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Abstract

The Universum class, often known as the other
class or the miscellaneous class, is defined as
a collection of samples that do not belong to
any class of interest. It is a typical class that ex-
ists in many classification-based tasks in NLP,
such as relation extraction, named entity recog-
nition, sentiment analysis, etc. The Universum
class exhibits very different properties, namely
heterogeneity and lack of representativeness
in training data; however, existing methods of-
ten treat the Universum class equally with the
classes of interest, leading to problems such as
overfitting, misclassification, and diminished
model robustness. In this work, we propose a
closed boundary learning method that applies
closed decision boundaries to classes of inter-
est and designates the area outside all closed
boundaries in the feature space as the space
of the Universum class. Specifically, we for-
mulate closed boundaries as arbitrary shapes,
propose the inter-class rule-based probability
estimation for the Universum class to cater to
its unique properties, and propose a bound-
ary learning loss to adjust decision boundaries
based on the balance of misclassified samples
inside and outside the boundary. In adherence
to the natural properties of the Universum class,
our method enhances both accuracy and ro-
bustness of classification models, demonstrated
by improvements on six state-of-the-art works
across three different tasks. Our code is avail-
able at https://github.com/hzzhou01/Closed-
Boundary-Learning

1 Introduction

In classification-based tasks, quite often we en-
counter a class named as other class, miscellaneous
class, neutral class or outside (O) class. Such a
class is a collection of samples that do not be-
long to any class of interest, such as samples of
no relation class in relation extraction task. We
adopt the terminology in (Weston et al., 2006) to

*Corresponding author.

designate all such classes as the Universum class
(U). Universum class exits in various classification-
based problems in NLP, such as relation extrac-
tion (RE) (Zhang et al., 2017), named entity recog-
nition (NER) (Tjong Kim Sang and De Meulder,
2003), sentiment analysis (SA) (Tjong Kim Sang
and De Meulder, 2003), and natural language infer-
ence (NLI) (Bowman et al., 2015). To distinguish
the Universum class and the rest of the classes, we
call the classes of interest as target classes (T). The
set of all classes (A) in the data can be expressed
as A = U ∪ T

• Universum class: A collection of samples that
do not belong to any class of interest.

• Target class: A class of interest in the task, i.e.,
one of the classes other than the Universum
class.

The sample compositions of the Universum class
and target classes are usually very different. Figure
1(a) provides some samples of a target class (entity-
destination) and the Universum class (other) in
relation extraction. Intuitively, we can observe that
the entity-destination samples adhere to an intra-
class pattern: an entity goes somewhere. However,
the three examples of the other relation type are
vastly dissimilar and do not exhibit any intra-class
pattern. In fact, the Universum samples are labeled
according to an inter-class pattern: they do not
belong to any of the predefined target classes.

We further highlight the differences between the
Universum class and target classes in two proper-
ties.
(1) Heterogeneity: The Universum class is com-
posed of heterogeneous samples, which may form
multiple clusters in the feature space of the test
set, as illustrated by the green samples in Figure
1(c). This is because the Universum class, as the
class name “other" implies, contains all potential
implicit classes that are not explicitly defined in the
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Figure 1: Illustration of distinction between the Universum class. (a) Samples selected from the SemEval 2010 Task
8 dataset on relation extraction. (b) Compactness comparison between the test data of the Universum class (green)
and target classes (blue). (c) The distribution of target classes (class 1, 2, 3) and the Universum class (class 4). In
particular, the gray samples represent Universum samples in the test set that are not represented by the training data.
(d) The open decision boundaries obtained by traditional classifiers. (e) The arbitrary closed boundaries obtained by
our proposed method.

task. For example, in samples of the other class in
Figure 1(a), implicit classes may include the entity-
parallel relationship, the entity-fill relationship, and
the entity-narrative relationship.
Although such heterogeneous samples are easily
mapped into a compact cluster for the training set,
it is problematic for the test set. This is because
the inherent predictive rule of the Universum class
follows an unique inter-class pattern: a sample is
labeled as Universum if it does not belong to any
target classes. This sharply contrasts with the con-
ventional intra-class patterns seen in target classes.
Considering human annotation practices, an entity
is labeled as Location when it aligns with estab-
lished patterns of Location entities. In contrast, a
sample is labeled as Others not due to intra-class
patterns specific to the Others class, but because
it fails to conform to the patterns of Location, Per-
son, or Organization. Consequently, when current
classification models treat the Universum class and
target classes in the same manner, they tend to over-
fit the noise in the Universum class by memorizing
various peculiarities of the heterogeneous samples
rather than recognizing the general predictive rule.
Given the variations in data distributions between
the test and training sets, only memorizing various
peculiarities can easily lead to overfitting, causing
a decline in accuracy. Furthermore, this inabil-

ity to discern the genuine predictive rule for the
Universum class can also compromise the model’s
robustness.
(2) Lack of Representativeness in Training Data:
The Universum class is the complementary set of
predefined target classes in the task. Therefore, it
contains all possible implicit classes, i.e., classes
not explicitly defined in the task but may appear in
the real world. In this case, Universum samples in
the training data are unable to sufficiently represent
all possible patterns of the genuine distribution of
the Universum class. As depicted in Figure 1(c),
gray samples represent Universum samples in the
test set that are not represented by the training data.
Classifiers with open boundaries are prone to mis-
classifying unseen samples in the test set that is not
represented by the training data.

