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Abstract

Augmenting pretrained language models with
retrievers has shown promise in effectively solv-
ing common NLP problems, such as language
modeling and question answering. In this paper,
we evaluate the strengths and weaknesses of
popular retriever-augmented language models,
namely kNN-LM, REALM, DPR + FiD, Con-
triever + ATLAS, and Contriever + Flan-T5,
in reasoning over retrieved statements across
different tasks. Our findings indicate that the
simple similarity metric employed by retriev-
ers is insufficient for retrieving all the neces-
sary statements for reasoning. Additionally, the
language models do not exhibit strong reason-
ing even when provided with only the required
statements. Furthermore, when combined with
imperfect retrievers, the performance of the lan-
guage models becomes even worse, e.g., Flan-
T5’s performance drops by 28.6% when retriev-
ing 5 statements using Contriever. While larger
language models improve performance, there
is still a substantial room for enhancement. Our
further analysis indicates that multihop retrieve-
and-read is promising for large language mod-
els like GPT-3.5, but does not generalize to
other language models like Flan-T5-xxl.1

1 Introduction

Parametric language models, such as decoder-only
transformers (e.g. GPT), transformer encoder mod-
els (e.g. BERT), and encoder-decoder transformers
(e.g. T5), encode all necessary knowledge to solve
a given task in their parameters and have demon-
strated exceptional performance on many natural
language tasks (Vaswani et al., 2017; Radford et al.,
2018; Devlin et al., 2019; Raffel et al., 2020). Non-
parametric models improve these models further by
augmenting them with knowledge retrievers (Guu
et al., 2020; Izacard and Grave, 2021; Izacard et al.,
2022b) or memory components (Khandelwal et al.,

1The code is available at https://github.com/McGill-
NLP/retriever-lm-reasoning.

ideal retriever

retriever

Question: Phobos should be classified
as which type of body?

Knowledge Statements
1. Phobos orbits Mars.
2. Mars is a kind of planet.
3. Moons orbit planets.
4. Phobos is named after the Greek
god of fear and panic.
5. A moon is located in space.
6. Classifying is a kind of science
process.

Retrieved Statements

+ Phobos orbits Mars.
- Phobos is named after the
Greek god of fear and panic.
- Classifying is a kind of
science process.

language
model

Retrieved Statements

+ Phobos orbits Mars.
+ Mars is a kind of planet.
+ Moons orbit planets.

kNN-LM orbits Mars.

moonFiD

REALM Phobos

Flan-T5 a moon

Moons orbit planets.ATLAS

Figure 1: Example of retriever and language model
failures when reasoning is needed. The correct and
incorrect retrievals are highlighted in green and red ,
respectively. This example demonstrates that the re-
trievers’ similarity metric is insufficient for retrieving
required statements, and language models cannot per-
form reasoning over the retrieved statements perfectly.

2020; Verga et al., 2021; Zhong et al., 2022). This
augmentation helps them acquire new knowledge
on-the-fly from external sources rather than relying
solely on the implicit knowledge encoded in the
model’s parameters, thereby making them more
robust to domain shifts (Izacard et al., 2022b). Fur-
thermore, the retrieved knowledge can provide in-
sight into what knowledge the model is using.

While the capabilities of parametric language
models have been extensively studied in the lit-
erature (Wei et al., 2022; Zelikman et al., 2022),
there is no thorough study of the limitations of
non-parametric models. For instance, Mallen et al.,
2023 examine the performance of non-parametric
memories when encountering less popular knowl-
edge. In contrast, our work takes a systematic
approach to study the limitations of retriever-
augmented language models for reasoning over re-
trieved information. As depicted in Figure 1, these
models often fail to solve the tasks that require
sequential logical reasoning, such as taxonomic
chaining and combining the details.
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In this study, we demonstrate how retriever-
augmented language models struggle with logi-
cal reasoning when the task involves reasoning
over multiple statements. We evaluate these mod-
els in language modeling (LM) and question an-
swering (QA) tasks using different variations of
EntailmentBank (Dalvi et al., 2021) and Strate-
gyQA (Geva et al., 2021) datasets, where we have
control over the provided supporting statements
and reasoning skills. Notably, these datasets do
not explicitly indicate the reasoning path within the
question itself, making the retrieval process more
challenging. In other words, knowledge statements
and queries may not have surface-level lexical sim-
ilarity. For instance, the question in Figure 1 has
no lexical similarity with required statements (2)
and (3), and without a strong reasoning component,
models would struggle to retrieve and reason upon
such statements.

Concretely, we analyze the performance of kNN-
LM, REALM, DPR + FiD, Contriever + ATLAS,
and Contriever + Flan-T5. As illustrated in Fig-
ure 1, these models exhibit shortcomings rooted in
both parts of their design: 1) Retrievers struggle
to select all the necessary statements for reason-
ing when using the similarity between query and
knowledge statements (§4.3.1); 2) Language mod-
els are imperfect reasoners even when provided
with a perfect retriever that retrieves all the essen-
tial information (§4.3.2); 3) Moreover, the perfor-
mance of language models deteriorates further if
the retriever is imperfect, a closer setting to real-
ity (§4.3.3); 4) Additionally, experimental results
indicate that while larger language models yield
improvements, even the largest models we stud-
ied are imperfect reasoners (§4.3.4); 5) Finally,
we observe that employing multihop retrieve-and-
read enhances GPT-3.5’s performance in reasoning
tasks, but this improvement does not extend to other
models such as Flan-T5-xxl (§4.3.5).

2 Background

There has been a growing interest in investigat-
ing the reasoning abilities of parametric language
models (Wei et al., 2022; Chung et al., 2022). In
contrast, our work focuses on the reasoning abili-
ties of retriever-augmented language models. This
paper further studies the contributions of each of
the models’ components.

Phobos is named after
the Greek god of fear

and panic.
Retriever

Language Model

moon

Phobos is a kind of [MASK].

Retrieved Statements

Mars is a kind of planet.

Phobos orbits mars.

Moons orbit planets.

A moon is located in
space.

Knowledge Statements

Query

query

Phobos should be classified
as which type of body?

Figure 2: The architecture of retrieve-then-read
retriever-augmented language models. The language
model predicts the answer using the query and the re-
triever’s selected statements.

2.1 Retriever-Augmented Language Models

Major work in retriever-augmented language mod-
els focused on improving downstream perfor-
mance such as question answering and language
modeling using retrieve-then-read paradigm (Guu
et al., 2020; Izacard and Grave, 2021; Izacard
et al., 2022b; Khandelwal et al., 2020). Fig-
ure 2 illustrates a generic retrieve-then-read ar-
chitecture. Some of the popular models that we
study are kNN-LM, Retrieval-Augmented Lan-
guage Model (REALM), Fusion-in-Decoder (FiD),
and ATLAS (Khandelwal et al., 2020; Guu et al.,
2020; Izacard and Grave, 2021; Izacard et al.,
2022b). Each of these leverages retrievers and lan-
guage models in a unique manner.

