9 19.8 29.3 26.2 17.4 23.1 18.0 12.2 11.5 26.0 19.3
+ SGA w/o. denoising 15M 3.7× 11.3 22.2 33.4 30.6 19.5 26.5 22.0 13.1 9.9 24.7 21.3
+ SGA 21M 1.9× 13.1 25.2 37.1 34.3 21.3 29.2 24.6 15.5 11.8 26.9 23.9

Table 1: Results of X→EN and EN→X translation. “Param.” represents the total number of trainable parameters.
“Speed” represents the inference speed when batch size is 1. Scores in bold represent the best performance in the
Adapt PLM setting. Compared with the traditional fine-tuning method that directly adopts XLM-R as initialization,
SGA brings large performance gains, with 8.2 BLUE on XLM-Rbase and 9.4 BLUE on XLM-Rlarge on X→EN,
and with 4.9 BLEU on XLM-Rbase and 4.6 BLEU on XLM-Rlarge on EN→X, showing the effectiveness of SGA
on adapting multilingual understanding models to multilingual generators.

decoder layers on the TED multilingual trans-
lation datasets. Other hyperparameters are
shared with Transformer-big. To report
X→En and En→X results, we train two
mTransformer models using all X→En and
En→X data in TED, respectively.

• mTransformer + adapter. We use language-
specific adapters (Bapna and Firat, 2019) on
top of our trained mTransformer. We append
adapters to both encoder layers and decoder
layers and use a feed-forward layer dim of
1,024, which finally results in 50M extra pa-
rameters for each language pair.

• mGPT + MSP (Tan et al., 2022). mGPT +
MSP introduces multi-stage prompting over
a multilingual GPT model with 560M param-
eters. We implement this baseline following
the same setting as the original paper.

• XLM-R w. AT initialization. Under this
setting, we initialize the encoder of an au-
toregressive Transformer with the weights of
XLM-R, and fine-tune the whole parameters.
We use two variants of XLM-R: XLM-Rbase

with 270M parameters, and XLM-Rlarge with
550M parameters.

5.3 Main Results

SGA achieves large performance improvements
over traditional initialization-based adaptation
Table 1 presents the multilingual translation ex-
periments. We find that initializing an autoregres-
sive Transformer model from XLM-R only brings
slight improvements by comparing with Trans-
former (NAT). We speculate the different nature
of AR and NAR leads to performance degrada-
tion when using XLM-R as initializers. Compared
with the traditional fine-tuning method that directly
adopts XLM-R as initialization, SGA brings large
performance gains, with 8.2 BLUE on XLM-Rbase

and 9.4 BLUE on XLM-Rlarge on X→EN, and
with 4.9 BLEU on XLM-Rbase and 4.6 BLEU on
XLM-Rlarge on EN→X, showing the effectiveness
of SGA on adapting multilingual understanding
models to multilingual generators. With 21M train-
able parameters, our method achieves comparable
performance with bilingual counterparts and even
better performance in several language directions
(De, He, Tr). The bottom part presents translation
results on the En→X directions.

SGA shows better efficient inference over adap-
tation baselines Compared with the original
mTransformer baseline including the adapter set-
ting, our method achieves 1.9/0.8 = 2.4×
speedups with better performance. As a compari-
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Figure 3: Tradeoff between parameter size and BLEU
scores. “share” represents prompt sharing. Our pro-
posed XLM-R+SGA with prompt sharing strategy can
further reduce parameters without sacrificing much of
the performance. As a comparison, mGPT + MSP drops
significantly.

son, mGPT + MSP brings higher inference latency
due to multi-stage prompting and AT decoding.

Denoising brings large performance gains in all
directions On both XLM-Rbase and XLM-Rlarge,
our proposed denoising technique brings an aver-
age gain of 2.8 BLEU by increasing a very small
amount of parameters. This confirms our conjec-
ture that multilingual understanding models can
be parameter-efficient language-specific denoisers
due to the denoising pretraining nature of MLM.

XLM-R boots the performance of NAT Exist-
ing NAT model (NAT+CTC) produces poor results
in all language directions. It is because NAT gener-
ally requires an AT model to generate distillation
datasets (Gu et al., 2018) which we do not provide
in this paper. The NAR nature of XLM-R makes
it possible to boost NAT performance. With SGA,
XLM-R outperforms NAT baselines by a large mar-
gin, indicating that NAR pre-training can be further
explored in future work to make multilingual un-
derstanding models better generators.