Additionally, we provide a quantitative compari-
son of the average compactness between the Uni-
versum class and the target classes within the test
data for the NER task (Fu et al., 2021), as de-
picted in Figure 1(b). Notably, even though the
Universum class is the class with the most samples,
it exhibits significantly poorer compactness in its
learned representations. This empirical observation
aligns with our earlier theoretical analysis. Both
the inability to discern the genuine inter-class pre-
dictive rule of the Universum class and the lack of
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representativeness in the training data contribute to
this compromised compactness for the Universum
class. Experiment details are in Appendix A.

Despite the substantial difference between the
target classes and the Universum class, this issue
has long been neglected by the research commu-
nity. The majority of works (Zhu and Li, 2022; Ye
et al., 2022; Wan et al., 2022; Fu et al., 2021; Li
et al., 2021b) treat the Universum class and target
classes equally. Typically, a linear layer and a soft-
max function are applied at the end of the model
to generate open decision boundaries, which we
believe are inappropriate for tasks containing the
Universum class.

How can we account for the distinct properties
of the Universum class and target classes to derive
better representations and classifiers? We think
the key lies in conforming to the inherent prop-
erties of the Universum class. In this work, we
propose a closed boundary learning method for
classification-based tasks with the Universum class.
Traditional methods often employ open boundary
classifiers and constrain the representations of Uni-
versum samples to be distributed into a compact
cluster. However, the open decision boundaries
can easily misclassify Universum samples, as illus-
trated in Figure 1(d). In addition, the restriction
on compact space violates the inherent inter-class
pattern of the Universum class. Therefore, we pro-
pose to use closed boundary classifiers as shown
in Figure 1(e). We constrain the space of target
classes to be closed spaces and designate the area
outside all closed boundaries in the feature space
as the space of the Universum class. The treatment
perfectly fits the nature of the Universum class: a
sample is marked as the Universum if it does not
belong to any target class during labeling.

The main contributions of this work are summa-
rized as follows: (1) We address an understudied
problem in this paper. The Universum class widely
exists in many NLP tasks and general machine
learning tasks, but hasn’t received significant atten-
tion in these contexts. (2) Methodologically, we
generate closed boundaries with arbitrary shape,
propose the inter-class rule-based probability es-
timation for the Universum class to cater to the
inherent properties of the Universum class, and
propose a boundary learning loss to learn the deci-
sion boundary based on the balance of misclassi-
fied samples inside and outside the boundary. (3)
In adherence to the natural properties of the Univer-

sum class, our method improves both accuracy and
robustness of classification models, which is vali-
dated on six state-of-the-art (SOTA) works across
three different tasks.

2 Related Works

2.1 Classification Tasks with the Universum
Class

The Universum class widely exists in classifica-
tion based tasks in NLP, such as relation extraction
(RE) (Zhang et al., 2017), named entity recognition
(NER) (Tjong Kim Sang and De Meulder, 2003),
and aspect category sentiment analysis (ACSA)
(Jiang et al., 2019), as summarized in Table 1. It
should be noted that the span-based methods (Zhu
and Li, 2022; Li et al., 2021a) enumerate all pos-
sible spans for classification, which introduces an
extra other class. Despite the heterogeneity and
lack of representativeness of the Universum class,
current works (Zhu and Li, 2022; Wan et al., 2022;
Fu et al., 2021; Tian et al., 2021; Chen et al., 2021;
Li et al., 2021b, 2020; Yu et al., 2020) solve the
classification problems containing the Universum
class as normal multi-class classification problems
and treat the Universum class and target classes
equally.

2.2 Closed Boundary Learning Methods

Closed boundaries are often adopted in research
fields of out-of-distribution (OOD) detection
(Gomes et al., 2022; Ren et al., 2021; Chen et al.,
2020), open set recognition (Zhang et al., 2021; Liu
et al., 2020), anomaly detection (Zong et al., 2018),
and outlier detection (Sharan et al., 2018; Sugiyama
and Borgwardt, 2013). We borrow the term "gener-
alized OOD detection" from (Yang et al., 2021b) to
encapsulate these problems. Furthermore, we sum-
marize the differences between the classification
with the Universum problem and the generalized
OOD detection, focusing on both problem setting
and methodology. The detailed analysis are pro-
vided in Appendix B.

2.3 Universum Learning Methods

Although we adopt the terminology of Universum
(Weston et al., 2006), the problem setting of our
work is entirely different from that of previous stud-
ies on Universum learning (Weston et al., 2006;
Chapelle et al., 2007; Qi et al., 2012; Zhang and Le-
Cun, 2017). The idea of Universum learning stud-
ies is to exploit external, unlabeled Universum data
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Task Dataset Label
Name Proportion

RE SemEval 2010 Task 8 (Hendrickx et al., 2019) Other 17.4%
RE TARCED (Zhang et al., 2017) No relation 79.5%

NER CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) Miscellaneous 14.6%
NER (span based method) CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) Other >90%

ACSA MAMS (Jiang et al., 2019) Neutral 43.4%

Table 1: The tasks and datasets that the Universum class exists.

to improve the accuracy of supervised tasks. How-
ever, in our problem, the Universum class is one of
the internal, labeled classes of multi-class classifi-
cation problems and we propose closed boundary
learning to conform to its unique properties dur-
ing learning. Furthermore, methodologically, the
Universum learning method either employs open-
boundary classifiers (Zhang and LeCun, 2017) or
is incapable of distinguishing the Universum sam-
ples from labeled samples (Weston et al., 2006;
Chapelle et al., 2007; Qi et al., 2012), neither of
which are appropriate to the problem we presented.