2.2 Role of Retriever

The retriever’s role is to retrieve relevant statements
for a given query which are then used by the lan-
guage model. Dense Passage Retriever (DPR),
Contriever, and REALM’s retriever fetch the most
similar statements based on a similarity metric (i.e.,
dense inner product) between query and statements’
representations using two independently trained or
one pre-trained BERT-based encoder (Karpukhin
et al., 2020; Izacard et al., 2022a; Guu et al., 2020).
In contrast, kNN-LM adopts an L2 similarity met-
ric between the representation of the query and
partial token sequences (instead of full knowledge
statements) to select the most relevant sequences of
tokens (Khandelwal et al., 2020). While retrievers
typically select statements from a large common
corpus in the literature, as depicted in Figure 2, we
provide a data-specific set of statements for each
query to control the supporting information.

15493



2.3 Role of Language Model (Reader)

The role of the language model is to make use of
the retrieved knowledge to generate relevant text
for the given input query. kNN-LM, a decoder-
only Transformer, computes the distribution over
the next token during generation by interpolating
between the transformer’s next token distribution
and the next token from the nearest neighbor mem-
ory (Khandelwal et al., 2020). On the other hand,
REALM is a masked language model backed by a
BERT-based reader that extracts the most promis-
ing span from one of the statements as the an-
swer (Guu et al., 2020).

FiD and ATLAS are both sequence-to-sequence
T5-based neural networks (Izacard and Grave,
2021; Izacard et al., 2022b). ATLAS is specifically
designed for jointly finetuning the language model
and the retriever, employing various pretext tasks
with limited training examples. In these models,
the encoder encodes the query and each retrieved
statement individually, and the decoder attends to
these representations to solve the downstream task.

While Flan-T5 was not specifically built for
retriever-based language modeling, since it is an
instruction-tuned model, it can be combined with
any retriever to complete downstream tasks using
the retrieved information (Chung et al., 2022).

2.4 Multihop Retrieve-and-Read

In addition to the previously mentioned widely
used retrieve-then-read models, multihop retrieve-
and-read iteratively utilizes textual or dense search
queries for a fixed predefined or variable number of
iterations (Xiong et al., 2021; Qi et al., 2021; Khot
et al., 2020; Khattab et al., 2022). For instance,
Demonstrate-Search-Predict (DSP) can be used in
multihop question answering. In each iteration,
DSP employs large language models to generate
a query by decomposing a complex question into
smaller subproblems and summarizes information
from retrieved knowledge (Khattab et al., 2022).

3 Problem Definition

In the main experiments, we provide the mod-
els with a complete set of knowledge statements
denoted as S = {s1, s2, . . . , sm} for each sam-
ple. In some cases, only a subset of these state-
ments is essential for predicting the answer, re-
ferred to as gold statements. The primary objective
of the models is to 1) retrieve a set of statements
Sr = {r1, r2, . . . , rk} ⊆ S which find necessary

Model # Params Model # Params

Language Models

REALM ∼270M FiD ∼220M
kNN-LM ∼250M ATLAS ∼250M
Flan-T5-base ∼250M

Model Size and Multihop Retrieve-and-Read Analysis

Flan-T5-small ∼80M Flan-T5-xl ∼3B
Flan-T5-base ∼250M Flan-T5-xxl ∼11B
Flan-T5-large ∼780M GPT-3.5 ∼175B

Table 1: The number of model parameters. We con-
trol for model size to circumvent the role of size in
reasoning abilities. Moreover, we evaluate the impact of
model size and multihop retrieve-and-read using larger
models.

and 2) effectively solve the target task through rea-
soning over the retrieved knowledge Sr. A visu-
alization of the task is illustrated in Figure 2. We
control for model size wherever possible for com-
parable results among different models. We also
study the effect of scaling the model size. Table 1
presents the number of parameters of the studied
models. Appendix A contains additional imple-
mentation details. We analyze the performance
of these models on two tasks, Language Model-
ing (LM) and Question Answering (QA), using
datasets (Section 4.1) that are specifically curated
for reasoning.

Language Modeling (LM). In the language mod-
eling setup, we evaluate the effectiveness of the
retriever-augmented language models in a target
ranking task. In this task, the model should assign a
higher likelihood to the correct sentence compared
to (up to) four alternative similar but incorrect sen-
tences. For instance, in the example illustrated
in Figure 2, the models should rank the sentence

“Phobos is a kind of moon.” higher than an alterna-
tive sentence such as “Phobos is a kind of planet.”
This task allows comparing masked language mod-
els like REALM with autoregressive models. We
explain this task in more detail in Appendix C.1 and
present its experimental results in the Appendix D.

Question Answering (QA). In the question an-
swering setup, the model should answer a question
given retrieved statements, as illustrated in Figure 2.
Except for kNN-LM, all the other models are al-
ready exposed to question answering tasks during
their training.
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4 Experimental Setting

4.1 Datasets
We assess the performance of the models using
the following reasoning datasets. These datasets
enable us to evaluate the models’ reasoning
abilities and the retrievers’ performance in LM
and QA tasks while controlling for the available
supporting information.

EntailmentBank (EB, Dalvi et al., 2021) consists
of an input question or a hypothesis statement
that can be inferred only through multi-step
reasoning on the provided statements. For the
QA task, we use the question format of the input,
and for the LM task (i.e., target ranking), we
use the hypothesis statement and alternative
statements obtained by replacing the target entity
with other alternative entities (see Appendix B).
As knowledge statements, we use the provided
gold and distracting statements in the dataset.
The distracting statements mostly contain entities
or relations mentioned in the input query which
might make them deemed relevant but in actuality
they are irrelevant. For instance, for the question

“Which rock type is most useful in studying the
history of living organisms?”, sentecnes “Nearly
all fossils are found in sedimentary rock.” and

“Limestone is a kind of sedimentary rock.” are
relevant, and sentences “Rock means stone.” and

“Organisms can be preserved in sedimentary rock.”
are distracting and irrelevant. EB consists of
multiple splits but we use the EB-2 split since
its knowledge store contains both required and
distracting statements. We call EB-2 split as
EB-Hard in this paper. For each input, there will be
up to 25 statements, of which up to 12 statements
are required to answer correctly. EB-1 is similar to
EB-2 but without any distracting statements. EB
also has EB-3 data which includes 25 relevant and
irrelevant statements sampled from a large corpus,
but we find the trends to be similar to EB-2 (see
Appendix D).