5.4 Prompt Sharing Analysis

We further reveal the potential of our proposed
SGA by sharing prompts across languages. We
combine datasets in the 10 X→En language direc-
tions selected in Section 5.1, and compare perfor-

1MSP uses different tokenization processing scripts for
evaluation. To have a fair comparison, we reproduce the
mGPT + MSP results in all language directions based on their
public code.

mance with multilingual Transformer and mGPT
+ MSP, mBART. All baselines including mTrans-
former are trained using the combined dataset.

Prompt sharing enables a compact X→En trans-
lation plugger SGA achieves a better tradeoff
between parameter size and inference performance
by sharing prompts across all X→En directions,
which achieves competitive performance with the
bilingual Transformer. As adaptation methods, Fig-
ure 3 presents the tradeoff between parameter size
and performance. Performance is evaluated by av-
eraging the test set BLEU in all directions. SGA
achieves a better tradeoff performance than the AT
counterpart, mGPT + MSP. With only 21M param-
eters, SGA enables a multilingual understanding
LM a unified and impressive X→En translator.

Prompt sharing brings impressive zero-shot
cross-lingual transfer Sharing prompts also em-
power SGA with strong zero-shot cross-lingual
transfer ability. We choose 5 languages (Kk, Be,
Eu, Ms, and Bs) with the least training data in
X→En directions in the TED dataset, and com-
pare performance with multilingual Transformer,
mGPT + MSP and mBART. Table 2 presents the
zero-shot cross-lingual transfer ability. (i) Trained
only in 10 language directions, mTransformer out-
performs mGPT + MSP in the supervised language
directions with a large performance gap, while our
method, XLM-Rlarge+SGA is still superior to both
methods. (2) XLM-R+SGA achieves good perfor-
mance in zero-shot X→En experiments, with a sub-
stantial performance improvement when compared
with mGPT + MSP and mTransformer. (3) Al-
though still lags behind the performance of mBART
on supervised language directions, mBART sup-
ports much fewer languages than XLM-R (50 vs.
100), which presents limitations in zero-shot cross-
lingual performance.

5.5 Other Generation Scenarios

In this section, we test the performance of our
model in various generation tasks other than mul-
tilingual translation to further explore the gener-
ation ability of multilingual understanding mod-
els. Table 3 presents the results of both mono-
lingual and cross-lingual results on question gen-
eration and story generation. For both tasks, we
provide a monolingual result in the En→En direc-
tion for reference. For the question generation task
on XGLUE, since it only provides test sets in the
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Group Model Param. Supervised Unsupervised
De Es Fr It Kk Be∗ Eu∗ Ms∗ Bs∗

Multilingual mTransformer 432M 32.5 39.2 37.5 35.5 1.2 2.1 2.1 1.4 1.8
mBART-fine-tune 610M 41.0 46.3 44.4 42.8 13.6 2.2 1.6 21.0 16.5

Adapt PLM
mGPT + MSP 19M 27.6 35.2 33.2 32.0 6.7 17.1 10.7 19.3 14.3
XLM-Rbase + SGA 8M 31.9 37.5 36.0 33.9 7.2 19.6 12.9 24.0 27.0
XLM-Rlarge + SGA 21M 34.2 39.3 38.3 36.2 11.4 26.8 20.7 30.1 34.0

Table 2: Zero-shot translation performance on TED in the X→En directions. Our method achieves impressive
performance in the zero-shot cross-lingual setting, with significant improvement in all unsupervised translation
directions compared to mGPT + MSP. ∗ represents that this language is not supported in mBART.

Models Para. Speed
Question Generation Story Generation

En→En En→De* En→Fr* En→En De→En Fr→En
RL↑ RL↑ RL↑ RL↑ Meteor↑ RL↑ Meteor↑ RL↑ Meteor↑

mGPT + MSP 19M 1.0× 36.3 17.5 17.7 16.7 16.1 13.7 13.7 14.2 13.8

XLM-Rlarge

+ AT initialization 960M 1.7× 28.9 9.1 10.5 8.4 9.1 9.6 9.5 9.3 10.3
+ SGA w/o. denoising 15M 4.5× 34.4 16.9 19.2 15.7 15.5 14.3 14.4 15.3 13.9
+ SGA 21M 4.3× 35.6 17.4 19.9 15.5 15.9 14.4 15.0 14.8 14.6

Table 3: Results on question generation and story generation. RL represents the F1-score of Rouge-L. * represents
zero-shot cross-lingual scenarios. SGA beats initialization-based methods on XLM-R in all cross-lingual scenarios
with a substantial improvement, and achieves comparable results with mGPT + MSP.