3 Method

Problem Definition: The goal of our proposed
method is to learn closed decision boundaries for
target classes and meanwhile, jointly classify the
Universum samples and target samples. We first
give a detailed description of how to recognize
the Universum class in Appendix C. In order to
make our proposed method compatible with most
existing classification methods, the starting point of
our method is the representations of the final layer
of classification models, which is a linear layer that
maps data from high-dimensional feature space to
a lower-dimension space. We denote the sample
representations of the final linear layer as H =
{h0,h1, . . . ,hN−1} ∈ R

N×l , where N is the
number of samples, and l is the output dimension
of the linear layer.

3.1 Pretraining

Our method estimates the probability distribution
of target classes based on their sample distribu-
tions. In order to avoid estimation based on ran-
domly initialized weight and speed up the learning
process, we employ N-pair loss (Sohn, 2016) for
pretraining, making sample representations be of
small intra-class distance and large inter-class dis-
tance. Notably, in accordance with the nature of the
Universum class, we make a change that does not
require the model to reduce the intra-class distance

of Universum samples during the pretraining.

3.2 Generating Closed Boundary of Arbitrary
Shape for Target Classes

Existing closed boundary classification methods
mainly use spherical shape boundaries (Zhang
et al., 2021; Liu et al., 2020); however, we argue
that the spherical shape may not be the optimal
solution because data samples are unlikely to per-
fectly fit into a sphere, and a spherical shape bound-
ary may produce misclassifications. We adopt the
Gaussian mixture model (GMM) and the threshold
value to generate boundaries with arbitrary shapes.

3.2.1 Gaussian Mixture Model
We apply GMM with m components to estimate
the class conditional probability distribution for
each target class Ci, and further derive the joint
probability estimation for each class.

p(hk | Ci) =
m∑

i=1

πiN (hk;µi,Σi) (1)

p(hk, Ci) = p(hk | Ci)p(Ci) (2)

where hk denotes the input feature vector of the kth
sample, µi and Σi are the estimated mean vector
and covariance matrix of the ith Gaussian compo-
nents, respectively. πij is the non-negative mixture
weight under the constraint that

∑m
j=1 πij = 1.

µi, Σi, and πij are all learnable parameters in the
model.
According to Bayes Theorem, the posterior prob-
ability p(Ci | hk) = p(hk|Ci)p(Ci)

p(hk)
. Since we are

interested in argmaxCi

p(hk|Ci)p(Ci)
p(hk)

, the decision
can be made based on joint probability p(hk, Ci).

3.2.2 Arbitrary Shape Boundary
Geometrical View: Inspired by the DENCLUE al-
gorithm in generating arbitrary shape clusters (Hin-
neburg and Keim, 1998), we introduce a threshold
value ξi for each target class. A closed boundary
of arbitrary shape is formulated by points satisfy-
ing p(h, Ci) = ξi. Figure 2 is an illustration of
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Figure 2: Illustration of generating arbitrary shape
boundaries.

formulating an arbitrary shape boundary in a two-
dimensional space. A sample is assigned to class
Ci if it is located inside the closed boundary. If the
number of components of the GMM is set to one,
then the shape of the boundary becomes spherical,
with its center and covariance matrix specified by
µ0 and Σ0, respectively. In this sense, the com-
monly used spherical shape boundary (Zhang et al.,
2021; Liu et al., 2020) is a special case of our
method.
Notably, the threshold values Ξ = ξ1, ξ2, · · · , ξn−1

are a learnable parameters, which eliminates the la-
borious process of hyperparameter tunning. Specif-
ically, they are learned based on the balance of
misclassified samples inside and outside the bound-
ary through our proposed boundary learning loss,
which is introduced later.

Probabilistic View: The above geometrical pro-
cess can be described as:

{
hk ∈ Ci if p(hk, Ci) > ξi

hk /∈ Ci if p(hk, Ci) ≤ ξi
(3)

3.3 Inter-Class Rule-Based Probability
Estimation for the Universum Class

The main obstacle to properly addressing the issue
of the Universum class is to estimate the probabil-
ity of the Universum class based on its inherent
inter-class property rather than intra-class sample
distributions. We propose an inter-class rule-based
probability estimation method to address this issue.

3.3.1 Motivation and the Estimation
We classify samples of Universum class and target
classes based on the following rules we defined:

• Rule 1: A sample is assigned to the Universum
class if it is not located inside any of the closed
boundaries of target classes.

• Rule 2: A sample is assigned to the target
class with the highest p(hk, Ci) if it is located
inside at least one closed boundary.

An intuitive way to incorporate the above rules is
a two-step method that consists of Universum class
detection and target class classification. However,
such a pipeline method has the issue of error prop-
agation. In addition, general probability estimation
methods exploit intra-class sample distributions,
which fail to overcome the natural inter-class prop-
erty of the Universum class and do not conform to
Rule 1. Therefore, a strategy need to be devised to
convert Rule 1 and 2 into a probability expression,
while simultaneously facilitates the learning of the
neural network.
For compliance with Rule 1, the estimated proba-
bility of the Universum class must satisfy the fol-
lowing two conditions: for Universum class sam-
ples: ∀i : p(hk, U) > p(hk, Ci) and for target
class samples: ∃i : p(hk, U) < p(hk, Ci). We can
leverage the relationship between ξi and p(hk, Ci)
defined in Equation 3 to construct the estimation
of p(hk, U) that satisfies the above two conditions.
In addition, to enhance the learning of neural net-
works, the gradient obtained from an Universum
sample should move this sample away from its clos-
est target class boundary. Therefore, we also in-
volve max(p(hk, Ci)), the probability of the clos-
est target class of a Universum sample, to guide
the Universum sample move away from target class
boundaries. We propose to estimate the probability
distribution of the Universum class as follows:

p(hk, U) = λ
ξ2u

p(hk, Cu)
+ (1− λ)

ξ2v
p(hk, Cv)

(4)

where λ =

{
1, p(hk, Cu) > ξu

0, p(hk, Cu) ≤ ξu
(5)

{
u = argmaxi

p(hk,Ci)
ξi

,

v = argmaxi p(hk, Ci)
(6)

ξi is the threshold value of target class i, and u, v ∈
{1, 2, . . . , n− 1}.