StrategyQA (Geva et al., 2021) contains
yes or no questions accompanied by up to
5 supporting statements from Wikipedia. To
evaluate the models in the language modeling
setting, we convert each question and answer into
a declarative statement, while also generating
incorrect statements using alternative entities. The
detailed dataset preparation process is explained in

Language Modeling Question Answering
0

20

40

60

DPR kNN-LM REALM Contriever

Tasks

A
cc

ur
ac

y

Figure 3: Retrievers’ accuracy on EB-Hard test set in
LM and QA tasks. Results show that retrievers do not
select required statements properly, as the best retriever,
Contriever, achieves only a 47% accuracy in QA task.

Appendix B.

4.2 Evaluation Metrics

In the QA setting, we use the token overlap F1
score between the predicted answer and the gold
answer. For the LM task, we evaluate the accuracy
of the models in the target ranking problem.

For the retriever, we use accuracy and recall
score to indicate the overlap between retrieved
statements and the ground-truth statements which
are essential to obtain the answer.

4.3 Evaluation and Discussion

In this section, we analyze the limitations of both
retrievers and language models in reasoning tasks.

4.3.1 The Shortcomings of Retrievers
Current retrievers select k statements based on a
relevance score, such as inner product or L2 dis-
tance between the query’s and statements’ (or spans
of statements) representations (Guu et al., 2020;
Karpukhin et al., 2020; Izacard et al., 2022a; Khan-
delwal et al., 2020). However, this approach is
insufficient for reasoning. Consider the question
“Phobos should be classified as which type of body?”
in Figure 1. The retriever may select similar state-
ments to the query, such as (1)“Phobos orbits Mars.”
and (4)“Phobos is named after . . . ”, but none of
them contains the answer “moon.” Instead, combin-
ing statement (1) with missed statements (2)“Mars
is a kind of planet.” and (3)“Moons orbit plan-
ets.” would provide the answer to the question. But
statements (2) and (3) are the ones with the least
similarity.

We validate our hypothesis that the similarity-
based metric for retrieval is insufficient for reason-
ing using the EB-Hard dataset. Since the EB-Hard
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Model Query Statements Prediction

DPR
+ FiD

In a zoo located in a warm region, what
should be included in the polar bear ex-
hibit?

+ If an animal lives a certain environment then that
animal usually requires that kind of environment.
- Polar bears live in cold environments.

warm

Contriever
+ ATLAS

What keeps the Moon orbiting Earth? + Moons orbit planets.
- Gravity causes orbits. elliptical

kNN-LM
The robot will weigh less on mars than
earth but will have the same [MASK].
Targets: mass vs mars

+ As the force of gravity decreases, the weight of
the object will decrease.
- The gravitational force of a planet does not change
the mass of an object on that planet or celestial body.

mars

Table 2: Some examples of models’ failures rooted in the retriever. One of the correctly retrieved statements
and the one that had to be retrieved in order for the model to solve the task correctly are highlighted in green and

red , respectively. The sequence of tokens leading to the true answer is marked in bold. Results show that current
retrievers struggle to retrieve required statements for solving the tasks.

dataset provides us with both gold and distracting
statements to answer a question or infer a hypothe-
sis, we evaluate the accuracy of different retrievers
when we know k, i.e., the exact number of required
statements to retrieve for a given input. We present
the results in Figure 3. The best-performing re-
triever, Contriever, achieves only 57% and 47% ac-
curacy in the LM and QA tasks, respectively. DPR,
the widely used retriever with BERT-based dual en-
coder trained on Natural Questions (Kwiatkowski
et al., 2019), is the worst with an accuracy of only
around 15%. REALM’s retriever, which is a DPR
trained on self-supervised large-scale salient span
masking on Wikipedia and fine-tuned on Natural
Questions improves the performance by a large
margin but still has only 40% accuracy. kNN-LM’s
retriever is trained on Wikitext-103 (Merity et al.,
2017) in an auto-regressive fashion to select state-
ments that help predict the next word of the input.
Due to this, its performance drops 16 points when
evaluated for the QA task compared to the LM task,
as the QA task is out-of-distribution for kNN-LM.

Figure 4 further illustrates the recall score of the
retrieved statements for varying k. While all retriev-
ers reach a recall of 100% at 25 (i.e., the maximum
number of knowledge statements for each sample
in EB-Hard), kNN-LM still struggles due to the
way it represents the facts in its memory compo-
nent. In fact, each statement s = w1w2 . . . wn is
stored as n − 1 key-value pairs in memory. For
instance, the key w1 is paired with value w2 (i.e.,
next token), similarly w1w2 with value w3, and so
on. The retriever computes the similarity between
the input query and all the keys and selects the top
k similar keys (i.e., sequences of tokens) among all.
When allowing kNN-LM to retrieve even 100 keys,
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Figure 4: Retreivers’ recall score on EB-Hard test set
in LM and QA based on the number of retrieved
statements (k). Contriever is shown to be superior
among the studied retrievers. Results further indicate
that kNN-LM does not cover 100% of the gold state-
ments when k = 100 (kNN-LM’s recall is ≈ 97%).

it still fails to cover 100% of the gold statements.
Failures of retrievers illustrated in Table 2

demonstrate that relying solely on query-statement
similarity for retrieval may lead to overlooking im-
portant statements that are dissimilar to the query
but contain information essential for reasoning.

4.3.2 The Shortcomings of Language Models
The language model has to reason upon the re-
trieved statements to answer a given input. In this
section, we assume access to a perfect retriever.

To estimate the upper-bound performance of
each language model, we use the final single state-
ment hypothesis available in EB datasets. This
statement can be entailed using an entailment tree
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Figure 5: Token overlap F1 score of language models
on EB-Hard QA test set. The dotted and solid lines re-
fer to experiments given the single oracle statement and
gold statements (when reasoning is required), respec-
tively. Results illustrate that language models perform
worse when answering the question requires reasoning.

and is sufficient to answer the given input. For
the example in Figure 2, this statement is “Phobos
is a kind of moon”, which we refer to as the or-
acle statement. The oracle statement is provided
to the model as the retrieved statement to answer
the question “Phobos should be classified as which
type of body?” (or, for the LM task, to rank the
sentence “Phobos is a kind of moon” higher than
others which is trivial).2

Figure 5 shows the results of QA task in dot-
ted lines. The models ATLAS, FID, and REALM
perform the best on this task, as these models are
mainly trained to perform QA.