X→X directions, we train all models on the train-
ing set of En→X directions, and evaluate the model
performance on the X→X directions for zero-shot
cross-lingual generation. For the story generation
task on MTG, we test supervised cross-lingual gen-
eration performance on the X→En direction. We
report Rouge-L scores for both tasks, and report
METEOR scores additionally for story generation.

Table 3 presents the generation results. For
free generation tasks, we use Mask-Predict for
the alignment stage, and we set the iteration num-
ber to 4 in this table. (i) Our proposed method
XLM-R+SGA can achieve comparable perfor-
mance while notable acceleration, when compared
with an autoregressive-based model, mGPT + MSP,
on almost all generation tasks. (ii) Using XLM-R
to initialize an autoregressive Transformer totally
loses the zero-shot cross-lingual ability. Although
it performs moderately on the supervised monolin-
gual direction (En→En) on Question Generation,
it performs poorly on the zero-shot directions in-
cluding En→De and En→Fr. (iii) Our denoising
technique is proven helpful in further improving the
generation quality in both tasks without sacrificing
much of the speed.

Tradeoff between iterative prediction and CTC-
based denoising in free generation tasks For
free-generation tasks, unlike translation, we use
iterative mask prediction instead of CTC for the

Group # Iter. Meteor↑ Speed

w/o. denoising
2 14.5 14.1 sent/s
4 15.5 8.3 sent/s
8 15.8 5.2 sent/s

w. denoising

0 13.0 21.6 sent/s
2 15.3 11.8 sent/s
4 15.9 7.9 sent/s
8 16.1 4.8 sent/s

Table 4: Trade-off between CTC-based denoiser and
number of iterations on En→En generation on story
generation. Batch size is set to 1. Denoising brings bet-
ter performance and presents a better tradeoff between
performance and inference speed.

alignment stage. Free generation introduces much
more modalities than constrained generation tasks,
specifically, translation, which intensifies the multi-
modality problem in NAR generation (Gu et al.,
2018). Therefore, we use an iterative method,
Mask-Predict, to improve the generation quality
for the alignment stage of our proposed SGA.

Although increasing the iteration number in the
alignment stage can obviously lead to better perfor-
mance, it will also intensify the latency problem.
Our CTC-based denoiser can not only bring better
performance, but also a better tradeoff between per-
formance and speed, which is presented in Table 4.
When the iterations of the alignment stage is set to
the same, using the CTC-based denoiser leads to
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better performance with a slight sacrifice in speed.
Using CTC with 4-step decoding can outperform
8-step decoding both in performance and speed.
However, using CTC alignment alone will lead to
inferior performance (0-step decoding) because of
the multi-modality problem.

6 Conclusion

In this paper, we propose an effective approach
to adapt existing pre-trained multilingual under-
standing models to multilingual generators. On
translation tasks, experiments demonstrated that
our proposed method achieves large performance
improvements and notable acceleration with strong
cross-lingual generation ability. On free-generation
tasks including question generation and story gen-
eration, our method also achieves comparable per-
formance with AT-based method with impressive
speedups. Although still lagging behind pretrained
multilingual AT models (e.g., mBART) in super-
vised fine-tuning settings in translation, our pro-
posed method show better zero-shot abilities and
faster inference.

7 Limitations

Although our proposed method has achieved no-
table speedups and performance improvements in
the multilingual setting, we still lag behind in bilin-
gual translation, especially in high-resource scenar-
ios. In addition, there still remains a gap between
NAR pre-trained models and AR pre-trained mod-
els. Generally, XLM-R with fine-tuning is largely
inferior to mBART fine-tuning. Despite the gap can
be largely reduced with our method, the gap still
exists. In future work, we would like to explore pre-
training methods to make pretrained multilingual
NAR models better generators.
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A Language Code References

We provide the list of languages and corresponding
language codes used in our experiments in Table 5.

Name Arabic German Spanish French

Code Ar De Es Fr

Name Hebrew Italian Romanian Russian

Code He It Ro Ru

Name Turkish Vietnamese Kazakh Belarusian

Code Tr Vi Kk Be

Name Basque Malay Bosnian -

Code Eu Ms Bs -

Table 5: Full names and corresponding codes of lan-
guages used in our experiments.

B Details of TED Dataset

Table 6 presents a rough statistics number of the
chosen 15 languages in our main experiment.

Name Ar De Es Fr He

Num. 211k 165k 193k 189k 208k

Name It Ro Ru Tr Vi

Num. 201k 178k 205k 180k 169k

Name Kk Be Eu Ms Bs

Num. 3,234 4,392 5,094 5,104 5,566

Table 6: A rough statistics of the chosen 15 languages
(10 for supervised setting and 5 for zero-shot cross-
lingual setting) for the number of train samples in TED
dataset.
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