3.3.2 Analysis of the Proposed Estimation
For estimated probability of the Universum class
in Equation 4, two cases are possible.
Case 1: p(hk, Cu) > ξu, i.e., sample hk is located
inside at least one closed boundary.
In this case, we have

p(hk, U) = ξu
ξu

p(hk, Cu)
< ξu < p(hk, Cu)

Since p(hk, U) < p(hk, Cu), the model will select
the target class i with the highest p(hk, Ci), which
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fits perfectly with Rule 2.
Case 2: p(hk, Cu) ≤ ξu, i.e., the sample hk dis-
tribute outside every closed boundary.
Combining the condition of case 2 and Equation 6,
we have

∀i ∈ {1, 2, . . . , n− 1} :
p(hk, Ci)

ξi
≤ p(hk, Cu)

ξu
≤ 1

i.e.,∀i ∈ {1, 2, . . . , n− 1} : p(hk, Ci) ≤ ξi (7)

Combining Equation 6 and Equation 7, we can
derive that ∀i ∈ {1, 2, . . . , n− 1}:

p(hk, U) = ξv
ξv

p(hk, Cv)
≥ ξv ≥ p(hk, Cv) ≥ p(hk, Ci)

In case 2, from Equation 7 and Equation 3, we can
learn that sample hk is located outside all closed
boundaries of target classes. In this case, the
probability of Universum class p(hk, U) obtains
the largest value. Therefore, Rule 1 is perfectly
expressed by the proposed probability estimation
of the Universum class.

3.4 Boundary Learning Loss
To facilitate the learning of the closed decision
boundaries, we propose a boundary learning loss
below. Our intuition is that the decision boundary
should be adjusted to the balance of misclassified
samples inside and outside the boundary. For ex-
ample, if samples of class j distribute inside the
boundary of class i, then the boundary should con-
tract to exclude such samples and vice versa.

Lbl =
1

M

n−1∑

i=1

(
∑

k∈O
wk log

ξi
p(hk, Ci)

+
∑

l∈I
wl log

p(hl, Ci)

ξi
)

M is the total number of misclassified samples
for all boundaries, n is the number of classes, O
and I denote the set of training samples misclas-
sified outside and inside the decision boundary i,
respectively. The weights in the loss function are
wk = p(hk,Ci)

p(hk,Ci)+ξi
, wl =

ξi
p(hl,Ci)+ξi

, and they are
detached and cut off the gradient. Weights wk and
wl have smaller values for samples located far from
the boundary, enabling the boundary to be adjusted
primarily on the basis of easily and semi-hard neg-
atives instead of hard negatives.
During training, we sum the cross-entropy loss and
boundary learning loss for optimization. In addi-
tion to balancing inside and outside misclassified

samples, the boundary learning loss forces misclas-
sified samples to be distributed in the proper region,
which works well with cross-entropy loss.

3.5 Framework Overview
To provide better clarity of our method, we pro-
vide a succinct breakdown of the closed boundary
learning framework’s workings:

• Initialization Post-Pretraining: After pre-
training, we employ the GMM for each target
class. The Expectation-Maximization (EM)
algorithm is employed to set the initial values
for the GMM parameters µi, Σi, and πij . As
we transition to the training phase, the param-
eters of GMM are treated as learnable parame-
ters. Contrary to traditional methods using the
EM algorithm for continuous updates, these
parameters are dynamically updated by the
neural network throughout the training pro-
cess.

• Probability Estimation: Probability distri-
butions of target classes are estimated using
GMM, as articulated in Equation 2. The prob-
ability distribution of the Universum class is
computed through our Inter-Class Rule-Based
Probability Estimation method, which is rep-
resented in Equation 4.

• Training Optimization: During the train-
ing process, we use a combined loss func-
tion, summing the cross-entropy loss with the
boundary learning loss for optimization.

4 Experiments

4.1 Experimental Methodology
We demonstrate the efficacy of our method on
six different SOTA models on three datasets of
different NLP tasks, including SemEval 2010 Task
8 (Hendrickx et al., 2019), MAMS (Jiang et al.,
2019), and CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003). The proportion of Universum
samples in the SemEval 2010 Task 8, MAMS,
and CoNLL-2003 datasets are 17.4% (highest in
19 classes), 90%, and 43.4%. respectively. It is
noteworthy that the ratio of Universum class in the
NER task is not calculated from the miscellaneous
samples in the dataset but from the other samples
which are introduced by the span-based method
(Zhu and Li, 2022; Fu et al., 2021).
We evaluate the effectiveness of our proposed
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Task Method F1/accuracy p-value

NER

SpanNER (Fu et al., 2021) 92.09±0.16
< 0.001SpanNER (Fu et al., 2021) + ADB 77.22± 0.49

SpanNER (Fu et al., 2021) + OECC 91.22± 0.12
SpanNER (Fu et al., 2021) + COOLU 93.50±0.13
BS (Zhu and Li, 2022) 92.53±0.02