Table 3 shows some outputs of various mod-
els. These oracle scores would give an estimate
of the upper-bound performance of models when
the task does not require reasoning over multiple
statements. Surprisingly, Flan-T5 performs worse
than expected as the model struggles to limit it-
self to the provided knowledge and relies on its
parametric memory, a common challenge faced by
large language models in non-parametric setting
(Mallen et al., 2023). This claim is backed by our
further analysis on 50 randomly sampled (from
among 340 samples) Flan-T5 responses given the
oracle statement. The statistics shown in Figure 6
show that 18% of the Flan-T5 responses are not
grounded in the oracle statement, even though the
oracle statement was relevant to the question and
answer. Additionally, 32% of the responses yield

2For the LM task, the models achieve high performance
since the resulting statement is the same as the target statement
among the alternatives.

Question: The planets revolve in a counterclockwise
direction. The cause of the revolution is mostly due to
which force?
Statement: Gravity causes planets in the solar system
to orbit the sun.
Expected answer: gravitational

Model: ATLAS Response: gravity
Flan-T5 gravity

Question: When compared to the Sun, red dwarf stars
are
Statement: Red dwarf stars are cooler than the sun.
Expected answer: cooler

Model: ATLAS Response: cooler than the sun.
Flan-T5 a lot smaller

Table 3: The predictions of models when the oracle
statement that contains the answer is provided. F1
metric unnecessarily penalizes ATLAS here, although
its predictions are correct. Flan-T5’s response to the
second question is not grounded to the oracle statement
and the model is only using its internal knowledge to
answer the question.
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Figure 6: Human analysis of Flan-T5’s responses
given the oracle statement. As demonstrated in Ta-
ble 3, 18% of the Flan-T5 responses are not grounded
in the oracle statement and 32% of the responses yield
a low F1 score even though they are correct.

a low F1 score even though they are correct (due
to elaborateness or wording mismatch). The scores
are lower than expected since the F1 evaluation
metric penalizes when there is a word mismatch
between true and predicted answer even if the pre-
dicted answer is semantically the same (Kamal-
loo et al., 2023; Chiesurin et al., 2023; Adlakha
et al., 2023). Some other examples of Flan-T5’s
responses are also demonstrated in Table 10.

Additionally, we experiment with a setting
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where the models have to reason on multiple re-
trieved gold statements. Figure 5 shows the results
in solid curves. As we provide the models with
an increasing number of gold statements that are
essential to answer the input, the performance goes
up for Flan-T5, FiD, and ATLAS. However, we do
not observe any change in REALM and kNN-LM.
Although REALM is a QA model, its limitations
stem from how it makes use of retrieved documents.
Instead of reasoning on all documents jointly, like
ATLAS, FiD, and Flan-T5, it reasons on each doc-
ument separately. In pretraining phase, the model
marginalizes the score of each span over all docu-
ments. In the inference phase, the model picks the
span with the highest retriever and reader score. In
our setting, this almost always ends up selecting
a span from the first few statements, as the state-
ments are in the order of importance (see Figure 1).
We present additional examples in Table 4. kNN-
LM is not designed to perform QA, which is why it
performs worse. Moreover, in our LM experiments,
we find that it also underperforms other models,
so it is unclear when kNN-LM style decoding is
preferred (see Appendix D.1).

When we contrast the results of reasoning over
multiple retrieved gold statements (solid curves in
Figure 5) with only reasoning on the oracle state-
ment (dotted), the performance of all models is
much lower than the oracle performance even after
providing all the essential gold statements. Inter-
estingly, although Flan-T5’s oracle performance
is lower than ATLAS, FID, and REALM, it out-
performs them when reasoning over multiple state-
ments, indicating that it is a better reasoner. We
conjecture that Flan-T5’s multi-task training which
also includes reasoning tasks like chain-of-thought
reasoning, makes it a better reasoner than others.

Furthermore, we investigate the impact of addi-
tional distracting information on the performance
of language models in the QA task in Figure 7.
Flan-T5’s performance drops by 8.7% in the pres-
ence of distracting statements indicating that irrele-
vant information hurts the performance of language
models. Although ATLAS looks relatively robust,
its performance is lower than Flan-T5, so we can-
not draw a definitive conclusion.

On the LM task, we observe similar trends to
the QA task and present the results and analysis in
Appendix D.1.
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Figure 7: The negative impact of additional distract-
ing information on language models’ performance in
the QA task. The solid bars and the bars with patterns
refer to the experiments with all the gold statements
and all gold and distracting statements, respectively. It
can be observed that providing language models with
distracting statements hurts their performance.
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Figure 8: Performance of language models on QA
EB-Hard test set coupled with imperfect retrievers.
Coupling language models with imperfect retrievers
(i.e., when a retriever fetches a distracting statement)
deteriorates the overall performance.

4.3.3 The Blame Game: The Impact of
Combining Imperfect Retrievers and
Language Models

This section explores how the combination of lan-
guage models and imperfect retrievers exacerbates
the performance of retriever-then-read models, a
setting closer to reality. An incorrect final answer
could be blamed on the retriever’s inability to fetch
relevant statements or the failure of the language
model to reason on the retrieved statements.

Additionally, Figure 8 illustrates the perfor-
mance of language models on QA EB-Hard dataset,
when coupled with either ideal retrievers (given
only gold statements) or imperfect retrievers (given
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Model Query Retrieved statements Prediction

Flan-T5
What allows two students standing
ten feet apart to hear each other talk?

+ Talking is when a human produces sound to communicate.
+ Sound can travel through air by vibrating air.

a
microphone

REALM
Andy lives in the southern hemi-
sphere. What season does he most
likely experience in August?

+ Andy lives in southern hemisphere.
+ August is during the winter in the southern hemisphere.

in southern
hemisphere

Table 4: Some examples of models’ failures rooted in the language model. In each example, two correct retrieved
statements are illustrated. The true answer is marked in bold. We observe that 1) Flan-T5 does not limit itself to the
provided knowledge, and 2) REALM extracts the response from the first retrieved statement, disregarding other
retrieved statements.
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Figure 9: Performance of the retrieval-augmented
models in QA on test sets based on the number of
retrieved statements. The results demonstrate that al-
though Contriever + Flan-T5 and Contriever + ATLAS
are superior, the studied models perform poorly at rea-
soning when answering questions.

gold and distracting information). The results re-
veal a significant performance gap, as Flan-T5’s
performance in the QA experiment drops by 28.6%
when retrieving 5 statements using Contriever. We
further report the influence of imperfect retriev-
ers on the studied models in the LM task in Ap-
pendix D.1.

Moreover, Figure 9 illustrates the performance
of the models on QA reasoning datasets. When
evaluating REALM and kNN-LM on the Strate-
gyQA dataset, we append yes/no to each statement.
These results highlight the superiority of Contriever
+ Flan-T5 in our experiments that matches our find-
ing in Section 4.3.2.

In order to study which component (retriever
or LM) is more responsible for the failures of the
retriever-augmented LMs, we make a hypotheti-
cal assumption. We assume that we have prior
knowledge of the exact number of statements (k)
to be retrieved for each input. We then report the
number of Contriever + Flan-T5’s failure exam-
ples (i.e., samples with F1 score less than 0.5) in
Appendix D.3. Out of a total of 340 data sam-
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Figure 10: Token overlap F1 score of Flan-T5 vari-
ations on EB-Hard QA test set. The results reflect
the impressive impact of size on the performance of the
models in the tasks where reasoning is required. We use
Contriever as the retriever in all experiments.

ples, it is noteworthy that the retriever misses at
least one gold statement in nearly 85% of the cases.
Among these, only 19% are generated correctly by
the LM. Conversely, when the retriever performs
flawlessly (i.e., no missing gold statements), the
LM correctly responds in 34% of the cases. In sum-
mary, retriever-augmented LMs’ failures appear to
be more attributable to the retriever. This is under-
scored by the noticeable improvement in the LM’s
performance (34% compared to 19%) when the re-
triever performs perfectly, emphasizing the pivotal
role of the retriever in achieving correct generation.

4.3.4 The Impact of Model Size

This subsection examines the influence of model
size on the models’ performance in reasoning tasks.
Specifically, we analyze the performance of differ-
ent variations of Flan-T5 coupled with Contriever
on the EB-Hard dataset.

The experimental results in Figure 10 demon-
strate that larger models achieve better F1 score.
However, there is still a large room for improve-
ment as Flan-T5-xxl achieves only 51.8% F1 when
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Figure 11: Token overlap F1 score of GPT-3.5 and
Flan-T5 variations using multihop DSP program. All
the experiments are done with few-shot examples using
Contriever as the retriever and 5 retrieved statements in
each retrieval step. The experimental results show that
while DSP improves GPT-3.5 performance, it does not
generalize to Flan-T5 models in the F1 score.

it has to reason over statements but the upperbound
performance is 59.7% F1 when provided with the
single oracle statement. The performance of the
models on other QA datasets is presented in Ap-
pendix F.

4.3.5 Impact of Multihop Retrieve-and-Read

To address the limitations of retrieve-then-read
models on reasoning datasets, we explore the ef-
fectiveness of a strong multihop retrieve-and-read
framework known as Demonstrate-Search-Predict
(DSP), employing Contriever along with various
language models (Khattab et al., 2022). The imple-
mentation details of the multihop retrieval experi-
ments are provided in Appendix G.

The token overlap F1 scores of the models us-
ing the multihop DSP approach are depicted in
Figure 11. The results indicate that while DSP im-
proves GPT-3.5’s performance, it still falls short
compared to the retrieve-then-read Flan-T5-xxl.
This observation shows a large room for improve-
ment in multihop retrieve-and-read methods. Fur-
thermore, we observe a decline in Flan-T5’s per-
formance when using multihop retrieval. This can
be attributed to Flan-T5’s inability to generate ap-
propriate subqueries for the given question. Addi-
tionally, its generated responses tend to include all
retrieved information, leading to high recall but low
precision scores. This phenomenon is further exem-
plified in the qualitative examples and recall scores
of the models, as demonstrated in Appendix G.

In summary, the results demonstrate the potential

of multihop retrieve-and-read for large language
models like GPT-3.5, but it does not generalize to
other models.

5 Conclusion

This paper analyzes the reasoning abilities of
retriever-augmented language models. We first
evaluate popular retrieve-then-read models, includ-
ing kNN-LM, REALM, DPR + FiD, Contriever
+ ATLAS, and Contriever + Flan-T5, through lan-
guage modeling and question answering tasks.

Our experimental results indicate that retrievers
fail to select all essential statements for reasoning
when relying on the similarity between the query
and statements. Moreover, we observe that lan-
guage models also struggle to reason over state-
ments even when distracting information is absent.
The performance deteriorates further when coupled
with imperfect retrievers, as Flan-T5’s performance
drops by 28.6% when retrieving 5 statements us-
ing Contriever. Furthermore, while larger language
models show greater capabilities in reasoning, they
still have a large room for improvement. Addition-
ally, our experiments on multihop retrieve-and-read
show improvements on GPT-3.5, but these improve-
ments do not generalize to other language models
such as Flan-T5-xxl.

These findings present opportunities for future
research to enhance the performance of retrieve-
then-read models by addressing the aforementioned
limitations of retrievers or language models. More-
over, the development of multihop retrieve-and-
read models holds promise for advancing reasoning
tasks.

6 Limitations

This paper examines the reasoning abilities of
widely-used retriever-augmented language mod-
els in both LM and QA settings. To ensure a fair
comparison, we employ models with similar sizes
in both LM and QA tasks. Additionally, we in-
vestigate the impact of employing larger language
models and a recent, strong multihop retrieve-and-
read approach on the performance of these models.

In this paper, while one can finetune the models
on the specific data, we focus on the capabilities
of the already pretrained retriever-augmented lan-
guage models. Moreover, we analyze the models in
two basic NLP tasks, including language modeling
and question answering. However, one of the stud-
ied models kNN-LM has been pretrained only for
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language modeling exclusively, which may have
resulted in a subpar performance on the QA task.
Surprisingly, kNN-LM also performs the worst at
the LM task compared to others.

Finally, unlike the popular retriever-based meth-
ods in the literature which use large corpus of
knowledge, we use a data-specific set of statements
for each data sample. This allowed us to have more
control over the retrieved statements and the rea-
soning behavior of the language models.

7 Ethics Statements

This is not applicable to this work.
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A Implementation Details

We present the implementation details of the ana-
lyzed models in this section. Most of the experi-
ments are conducted using PyTorch (Paszke et al.,
2019) on an RTX8000 GPU with 48GB memory in
a single run, each taking a few minutes to run. We
also run the experiments with large 30B-parameter
models on an A100 GPU with 80GB memory. Note
that we have changed the retriever in each model
to retrieve statements from a sample-specific set of
statements instead of a large common corpus.

In REALM’s experiments, we use the Hug-
gingface’s transformers implementation for
both masked language modeling and question
answering (Wolf et al., 2020). We load the
realm-cc-news-pretrained-encoder check-
point as a knowledge encoder for masked language
modeling and realm-orqa-nq-openqa check-
point for question answering. For kNN-LM
experiments, we use the best checkpoint available
in the original papers’ GitHub repository, and we
find λ = 0.65 the best value as the interpolation
hyperparameter based on the experiments on Entai-
mentBank development sets. In FiD experiments,
we use nq_reader_base checkpoint available
in the papers’ GitHub repository with using
the nq.bert-base-encoder’s checkpoint of the
DPR retriever which is available in their GitHub
repository. For experimenting ATLAS, we use
the trained atlas_data/models/atlas_nq/base
checkpoint of both the language model and
retriever. Also, for the Flan-T5 model, we load
the flan-t5-base model from Huggingface’s
transformers to be almost the same size as the
other models in the main experiments.