< 0.01BS (Zhu and Li, 2022) + ADB 75.52± 0.55
BS (Zhu and Li, 2022) + OECC 91.88± 0.15
BS (Zhu and Li, 2022) + COOLU 93.17±0.13

RE

A-GCN (Tian et al., 2021) 88.67±0.18
< 0.01A-GCN (Tian et al., 2021) + ADB 85.99± 0.23

A-GCN (Tian et al., 2021) + OECC 88.00± 0.09
A-GCN (Tian et al., 2021) + COOLU 89.33±0.20
TaMM (Chen et al., 2021) 88.76±0.23

< 0.01TaMM (Chen et al., 2021) + ADB 85.08± 0.26
TaMM (Chen et al., 2021) + OECC 88.17± 0.18
TaMM (Chen et al., 2021) + COOLU 89.47±0.21

ACSA

AC-MIMLLN (Li et al., 2020) 76.13±0.29%
< 0.01AC-MIMLLN (Li et al., 2020) + ADB 71.78± 0.85%

AC-MIMLLN (Li et al., 2020) + OECC 74.02± 0.68%
AC-MIMLLNN (Li et al., 2020) + COOLU 77.35±0.42%
SCAPT (Li et al., 2021b) 84.13±0.19%

< 0.01SCAPT (Li et al., 2021b) + ADB 79.67± 0.44%
SCAPT (Li et al., 2021b) + OECC 83.36± 0.27%
SCAPT (Li et al., 2021b) + COOLU 85.06±0.23%

Table 2: The overall performance of applying closed boundary learning on baseline models.

ClOsed bOundary Learning for classiciation with
the Universum class (COOLU) on 6 SOTA works,
including SpanNER (Fu et al., 2021), BS (Zhu
and Li, 2022), A-GCN (Tian et al., 2021), TaMM
(Chen et al., 2021), AC-MIMLLN (Li et al., 2020),
and SCAPT (Li et al., 2021b). The implementation
details are in the Appendix D.

4.2 Overall Experimental Results

Our first research question (RQ) is can COOLU
achieve a “free" accuracy gain on tasks with the
Universum class? (RQ1) Table 2 shows the overall
results for all 6 models. The reported results are the
average of three runs. Models with our proposed
closed boundary learning outperform the original
models with open classifiers on NLP tasks contain-
ing the Universum class. The overall accuracy or
F1 score is improved on all six models we evalu-
ated, with the largest improvement from 92.09 to
93.50 in F1 score. We also notice that the improve-
ment on the RE task is not as significant as on the
NER and the ACSA tasks (0.66 against 1.41 and
1.22). This may be due to the fact that Universum
samples only account for 17.4% of the SemEval
2010 Task 8, which is considerably less than the
other datasets. In addition, statistical tests between
the accuracy/F1 score of the baseline models and
our method indicate that the improvement brought

about by our COOLU method is statistically signif-
icant. The above experimental results answer RQ1
in positive.

4.3 A Closer Look at the MicroF1, Precision
and Recall

Another question is does COOLU enhance classifi-
cation accuracy for all classes or just the Univer-
sum class? (RQ2) We show the micro F1 score
of each class in applying closed boundary learn-
ing on SpanNER (Fu et al., 2021) in Table 3. The
micro F1 score for the Universum (other) class,
introduced by the span-based method, is excluded
from the overall F1 score calculation as per the
task requirements. The micro F1 score is improved
in all classes, with the absolute improvement of
0.01, 2.43, 0.29, 1.31, and 4.02, respectively. The
F1 improvement of the Universum class is very
small compared to target classes because its sam-
ple size is more than 100 times larger than other
classes, making the denominator very large when
calculating. The results answer RQ2 positively:
the improvement of overall performance is not only
attributed to the improvement of the Universum
class, but also to the improvement of all classes as
a whole.

The third research question is how does
COOLU improve classification model’s perfor-
mance? (RQ3) We find that our proposed closed
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Method ORG PER LOC MISC Other
P R F1 P R F1 P R F1 P R F1 P R F1

SpanNER 89.92 89.81 89.87 97.74 96.47 97.11 93.05 93.88 93.46 78.99 82.83 80.87 99.87 99.83 99.85
SpanNER +

COOLU 94.2990.30 92.30 98.5496.29 97.40 96.1793.41 94.77 88.0281.97 84.89 99.84 99.8999.86

Table 3: The micro F1 score of SpanNER (Fu et al., 2021) with and without closed boundary learning.

boundary learning significantly improves the pre-
cision score of all target classes, with the largest
absolute gain being 9.03 in Table 3. By analyzing
the change in precision and recall, we can derive
the following findings: Firstly, the misclassification
of Universum samples as target samples results in
low precision scores for target classes and low re-
call score for the Universum class in the baseline
method, which proves our claim that the Universum
class is easily misclassified if its unique properties
are neglected. In addition, our proposed closed
boundary learning method can effectively prevent
the misclassification of the Universum class into
target classes, which significantly improve the pre-
cision score of target classes at the expense of a
very slight reduction in recall and similarly im-
prove the recall score of the Universum class at
the expense of a slight reduction in precision. The
second finding answers RQ3.

4.4 Model Robustness Evaluation

We are more interest in the research question that
In adherence to the natural properties of the Uni-
versum class, does COOLU provide a more reason-
able way of learning by improving both model’s
accuracy and robustness? (RQ4) We attempt to
demonstrate RQ4 by theoretical analysis and exper-
imental evaluation of the robustness of the model.
Theoretically, since the natural predictive rule of
the Universum class is an inter-class pattern that
does not belong to any target classes, traditional
models are more likely to fit the noise in the Uni-
versum class by memorizing various peculiarities
of intra-class heterogeneous samples rather than
finding the general predictive rule. However, our
method can identify the inter-class predictive rule
of the Universum class and hence classify out-of-
distribution Universum samples more accurately.
In addition, the closed decision boundaries we
learned are analogous to model’s knowledge bound-
ary of each target class: the space inside the bound-
ary represents what the model knows about a cer-
tain class, i.e., the recognized patterns, whereas
the space outside the boundary represents what the
model doesn’t know about this class from training

data. Such knowledge boundary can avoid the mis-
classification of unseen non-target class samples
as target class. The above two mechanism would
contribute to better robustness of the model.
We evaluate the robustness of the model based on
TextFlint (Wang et al., 2021), a robustness evalua-
tion toolkit for NLP tasks. Specifically, TextFlint
generate perturbations of the test data, and the ro-
bustness of the model is evaluated using the trans-
formed test dataset. The terms such as “CrossCate-
gory", “OOV", and “SpellingError" in Table 4 are
different ways of transforming the test data. Detail
information of these transformation methods are
illustrated in Appendix D.3.
It can be learned from the Table 4 that the robust-
ness of SpanNER improved significantly by apply-
ing our proposed COOLU method, with the im-
provement of absolute F1 score of 4.44, 8.01, 5.03,
and 2.55, respectively. In addition, although the
improvement of the F1 score in A-GCN is less than
1, the improvement in robustness of the model is
considerably large. The absolute F1 score on ro-
bustness evaluation datasets are improved at 2.33,
1.89, 1.35, and 1.63, respectively. Considering
lots of studies theoretically identify a trade-off be-
tween robustness and accuracy (Tsipras et al., 2019;
Zhang et al., 2019; Raghunathan et al., 2020), the
improvement of both model’s accuracy and robust-
ness provides positive evidence for RQ4: COOLU
can provide a more reasonable way of learning
representations and classifiers.

4.5 Ablations

We evaluated two recent OOD detection methods,
ADB (Zhang et al., 2021) and OECC (Papadopou-
los et al., 2021), to demonstrate the inappropri-
ateness of OOD detection approaches for our pro-
posed problem. The experimental results reveal
that integrating ADB and OECC with classifica-
tion models considerably weakens the performance
of the original models, as illustrated in Table 2.
Given that both ADB and OECC were primarily
designed for OOD detection and not the unique
problem presented in this work, their unsuitabil-
ity is anticipated. Specifically, due to the inher-
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CrossCategory OOV SpellingError AppendIrr
SpanNER 77.06 75.14 76.09 87.34

SpanNER + COOLU 81.39 83.15 81.12 89.89

InsertClause SwapEnt SpellingError AppendIrr
A-GCN 77.84 86.8 77.36 86.59

A-GCN + COOLU 80.17 88.69 78.71 88.22

Table 4: Comparison of model’s robustness with and without closed boundary learning.

Method F1/accuracy
SpanNER 92.09
SpanNER + N-pair pretraining 92.05
SpanNER + COOLU (N-pair pretraining) 93.50
SCAPT 84.13%
SCAPT + N-pair pretraining 84.16%
SCAPT + COOLU (N-pair pretraining) 85.06%

Table 5: The effect of pretraining on SpanNER (Fu et al.,
2021) and SCAPT (Li et al., 2021b).

ent difference in the problem settings, the ADB
method cannot utilize the label information of the
Universum class, leading to a significant decline in
accuracy, especially when the Universum samples
constitute a large portion in the span-based method.
In addition, while OECC’s problem setting, outlier
exposure, aligns more closely with ours compared
to other general OOD detection methods, it still
shows inappropriateness, diminishing the accuracy
of original classification models. This diminished
accuracy can be attributed to: (1) error propagation
in its two-step approach, and (2) the instability that
arises from manually set thresholds.

We also conduct an ablation study on N-pair loss
pretraining. In our method, N-pair loss is adopted
for pretraining to learn initial representations and
to speed up the training process. To demonstrate
the effectiveness of our closed boundary learning
method and to rule out the possibility that the im-
provement of our model is due to the N-pair loss
pretraining process, we add an additional pretrain-
ing step to baseline models of SpanNER (Fu et al.,
2021) and SCAPT (Li et al., 2021b). Table 5 indi-
cates that the pretraining process alone cannot im-
prove the accuracy of the original baseline models.
The improvement brought about by our proposed
closed boundary learning is not a result of the pre-
training step but the result of the entire system.

In addition, an ablation study on final layer di-
mension is illustrated in Appendix E.

5 Conclusion

In this work, we highlight an understudied prob-
lem in classification-based tasks that the Univer-
sum class is treated equally with target classes de-
spite their significant differences. As a solution,
we propose a closed boundary learning method
COOLU, which conforms the natural properties of
the Universum samples. Specifically, we generate
closed boundaries with arbitrary shapes, develop
an inter-class rule-based strategy to estimate the
probability of the Universum class, and propose a
boundary learning loss to adjust decision bound-
aries. COOLU offers easy integration with most
classification model, given that it operates on repre-
sentations of the final layer of classification models.
Our method not only boosts the accuracy of SOTA
models but also significantly enhances their robust-
ness.