In order to analyze the impact of the model size,
we experiment with various Flan-T5 models from
Huggingface. Our multihop retrieval experiments
employ Contriever as addressed before with Ope-
nAI’s GPT-3.5 text-davinci-002 and different sizes
of Flan-T5 model. More concretely, we use the
same query formatting and templates as provided
in the DSP GitHub repository.

B Dataset Preparation Details

In the language modeling experiments, we evalu-
ate the models in target ranking task, where the
model should assing a higher likelihood to the cor-
rect sentence compared to some alternative ones.
Therefore, we first create an LM reasoning dataset
for StrategyQA by changing the questions and

Model Target ranking score

REALM log 1
|Sr|

∑
sj∈Sr

p ([MASK] = T |Q, sj) p (sj |Q)

kNN-LM
FiD

Flan-T5

1
N log p (QT |Sr), where QT is the query Q with
[MASK] tokens substituted with T

ATLAS
1

M+1 log p (<extra_id_0> T |Q,Sr)

Table 5: The target scoring function employed by
each model. Our language modeling task uses target
ranking score to rank multiple sentences with different
target candidates filled-in as answers. Target entity men-
tion is indicated by T = t1t2 . . . tM , input query by
Q = q1q2 . . . qN , and given retrieved statements by Sr.
For ATLAS, we found that the T5 setup of predicting
the mask with <extra_id_0> performed slightly better
than computing the probability of the entire sentence.

the yes/no answers into declarative-form sentences.
This is because StrategyQA samples only include
questions as queries, not sentences. We also use hy-
pothesis sentences of the EntailmentBank dataset
for LM experiments. The next step includes cre-
ating alternative sentences for each sample for the
target ranking task in our language modeling exper-
iments. We keep the data samples that include at
least one entity mention and mask out the last entity
mention in the sentences of StrategyQA and En-
tailmentBank using Spacy (Honnibal and Montani,
2017). Also, we randomly pick at most four other
entities mentioned in the data sample’s statements
as the alternative targets (as described in Section 3)
and compare the model’s score for each target. Re-
garding the question answering experiments, we
use datasets’ question and answer formats.

For the experiments on the EntailmentBank
datasets, we run the experiments on the same devel-
opment and test sets as the original data. However,
in the StrategyQA dataset, since we do not have
access to the answers in the test split, we cannot
change the samples’ formats to declarative form.
Therefore, we pick 25% and almost 35% of the
train data as the development and test sets, respec-
tively.

C Model and Task-Specific Query Format

This section includes the model-specific query for-
mats in each task. As stated in Section 3, we aim to
study the reasoning abilities of retriever-augmented
language models in language modeling and ques-
tion answering tasks.
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Model Alternative Target Scores

REALM
log 1

|Sr|
∑

sj∈Sr
p ([MASK] = lithosphere|Q, sj) p (sj |Q)

log 1
|Sr|

∑
sj∈Sr

p ([MASK] = coal|Q, sj) p (sj |Q)

kNN-LM
FiD

Flan-T5

1
8 log p(Surface mining affects the lithosphere and biosphere.|Sr)
1
8 log p(Surface mining affects the coal and biosphere.|Sr)

ATLAS
1
2 log p (<extra_id_0> lithosphere|Q,Sr)
1
2 log p (<extra_id_0> coal|Q,Sr)

Table 6: A sample of the ranking strategies for each
model for target ranking in the LM task using re-
trieved statements Sr. The query (Q) in this example is
“Surface mining affects the [MASK] and biosphere.” with
alternative targets “lithosphere” and “coal”. For ATLAS
experiments, we replace [MASK] with <extra_id_0>
which is the specific masking token in T5-based mod-
els.

C.1 Language Modeling

As explained in Section 3, we evaluate the perfor-
mance of the popular retriever-augmented language
models in the language modeling task through the
target ranking problem. In this task, the model
should assign a higher likelihood to the correct sen-
tence compared to (up to) four alternative similar
but incorrect sentences. These candidate sentences
are generated by replacing the masking tokens with
alternative entities available in the knowledge state-
ments of the data sample. Table 5 depicts the target
scoring functions employed by each model for com-
puting the score of each candidate sentence. These
alternative target scoring functions are further ex-
emplified in Table 6 for a better understanding.
The way models incorporate retrieved statements
is explained in Section 2.3. In language modeling
setup, the same happens for each model, except
for REALM, which LM and QA variants differ. In
QA, each statement is assigned a score separately,
and the predicted span is the one with the highest
retriever and reader score. In LM setup, instead,
the score of each alternative target is computed by
marginalizing over different retrieved statements,
as shown in Table 5.

C.2 Question Asnwering

In the question answering setting, on the other hand,
we give the whole question to the model and take
the generated output as the answer for Entailment-
Bank datasets. In StrategyQA QA experiments, we
compute how often models rank the correct yes or
no answer higher than the other.

D Main Quantitative Results

This section includes more visualizations and de-
tailed results.

D.1 Language Modeling

First, we report the overall performance of retriever-
augmented language models in the reasoning LM
task in Figure 12. It can be observed that Flan-
T5, an instruction-tuned QA model, performs as
the best model. On the other hand, kNN-LM, a
pretrained language model, performs as the worst
model in our LM task.

Additionally, we demonstrate the impact of addi-
tional distracting information in Figure 13. Results
indicate that similar to QA experiments, in LM
task, providing the language model with additional
distracting information as well as all the required
statements generally leads in performance degrada-
tion.

Furthermore, we illustrate the impact of the im-
perfect retrievers on language models in Figure 14.
Results show that similar to the case with question
answering task, the performance of the language
models becomes even worse in LM when combined
with imperfect retrievers.

Table 7 demonstrates the performance of the
best retriever-augmented models (based on the per-
formance on the dev sets) on the test sets in the
language modeling task.

D.2 Question Answering

We demonstrate the performance of the models on
EB-Easy and EB-3 test set in question answering
task in Figure 15. It can be observed that and
Contriever + Flan-T5 performs the best in these
datasets, which matches our findings in the main
paper. We observe that the models’ performance is
similar to EB-Hard dataset with both relevant and
distracting statements.

We report the performance of the best retriever-
augmented models (based on the performance on
the development sets) on the test sets in question
answering in Table 8.