6 Limitations

As a limitation, our method is not suitable for zero-
shot or few-shot settings because the accuracy of
GMM estimation is positively related to the number
of samples used (Psutka and Psutka, 2019). Simi-
larly, due to the inherent low-dimension constraints
of the GMM, an extensive increase in the number
of classes could pose challenges to the efficacy of
our framework. Nevertheless, given that the last
layer dimension, i.e. class number, in our method is
usually small and the initialized GMM parameters
will be fine-tuned by the neural network, most clas-
sification tasks are not limited by these constraints.
Since the Universum class widely exists in NLP
tasks and many general ML tasks, our method is
applicable to most of these tasks.
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A Compactness of the Universum Class of
the Test Set

We evaluate the compactness of the Universum
class and target classes on the test data and de-
pict the result in Figure 3. The representation
of test samples after learning with open bound-
ary classifiers by SpanNER (Fu et al., 2021) is
used for evaluation. We evaluate the compactness
based on the root-mean-square standard deviation
(RMSSD) (Sharma, 1996), and the mean square
distance (MSD) (Xie and Beni, 1991), which are
commonly used in clustering studies to evaluate
compactness of a cluster. The smaller the RMSSD
or MSD, the better the compactness. It is illustrated
in Figure 3 that the compactness of the “OTHER"
class is significantly worse than target classes. No-
tably, the class with the second-worse compactness
is the “MISC" class, i.e., the “miscellaneous" class,
which is also a type of the Universum class.

Given that the Universum class has the highest
number of samples in the datasets we examined,
it should be represented best through training and
hence formulate the most compact cluster in the
representation space for the test set. Yet, our em-
pirical findings paint a different picture. Then, an
interesting question was raised: Why does the Uni-
versum class, despite being the largest, exhibit
the worst compactness in its learned representa-
tions?

Our research indicates that the answer is rooted
in its inherent inter-class pattern. The Universum
class is defined as a cluster of samples that do not
belong to any of the predefined target classes. Con-
sidering human annotation practices, an entity is
labeled as Location when it aligns with established
patterns of Location entities. In contrast, a sample
is labeled as Others not due to intra-class patterns
specific to the Others class, but because it fails to
conform to the patterns of Location, Person, or
Organization. Consequently, current classification
models are designed to recognize intra-class pat-
terns and unable to discern the inherent inter-class
predictive rule of the Universum class, which will
result in the poorer compactness of the Universum
class.

Additionally, from the lens of representation
learning, the Universum class essentially encap-
sulates "everything else" in a given task. Thus, no

15533

https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2020.acl-main.577
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://doi.org/10.18653/v1/2022.acl-long.490
https://doi.org/10.18653/v1/2022.acl-long.490


(a) (b)

Figure 3: The compactness evaluation of the Universum class and target classes of the test data of NER task.

matter the volume of this class, it’s implausible to
capture every nuance and pattern inherent to such
a broadly defined class. This insight also sheds
light on why, despite its significant size, the Uni-
versum class demonstrates the least compactness
in its representations.

B Related Works

Continuing from previous discussions, we delve
further into the related works on closed boundary
learning methods here.

B.1 Closed Boundary Learning Methods

Closed boundaries are often adopted in research
fields of out-of-distribution (OOD) detection
(Gomes et al., 2022; Ren et al., 2021; Chen et al.,
2020), open set recognition (Zhang et al., 2021; Liu
et al., 2020), anomaly detection (Zong et al., 2018),
and outlier detection (Sharan et al., 2018; Sugiyama
and Borgwardt, 2013). We borrow the term "gen-
eralized OOD detection" from (Yang et al., 2021b)
to encapsulate these problems and discern their dif-
ferences from our proposed classification with the
Universum class problem.

B.1.1 Difference in Problem Setting
Classification tasks can be categorized into prob-
lems based on closed-world assumption and open-
world assumption (Yang et al., 2021b). The general-
ized OOD detection is treated under the open-world
assumption, while the classification problem with
the Universum class is treated under the closed-
world assumption. In addition, the OOD samples
are not available in the training data in generalized
OOD detection, whereas a considerable number
of Universum samples are included in the training
data in our problem setting. The information of ex-

isting Universum samples is important to generate
accurate decision boundaries in our problem.

B.1.2 Difference in Methodology

By definition, the OOD detection problem assumes
that the training data do not contain any OOD
samples. However, a branch of the OOD studies,
known as outlier exposure (Katz-Samuels et al.,
2022; Ming et al., 2022; Yang et al., 2021a; Thulasi-
dasan et al., 2021; Mohseni et al., 2020; Hendrycks
et al., 2018), introduces auxiliary outlier data dur-
ing training. The introduced auxiliary data makes it
close to the format of our raised classification prob-
lems with the Universum class. However, outlier
exposure methods are not suitable for our prob-
lem. The outlier exposure method mostly adopts a
two-step approach that consists of multi-class clas-
sification and OOD identification. Such two-step
approach will suffer from error propagation prob-
lem. In addition,the OOD identification step dis-
tinguishes OOD and ID samples based on a score
obtained by cross entropy or energy function. How-
ever, both cross entropy and energy function are
monotonically varying. As a result, the decision
boundary derived from a threshold score of the
monotonically varying function is an open bound-
ary, which leaves the heterogeneity and represen-
tativeness issues we pointed out in this paper still
unresolved.