D.3 Blame Game Between Retriever and
Language Model

Our analysis of the Contriever + Flan-T5’s re-
sponses in a hypothetical scenario (i.e., the exact
number of retrieval is known) is provided in Table 9.
Results show that the retriever does not retrieve all
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Figure 12: The accuracy of the retriever-augmented language models in the target ranking (LM) problem.
The results show that Contriever + Flan-T5 and kNN-LM perform as the best and the worst models in our LM
experiments.
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Figure 13: The negative impact of additional distract-
ing information on language models’ performance in
the LM task. The solid bars and the bars with patterns
refer to the experiments with all the gold statements
and all gold and distracting statements, respectively. It
can be observed that providing language models with
distracting statements hurts their performance.

the required statements most of the time. Addition-
ally, when the retriever performs perfectly, the LM
responds to the question correctly more often.

E Main Qualitative Results

In Section 4.3.2, we explained that F1 scores of the
models given only the oracle statements are lower
than expected. Table 10 demonstrates a few more
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Figure 14: Performance of language models on EB-
Hard test set in the LM task coupled with imperfect
retrievers. Coupling language models with imperfect
retrievers (i.e., retrieving some distracting statements
as well as some required ones) deteriorates the overall
performance.

examples of the Flan-T5 failures.
We also demonstrate some failure examples in

each of the retrievers and language models in Ta-
ble 11 where imperfect retrievers and LMs are com-
bined. In this table, a few true retrieved statements
and the one that had to be retrieved in order for the
model to solve the task correctly are highlighted
in green and red, respectively. The true answer (or
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Figure 15: The performance of the retriever-augmented language models in the QA task on EB-Easy and
EB-3 datasets. In EB-3, we observe that models perform similarly to EB-Hard including both gold and distracting
supporting information. Furthermore, we observe that in EB-Easy models perform similarly to our experimental
settings on EB-Hard with only gold statements, as EB-Easy consists of only required statements with no additional
distracting information.

Language Modeling Accuracy
EB-Easy EB-Hard EB-3 SQA

kNN-LM 57.92 62.74 61.39 25.06

REALM 72.92 71.48 77.22 59.73

DPR +
FiD 70.83 67.68 71.43 55.48

Contriever
+ ATLAS 81.25 85.55 84.56 57.94

Contriever
+ Flan-T5 92.92 91.63 87.64 70.92

Table 7: Experimental results of the best retriever-
augmented models in LM on test sets. The two best
models are highlighted in green. The results show that
Flan-T5 and ATLAS are superior in language modeling
based on the target ranking accuracy.

sequence of tokens leading to the true answer) for
each data sample’s statements is marked in bold.
These examples explain how not retrieving the nec-
essary statements for reasoning or not reasoning
over true statements can lead to incorrect answers.

F Impact of the model size

In this paper, we compare various models from
Flan-T5-small to Flan-T5-xxl with 80M to 11B
parameters, respectively. The performance of these
Flan-T5 models accompanied with Contriever on
EB-Easy and StrategyQA QA datasets is presented
in Figure 16. Experimental results show that larger
models perform better in reasoning tasks.

Token overlap F1 score Accuracy
EB-Easy EB-Hard EB-3 SQA

kNN-LM 12.62 8.13 10.95 23.94

REALM 19.43 13.14 16.39 46.76

DPR +
FiD 32.14 27.32 32.27 46.98

Contriever
+ ATLAS 35.95 33.14 37.63 53.69

Contriever
+ Flan-T5 45.33 39.68 42.29 67.34

Table 8: Experimental results of the best retriever-
augmented models in QA on test sets. The two best
models are highlighted in green. The results show that
Flan-T5 and ATLAS are the superior models in all of
the studied datasets.

Imperfect
Retriever

Perfect
Retriever

LM is Correct 54 (19%) 17 (34%)
LM is Incorrect 236 (81%) 33 (66%)

Table 9: An analysis on the blame game between
the retriever and LM. This table shows the number
of failures of Contriever + Flan-T5 on EntailmentBank
samples when the number of retrieved statements is
known. Results highlight the noticeable improvement
in the LM’s performance (i.e., 34% compared to 19%)
when the retriever operates perfectly. Imperfect retriever
stands for cases where retriever misses at least one state-
ment and Incorrect LM refers to cases where the predic-
tion of the LM is marked as incorrect (i.e., samples with
less than 0.5 F1 score).
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Model’s response is semantically correct.

Question: Many animals are still being hunted for their
fur. Because of this, many of these animals are in danger
of
Statement: If hunting decreases the animal population
to zero, then the animal will be extinct.
Expected answer: extinction
Response: extinct

Model’s response is incorrect wrt the expected answer
but is correct wrt commonsense.

Question: Plants use energy directly from the sun.
What do they use the energy from the sun for?
Statement: Plants use energy from the sun to make
food.
Expected answer: to make food

Response: to grow

Model’s response is completely incorrect.

Question: Which is a step in the process of photosyn-
thesis?
Statement: Taking in carbon dioxide is a step in the
photosynthesis process.
Expected answer: plants taking in carbon dioxide

Response: releasing light

Table 10: The predictions of Flan-T5 when the oracle
statement is provided. Statistics of the correct and
incorrect responses are shown in Figure 6.
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Figure 16: Token overlap F1 score of various sizes
of Flan-T5 on EB-Easy and StrategyQA test sets
based on the number of retrieved statements. The
results demonstrate that larger models perform better
in F1 scores. We use Contriever as the retriever in all
experiments.
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Figure 17: The token overlap recall score of GPT-3.5
and Flan-T5 models using multihop DSP program.
The results show that Flan-T5-xxl achieves high recall
score with multihop retrieval which can be due to in-
cluding all the retrieved statements in the response. Al-
though getting high recall score, this is not a desired
behavior from language models.

G Impact of multihop retrieval

This section reports more details about the stud-
ied multihop retrieval approach (DSP). In multihop
retrieval experiments, we retrieve 5 statements in
each retrieval, with the same templates of the orig-
inal DSP paper (Khattab et al., 2022). Due to the
generally longer context size in multihop retrieval
setting and the Flan-T5’s context window limita-
tions, multihop and retrieve-then-read experiments
include two and five few-shot demonstrations in the
prompt, respectively. Some of the qualitative ex-
amples of the multihop retrieval approach of DSP
using GPT-3.5 and Flan-T5-xxl are illustrated in
Table 12. Even though Flan-T5-xxl includes the
correct answer tokens in its generated response, it
can be observed that the subqueries generated by
this model are sometimes nothing but paraphras-
ing or repetition of the original questions, while the
goal of the multihop DSP program is to break down
the problems into smaller subproblems. Moreover,
the Flan-T5-xxl’s responses usually include all the
retrieved information, which is not desired. The
recall score of the models using the multihop DSP
approach is illustrated in Figure 17 which shows
the relatively high recall score of the larger Flan-T5
model due to the problem mentioned above.
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Model Query Statements Answer

R
et

ri
ev

er
’s

Fa
ilu

re
s

DPR +
Flan-T5 In a zoo located in a warm re-

gion, what should be included
in the polar bear exhibit?