From a methodological point of view, our work
is also different from the works in generalized OOD
using closed boundaries. In generalized OOD stud-
ies, the closed boundaries are formulated by the
classic density-based method (Pidhorskyi et al.,
2018; Hu et al., 2018), one-class classification
method (Reiss et al., 2021; Ruff et al., 2018), or
distance-based method (Gomes et al., 2022; Sun
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et al., 2022; Zhang et al., 2021; Zaeemzadeh et al.,
2021; Shu et al., 2020). The distance-based meth-
ods are limited to spherical boundary shapes but
our method can generate arbitrary shape bound-
aries. The one-class classification method formu-
lates only one closed boundary between positive
and negative samples while our work generates
closed boundaries for all target classes. Finally,
only positive samples are used to learn decision
boundaries in density-based method, while both
target class samples and Universum samples are
used in our work.

C Defining the Universum Class

Universum class exists in many tasks and datasets
as we summarized in Table 1. Notably, the Uni-
versum class has various names such as other and
miscellaneous, etc. In sentiment analysis, the neu-
tral class can be considered as the Universum class
because the word neutral is defined as “having no
strongly marked or positive characteristics or fea-
tures", which means the neutral class is a collection
of all samples without strong emotions. Similarly,
the no relation class in the relation extraction task
can be considered as the Universum class.

D Implementation Details

D.1 Baseline Models

We reproduce the baseline models based on the
officially released source code, and apply closed
boundary learning on the source code. All reported
results are the average of three runs. It should
be noted that some results of baseline models
are slightly different from those given in the
original papers due to the variations in random
seeds and package versions when reproducing
baseline models from their officially released
codes. Nevertheless, baseline models and models
with closed boundary learning are fairly compared
in our work under the same random seed and deep
learning environment.
In the six baseline models we selected, different
results based on multiple language models are
often reported in one work. We choose one of
the pretrained models used in each work and
reproduce the baseline models. The pretrained
language model we used in each baseline and their
reported results are summarized in Table 6.

D.2 Training Process

During pretraining process, all parameters of the
original model θ are learned. We employ GMM
estimation on training data after pretraining and
obtain the initial value of µi, Σi, and πij , where
i ∈ {1, 2, · · · , n− 1}, j ∈ {1, 2, · · · ,m}. n is the
number of classes, and m is the number of GMM
components. Through preliminary experiments,
we observed that the number of GMM components
has a minimal impact on our model’s performance.
Thus, we typically select m = 4 in our experiments.
The threshold values ξi is initialized around the a
quantile of p(hk, Ci) values (k ∈ {0, 1, · · · , Ni −
1}), where a is the accuracy or F1 score of the orig-
inal model. With our inter-class rule-based proba-
bility estimation for the Universum class, we obtain
[p(hk, C1), · · · , p(hk, Cn−1), p(hk, U)]. Then,
the original model parameters θ, GMM parame-
ters µi, Σi, πij and threshold values ξi are learned
by cross-entropy loss and our proposed boundary
learning loss.

We use NVIDIA RTX A5000 GPUs to run the
experiments and the model parameters are mostly
follow the original baseline models.

D.3 Robustness Evaluation

We evaluate the robustness of the model based on
TextFlint (Wang et al., 2021), a robustness evalu-
ation toolkit for NLP tasks. There are two kinds
of transformations provided by TextFlint to gen-
erate the robust evaluation dataset, namely univer-
sal transformation and task-specific transformation.
We adopt two universal transformations and two
task-specific transformations to the test set of NER
and RE task and generate four robustness evalua-
tion datasets for each task. The terms of different
transformations are explained below.

• “SpellingError": Universal transformation.
Brings slight errors to words in the test sam-
ples.

• “AppendIrr": Universal transformation. Add
irrelevant information to test samples.

• “CrossCategory": Task-specific transforma-
tion for NER. Replace the entity spans with
substitutions from a different category.

• “OOV": Task-specific transformation for NER.
Replace the entity spans with substitutions out
of vocabulary.
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Method Pretrained Model Reported F1/accuracy
SpanNER (Fu et al., 2021) BERT-base 92.28

BS (Zhu and Li, 2022) RoBERTa 93.65
A-GCN (Tian et al., 2021) BERT-base 89.16
TaMM (Chen et al., 2021) BERT-base 89.18

AC-MIMLLN (Li et al., 2020) Glove 76.42
SCAPT (Li et al., 2021b) BERT-base 85.24

Table 6: The pretrained models chosen for each baseline model and the corresponding F1 score/accuracy reported in
the original paper.

Figure 4: Impact of the last layer dimension on the
accuracy of the model.

• “InsertClause": Task-specific transformation
for RE. Change sample sentences by append-
ing adjuncts from the aspect of dependency
parsing.

• “SwapEnt": Task-specific transformation for
RE. Swap the named entities in a sentence
into entities of the same type.

Specifically, the models are trained and validated
on the original training set and validation set, but
the test set is transormed into the robustness eval-
uation dataset by the transformations proposed by
TextFlint. Then, modelw are tested on the trans-
formed test set.

E The Impact of the Final Layer
Dimension

The last layer’s dimensionality can affect the perfor-
mance of the model. Recalling the classic Hughes
phenomenon (Hughes, 1968) that the model ac-
curacy is monotonically increasing first and then
monotonically decreasing with the dimension of
data, the dimension of the final layer may be cho-
sen to boost model performance.
We investigate the effect of last layer dimension

on the accuracy of the model on the SpanNER (Fu
et al., 2021) with closed boundary learning and
present the result in Figure 4. The F1 score of
the test set grows with increasing of dimensions
and reaches a maximum value of 93.88 when the
dimension is seven, and then decreases with the
dimension. The trend fits well with the Hughes
phenomenon (Hughes, 1968). Our method is quite
robust with the dimension and the overall result of
SpanNER + COOLU reported in Table 2 is set as
ten rather than the optimal value.
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