+ If an animal lives a certain environment then that
animal usually requires that kind of environment.
- Polar bears live in cold environments.

a polar bear

DPR +
FiD warm

Contriever
+ ATLAS

What keeps the Moon orbiting
Earth?

- Moons orbit planets.
- Gravity causes orbits. elliptical

kNN-LM

The robot will weigh less on
mars than earth but will have the
same [MASK].
Targets: mass vs mars

+ As the force of gravity decreases, the weight of
the object will decrease.
- The gravitational force of a planet does not change
the mass of an object on that planet or celestial body.

mars

REALM

A complete orbit of mercury
around the sun takes [MASK].
Targets: around 88 earth days
vs between 1 and 365

+ A complete revolution / orbit of a planet around
its star takes 1 / one planetary year.
- One mercury year is about 88 earth days.

between 1
and 365

If a new moon occurred on June
2, when will the next new moon
occur?

+ A new moon occurred on june 2.
+ A moon phase occurs 28 days after the last time it
occurred.
- 2 plus 28 equals 30.

june 2

L
an

gu
ag

e
M

od
el

’s
Fa

ilu
re

s

DPR +
Flan-T5

What allows two students stand-
ing ten feet apart to hear each
other talk?

+ Talking is when a human produces sound to com-
municate.
+ Sound can travel through air by vibrating air.

a micro-
phone

DPR +
FiD

Which energy conversion hap-
pens when a person shivers and
the energy is transferred to make
the muscles and joints move?

+ A person is a kind of animal.
+ When an animal moves, chemical energy is con-
verted to mechanical energy.
+ Shivering is a kind of shaking.
+ Shaking is a kind of moving.

shaking

Contriever
+ ATLAS

Wave energy from the ocean can
be harnessed to power genera-
tors to make electricity. Energy
from ocean tides can also be
used to make electricity. How
would you categorize these two
sources of energy?

+ Tidal energy means energy from ocean tides.
+ Tidal energy is a renewable resource.
+ Wave energy is a renewable resource.

Wave
energy

Which changes will most likely
have a negative effect on an
ecosystem?

+ Humans changing ecosystems usually has a nega-
tive impact on an ecosystem / organisms living in an
ecosystem.
+ Humans building roads in an ecosystem causes
that ecosystem to change.

Humans
changing

ecosystems

kNN-LM

The mass of earth causes the
pull of gravity on [MASK].
Targets: earth vs newton

+ The mass of a planet causes the pull of gravity on
that planet.
+ Earth is a kind of planet.

newton

REALM

Andy lives in the southern hemi-
sphere. What season does he
most likely experience in Au-
gust?

+ Andy lives in southern hemisphere.
+ August is during the winter in the southern hemi-
sphere.

in southern
hemisphere

Table 11: A complete set of models’ failure examples rooted in the retriever or language model modules. In
the retriever’s failures section, a few correctly retrieved statements and the ones that had to be retrieved in order for
the model to solve the task correctly are highlighted in green and red, respectively. The sequence of tokens leading
to the true answer is marked in bold.
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Question Statements Answer

Which characteristic of a cheetah is more likely
to be learned rather than inherited?

+ Skills are learned characteristics.
+ Inherited characteristics are the opposite of learned
characteristics.
+ Hunting is a kind of skill.

hunting
strategies

GPT-3.5
first subquery learned characteristics of a cheetah

first rationale [1] and [2] suggest that skills are learned characteristics, while [3] suggests that hunting is a kind
of skill.

second subquery Is hunting a learned or inherited characteristic in cheetahs?

second rationale
First, we need to understand the definition of each term. [1] and [2] suggest that skills are learned
characteristics, while [3] suggests that hunting is a kind of skill. Therefore, the answer must be a
learned characteristic of a cheetah that is not hunting.

response How to run
Flan-T5-xxl

first subquery What is the most likely characteristic of a cheetah to be learned rather than inherited?
first rationale What is the most likely characteristic of a cheetah to be learned rather than inherited?

second subquery What is the most likely characteristic of a cheetah to be learned rather than inherited?
second rationale What is the most likely characteristic of a cheetah to be learned rather than inherited?

response hunting is kind of skill inherited characteristics are opposite of learned characteristics answer
hunting

Question Statements Answer

A bee depends on certain flowers for food. The
flowers depend on the bee to

+ Pollination is when pollinating animals, wind, or water
carry pollen from one flower to another flower.
+ A bee is a pollinating animal.
+ Pollination requires pollinating animals.
+ Plant reproduction requires pollination.

carry pollen
for repro-
duction.

GPT-3.5
first subquery What do bees eat?

first rationale
- A bee is a pollinating animal. - Pollination is when pollinating animals, wind, or water carry
pollen from one flower to another flower. - Plant reproduction requires pollination. - Pollination
requires pollinating animals.

second subquery What is the relationship between bees and flowers?

second rationale

First, we need to know what pollination is. Pollination is when an animal carries pollen from one
flower to another. This is important because flowers need to be pollinated in order to reproduce.
Therefore, the bee depends on the flowers for food, and the flowers depend on the bee for
pollination.

response pollinate
Flan-T5-xxl

first subquery What do flowers depend on bees for?
first rationale What do flowers depend on bees for?

second subquery Pollination is when pollinating animals, wind, or water carry pollen from one flower to
another flower. What do flowers depend on bees for?

second rationale What do flowers depend on bees for?

response Pollination is when pollinating animals, wind, or water carry pollen from one flower to
another flower.

Question Statements Answer
A young boy and his brothers have green eyes.

This trait is best described as
+ Eye color is an inherited characteristic.
+ Green is a kind of color. inherited

GPT-3.5
first subquery What is a trait?
first rationale - Eye color is an inherited characteristic. - Green is a kind of color.

second subquery What is the definition of "inherited characteristic?"

second rationale We are looking for a word that describes how the trait is passed down. This is an inherited
characteristic, so it is passed down from parents to children.

response inherited
Flan-T5-xxl

first subquery What is the medical term for the color of a person’s eyes?
first rationale What is the medical term for the color of a person’s eyes?

second subquery Eye color is an inherited characteristic. What is the medical term for the color of a person’s
eyes?

second rationale What is the medical term for the color of a person’s eyes?

response
Eye color is an inherited characteristic. Eye color is a kind of color. Eye color is inherited.
The medical term for the color of a person’s eyes is eye color. Eye color is an inherited
characteristic. Eye color is a kind of color.

Table 12: Some examples of multihop question answering using the DSP approach with Contriever as the
retriever. In each sample, the generated subqueries, rationales, and final response are presented. The correct and
incorrect answers included in the generated tokens are highlighted in green and red, respectively.15509


